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In this talk, I will consider the following Cauchy problem for
linear partial differential equation





∂mt u +
∑

(j;¸)2Λ

aj;¸(t)∂jt∂
¸
xu = f(t, x),

∂itu
∣∣∣
t=0

= ϕi(x), i = 0, 1, . . . , m − 1.

The plan of the talk is as follows:

I 1. Equation and assumtions

I 2. Examples, motivation and problem

I 3. Main theorem

I 4. Idea of the proof
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1. Equation and assumptions
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1.1. Equation

We will consider the Cauchy problem:

(E)





∂mt u +
∑

(j;¸)2Λ

aj;¸(t)∂jt∂
¸
xu = f(t, x),

∂itu
∣∣∣
t=0

= ϕi(x), i = 0, 1, . . . , m − 1

where

• (t, x) = (t, x1, . . . , xN) ∈ C× CN ,

• m ≥ 1 is an integer,

• Λ is a finite subset of N× NN ,

• aj;¸(t), f(t, x) and ϕi(x) are holomorphic functions

in a neighborhood of the origin.
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1.2. Formal solution

We suppose:

(A1) ordt(aj;¸) ≥ max{0, j − m + 1}, ∀(j, α) ∈ Λ.

where ordt(aj;¸) denotes the order of the zero of the
function aj;¸(t) at t = 0.

Proposition 1. The Cauchy problem (E) has a unique formal
solution û(t, x) of the form

û(t, x) =
1∑

n=0

un(x)tn ∈ OR[[t]]

for some R > 0, where OR denotes the set of all
holomorphic functions on DR = {x ∈ CN ; |x| < R}.
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1.3. Basic problem

(1) If
j + |α| ≤ m for all (j, α) ∈ Λ,

by Cauchy-Kowalevskaya theorem we know that the formal
solution û(t, x) is convergent.

(2) But, if otherwise, (E) is nothing but a non-Kowalevskian
equation, and the formal solution û(t, x) is not convergent
in general.

Basic problem. How about the summability of the formal
solution û(t, x) in the case:

(A2) j + |α| > m for some (j, α) ∈ Λ.
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solution û(t, x) is convergent.

(2) But, if otherwise, (E) is nothing but a non-Kowalevskian
equation, and the formal solution û(t, x) is not convergent
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2. Examples, motivation and problem
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2.1. Definition of Newton polygon

For (a, b) ∈ R2, we set
C(a, b) = {(x, y) ∈ R2 ; x ≤ a, y ≥ b}, and we make

tp∂jt∂
¸
x correpond to C(j + |α|, p − j).

For oue equation

(E)





∂mt u +
∑

(j;¸)2Λ

aj;¸(t)∂jt∂
¸
xu = f(t, x),

with Cauchy data,

we define the Newton polygon N(E) by

N(E) = the convex hull of the set

C(m, −m) ∪
⋃

(j;¸)2Λ

C(j + |α|, ordt(aj;¸) − j).
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2.2. Picture of Newton polygon

(2.1)

k0

kp˜

(l0, e0)
(l1, e1)k1

(lp˜`1, ep˜`1)

(lp˜, ep˜)

k2

(l2, e2)Γ2

Γp˜+1

Γ0
Γ1

Γp˜

kp˜+1

N(E)
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2.3. Ouchi’s theorem

In the picture (2.1) we denoted:

(l0, e0), · · · , (lp˜, ep˜) : the vertices of N(E),

Γ0, . . . , Γp˜+1 : the boundary of N(E),

ki (i = 0, 1, . . . , p˜ + 1) : the slope of Γi.

We denote by (N(E))‹ the interior of the set N(E)

Theorem (Ouchi (J. Diff. Equations, 2002)). If

(j, α) ∈ Λ and |α| > 0(C)

=⇒ (j + |α|, ordt(aj;¸) − j) ∈ (N(E))‹,

the formal solution û(t, x) is (kp˜, . . . , k1)-multisummable
(in a suitable direction).
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2.4. Example

Let us consider

(e)

{
∂tu = ∂2

xu + c(t)(t∂t)3u,

u
∣∣
t=0

= ϕ(x).

If c(0) 6= 0, our Newton polygon is as follows.

N(e)

∂t

∂2
x

c(t)(t∂t)3

Therefore, by Ouchi’s result
we see:

the formal solution is
1/2-summable in the
direction d (6= 0, π).
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2.5. In the case c(t) ≡ 0

In the case c(t) ≡ 0, our equation is

(e) ∂tu = ∂2
xu, u

∣∣
t=0

= ϕ(x).

N(e)

∂t

∂2
x

In this case the Newton polygon
is as follows:

Theorem (Lutz-Miyake-Schäfke,
(Nagoya J. Math., 1999)).
The formal solution û(t, x) is
1-summable in the direction d,
if and only if ϕ(x) can be analytically continued to infinity in
directions d/2 and π + d/2, and is of exponential order at
most 2 when x is going to infinity in these directions.
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2.6. In the case c(t) = tγ(t)

In the case c(t) = tγ(t) with γ(0) 6= 0, our equation is

(e) ∂tu = ∂2
xu + γ(t)t(t∂t)3u, u

∣∣
t=0

= ϕ(x).

N(e)

∂t

t(t∂t)3

∂2
x

In this case, the Nerwton polygon
is as follows:

Theorem (Yamazawa, 2012).
If ϕ(x) is an entire function
of order 2, the formal
solution û(t, x) is 1-summable
in the direction d (6= 0, π).

Later, ”of order 2” is improved to ”of finite order”.
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2.7. In the case c(t) = tpγ(t)

In the case c(t) = tpγ(t) with p ≥ 2 and γ(0) 6= 0, our
equation is
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= ϕ(x).
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In this case the Newton polygon
is as follows:

By our calculation.
If ϕ(x) is an entire function
of order less than 2(p + 1)/(p − 1),
the formal solution û(t, x) is
(p + 1)/2-summable
in the direction d (6= 0, π).
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2.8. Summary

Thus, on the equation

(e) ∂tu = ∂2
xu + c(t)(t∂t)3u, u

∣∣
t=0

= ϕ(x).

we have seen that the admissible exponential order at
x = ∞ is as follows (in our calculation):

case 1) : c(t) ≡ 0 =⇒ exponential order ≤ 2,

case 2) : c(t) = tγ(t) and γ(0) 6= 0

=⇒ exponential order < ∞,

case 3) : c(t) = tpγ(t), p ≥ 2 and γ(0) 6= 0

=⇒ exponential order <
2(p + 1)

p − 1
.
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2.9. Problem

By looking at these examples, we have come to be
interested in the following problem:

Problem. What determine the bound of the admissible
exponential order

≤ 2 ?, < ∞ ? or <
2(p + 1)

p − 1
?

Since to study this problem in the general case is very
difficult, from now we will study this problem under the
assumption that

the data are entire functions in the x-variable.
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3. Main Theorem

- A sufficient condition for summability -
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3.1. A class of entire functions

Let γ > 0. We say that a function ϕ(x) is an entire function
of order γ, if it is holomorphic on CN and satisfies

|ϕ(x)| ≤ A exp
(
a|x|‚) on CN

for some A > 0 and a > 0. We denote by Expf‚g(CN) the
set of all entire functions of order γ.

Similarly, we denote by Expf‚g(Dr × CN) the set of all
holomorphic functions f(t, x) on Dr × CN having the
estimate

|f(t, x)| ≤ B exp
(
b|x|‚) on Dr × CN

for some B > 0 and b > 0.
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3.2. Equation and Problem

As before, we consider the Cauchy problem

(E)





∂mt u +
∑

(j;¸)2Λ

aj;¸(t)∂jt∂
¸
xu = f(t, x),

∂itu
∣∣∣
t=0

= ϕi(x), i = 0, 1, . . . , m − 1

under the consitions (A1), (A2), aj;¸(t) is holomorphic on
Dr = {|t| < r} and the following:

(A3)

{
f(t, x) ∈ Expf‚g(Dr × CN),

ϕi(x) ∈ Expf‚g(CN), i = 0, 1, . . . , m − 1.

Problem. Under what condition on γ, can we get the
summability of the formal solution û(t, x)?
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3.3. t-Newton polygon

In order to describe our condition on γ we must define a new
Newton polygon of the equation (E).

We define t-Newton polygon Nt(E) by

Nt(E) = the convex hull of the set

C(m, −m) ∪
⋃

(j;¸)2Λ

C(j, ordt(aj;¸) − j).

Recall that usual Newton polygon N(E) was defined by

N(E) = the convex hull of the set

C(m, −m) ∪
⋃

(j;¸)2Λ

C(j + |α|, ordt(aj;¸) − j).
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3.4. Picture of t-Newton polygon
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3.5. Important data in (3.1)

In the picture (3.1) we denoted:

(l0, e0), · · · , (lp˜, ep˜) : the vertices of Nt(E),

Γ0, . . . , Γp˜+1 : the boundary of Nt(E),

ki (i = 0, 1, . . . , p˜ + 1) : the slope of Γi.

Then we have

k0 = 0 < k1 < k2 < · · · < kp˜ < kp˜+1 = ∞.

We denote by (Nt(E))‹ the interior of the set Nt(E), and
we suppose:

(j, α) ∈ Λ and |α| > 0(A4)

=⇒ (j, ordt(aj;¸) − j) ∈ (Nt(E))‹.
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3.6. Set of admissible exponents C

Next, let us define the set of admissible exponets C . We set

Λ˜ = {(j, α) ∈ Λ ; (j + |α|, ordt(aj;¸) − j) 6∈ Nt(E)}.

(1) If Λ˜ = ∅, we set C = (0, ∞) in R.
(2) If Λ˜ 6= ∅, we define the interval C by

C =
⋂

(j;¸)2Λ˜
Cj;¸

and Cj;¸ are defined as follows:

If (j, α) ∈ Λ˜, we have |α| > 0,

• (j, ordt(aj;¸) − j) ∈ (Nt(E))‹ by (A4),

• (j + |α|, ordt(aj;¸) − j) 6∈ Nt(E).
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3.7. Definition of Cj,α (1)

Case 1.
(li, ei)

(li`1, ei`1)

|α|
Lj;¸

Γi

(j, ordt(aj;¸) − j)
(j + |α|, ordt(aj;¸) − j)

(3.2)

We set

Cj;¸ =
(
0,

|α|
Lj;¸

)
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3.8. Definition of Cj,α (2)

Case (2).

(lp˜, ep˜)

|α| − Lj;¸ Lj;¸

(j, ordt(aj;¸) − j) (j + |α|, ordt(aj;¸) − j)

(3.3)

We set Cj;¸ =
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|α|
Lj;¸

]
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Recall

Recall: C =
⋂

(j;¸)2Λ˜
Cj;¸ and the t-Newton polygon:

k0

kp˜

(l0, e0)
(l1, e1)k1

(lp˜`1, ep˜`1)

(lp˜, ep˜)

k2

(l2, e2)Γ2

Γp˜+1

Γ0
Γ1

Γp˜

kp˜+1

Nt(E)
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3.9. Characteristic polynomial on Γi

In the case p˜ ≥ 1, we define the characteristic polynomial
Pi(λ) on Γi as follows.

We set

Ii =
{
(j, 0) ∈ Λ ; (j, ordt(aj;0) − j) ∈ Γi

}
,

For (j, 0) ∈ I1 ∪ I2 ∪ · · · ∪ Ip˜ we set qj;0 = ordt(aj;0);
then we have

aj;0(t) = tqj;0a0
j;0(t) with a0

j;0(0) 6= 0

for some holomorphic function a0
j;0(t). We set

Pi(λ) =





∑

(j;0)2I1
a0
j;0(0)λj`m − 1, if i = 1,

∑

(j;0)2Ii
a0
j;0(0)λj`li`1, if 2 ≤ i ≤ p˜.
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3.10. Singular directions

In the case p˜ ≥ 1 we denote by

λi;1 , . . . , λi; li`li`1

the roots of Pi(λ) = 0 that are called the characteristic
roots on Γi.

Definition (1) We define the set Ξ of singular directions by

Ξ =
p˜⋃

i=1

li`li`1⋃

d=1

{arg λi;d + 2πj

ki
; j = 0, ±1, ±2, . . .

}
.

(2) We take Z ⊂ (−π, π] so that Z ≡ Ξ (mod. 2π). We
note that Z is a finite set.
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3.11. Main Theorem

Let us present our main theorem. Let

• û(t, x) be the formal solution of (E),

• C be the set of admissible exponents,

• Z be the set of singular directions.

Then, we have.

Main Theorem. Suppose the conditions (A1) − (A4) and
γ ∈ C . Then, we have:

(1) If p˜ = 0, û(t, x) is convergent on D‹ × CN .
(2) If p˜ ≥ 1, û(t, x) is (kp˜, . . . , k1)-multisummable

in any direction d ∈ (−π, π] \ Z .
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3.12. Consequence

Corollary. If p˜ ≥ 1, for any d ∈ (−π, π] \ Z we can find

• S = {t ∈ R(Ct \ {0}) ; 0 < |t| < δ,

| arg t − d| < π/2kp˜ + ε}
for some ε > 0 and δ > 0, and

• a holomorphic solution u(t, x) of (E) on S × CN

such that the following asymptotic relation holds:

∣∣∣∣u(t, x) −
N`1∑

n=0

un(x)tn
∣∣∣∣ ≤ AHNN !1=k1|t|N exp(b|x|‚)

on S × CN for any N = 0, 1, 2, . . .

for some A > 0, H > 0 and b > 0.
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3.13. Example (1)

In the case

(e) ∂tu = ∂2
xu, u

∣∣
t=0

= ϕ(x).

∂t

∂2
x

(0, 0) (0 + 2, 0)

Nt(e)

In t-Newton polygon,
∂2
x corresponds to (0, 0)

and so (A4) is satisfied.
Note: in usual Newton polygon,

∂2
x corresponds to (2, 0).

Therefore, we have |α| = 2, L = 1, and so C = (0, 2].
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3.14. Example (2)

In the case

(e) ∂tu = ∂2
xu + γ(t)t(t∂t)3u, u

∣∣
t=0

= ϕ(x).

∂t

t(t∂t)3

(0, 0) (2, 0)

Nt(e)
In t-Newton polygon,

∂2
x corresponds to (0, 0)

and so (A4) is satisfied.
Note: in usual Newton polygon,

∂2
x corresponds to (2, 0).

In this case, (2, 0) is on the boundary of Nt(e) and so
Λ˜ = ∅: this shows C = (0, ∞). We can regard as |α| = 2
and L = 0.
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3.15. Example (3)

In the case

(e) ∂tu = ∂2
xu + γ(t)tp(t∂t)3u, u

∣∣
t=0

= ϕ(x) (p ≥ 2).

∂t

tp(t∂t)3Nt(e)

(0, 0)

(2, 0)

(p + 3

p + 1
, 0

) Γ1

We have |α| = 2 and

L = 2 − p+3
p+1

= p`1
p+1

,

C =
(
0, j¸j

L

)
=

(
0, 2(p+1)

(p`1)

)
.

We note that the slope of Γ1

is p+1
2

. Our conclusion is:

the formal solution û(t, x) is
p+1
2

-summable.
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3.16. Ichinobe’s result

In the lecture of Ichinobe, he has treated the following
equation:

∂tu =
∑

(i;¸)2Λ

ai;¸ti∂¸xu, u
∣∣
t=0

= ϕ(x).

(1, −1)

(α0, i0)

α0

α0 − 1

In this case, we have
|α| = α0 and L = α0 − 1
and so

C =
(
0,

α0

α0 − 1

]
.

Thus, the admissible

exponential order ≤ α0

α0 − 1
.
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4. Idea of the proof
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4.1. Entire functions as Gevrey functions

In the proof, the following lemma is very important:

Lemma 1. Let γ > 0 and let f(x) be an entire function. Set
σ = 1 − 1/γ. The following two conditions are equivalent:
(1) f(x) ∈ Expf‚g(CN).
(2) For any compact subset K of CN there are A > 0 and
h > 0 such that the following estimates hold:

max
K

|∂¸x f(x)| ≤ Ahj¸j|α|!ff for any α ∈ NN .

Hence, we can regard entire functions of order γ as functions
of the Gevrey class of order σ. We note that γ > 1 is
equivalent to 0 < σ < 1.
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4.2. Meaning of the condition γ ∈ C

We note that by the definition of C we can see that

C ⊃ (0, 1 + δ) for some δ > 0.

Lemma 2. Under the relation σ = 1 − 1/γ, the following
two conditions are equivalent:
(1) γ ∈ C and γ > 1.
(2) For any (j, α) ∈ Λ with |α| > 0 we have

(j + σ|α|, ordt(aj;¸) − j)

∈ (Nt(E))‹ ∪ (Γp˜+1 \ {(lp˜, ep˜)}).

This shows that if we regard entire functions as functions in
the Gevrey lcass of order σ, then our equation is considered
as a perturbation of ordinary differential equations.
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4.3. Idea of the proof

In the paper of Ouchi (J. Diff. Equations, 2002), he studied
the summability of formal solutions to linear partial
differential equations which can be considered as a
perturbation of ordinary differential equations.

If we use two Lemmas 1 and 2, we can apply quite similar
argument to our case, and we can obtain our result.
For details, please see the following paper:

H. Tahara and H. Yamazawa, Multisummability of formal
solutions to the Cauchy problem for some linear partial
differential equations,
Journal of Differential Equations 255 (2013) pp. 3592-3637
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Thank you very much.
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