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In this talk, | will consider the following Cauchy problem for
linear partial differential equation

N u+ Y ajalt)d]du = f(t,x),
(Gr0)EA

Bzu‘t_o = pi(x), i1=0,1,...,m —1.



In this talk, | will consider the following Cauchy problem for
linear partial differential equation

N u+ Y ajalt)d]du = f(t,x),
(Gr0)EA

Bzu‘t_o = pi(x), i1=0,1,...,m —1.

The plan of the talk is as follows:
» 1. Equation and assumtions
» 2. Examples, motivation and problem
» 3. Main theorem
» 4. ldea of the proof



1. Equation and assumptions



1.1. Equation

We will consider the Cauchy problem:

' u+ Y aja(t)d]8Su= f(t,x),
(E) ' (d,a)EA
o;u —o = pi(x), 1=0,1,...,m—1



1.1. Equation

We will consider the Cauchy problem:

' u+ Y aja(t)d]8Su= f(t,x),
(E) ' (d,a)EA
8zu‘t_0 = pi(x), +1=0,1,....m—1

where

(t,x) = (t,x1,...,x2n) € C x CN,

m > 1 is an integer,

A is a finite subset of N x NV,

aj.a(t), f(t,z) and @;(x) are holomorphic functions

in a neighborhood of the origin.



1.2. Formal solution
We suppose:
(A1) ordi(ajo) > max{0,j —m+ 1}, V(j,a) € A.

where ord;(aj,.) denotes the order of the zero of the
function a; (t) at t = 0.



1.2. Formal solution

We suppose:
(A1) ordi(ajo) > max{0,j —m+ 1}, V(j,a) € A.

where ord;(aj,.) denotes the order of the zero of the
function a; (t) at t = 0.

Proposition 1. The Cauchy problem (E) has a unique formal
solution @(t, x) of the form

oo

a(t,z) = Y un(x)t" € Og|[t]]

n=0

for some R > 0, where Ogr denotes the set of all
holomorphic functions on D = {x € CV; |z| < R}.



1.3. Basic problem

(1) If
j+lal <m forall (j,a) € A,

by Cauchy-Kowalevskaya theorem we know that the formal
solution 4 (t, x) is convergent.
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equation, and the formal solution 4(t, x) is not convergent
in general.



1.3. Basic problem

(1) If
j+lal <m forall (j,a) € A,

by Cauchy-Kowalevskaya theorem we know that the formal
solution 4 (t, x) is convergent.

(2) But, if otherwise, (E) is nothing but a non-Kowalevskian
equation, and the formal solution 4(t, x) is not convergent
in general.

Basic problem. How about the summability of the formal
solution 4(t, x) in the case:

(A2) Jj+ |a| >m for some (j,a) € A.



2. Examples, motivation and problem



2.1. Definition of Newton polygon

For (a,b) € R?, we set
C(a,b) = {(z,y) € R?; z < a,y > b}, and we make

tpag'ag correpond to C(j + |a|,p — 7).



2.1. Definition of Newton polygon

For (a,b) € R?, we set
C(a,b) = {(z,y) € R?; z < a,y > b}, and we make

tpag'ag correpond to C(j + |a|,p — 7).
For oue equation

N u+ Y aja(t)d]dcu = f(t,x),
(E) (ra)EA
with Cauchy data,

we define the Newton polygon N (E) by

N (E) = the convex hull of the set

C(m,—m) U U C(j + |af,orde(aja) — J)-
(Fr)eA



2.2. Picture of Newton polygon

pr 41

(Ip~s epr)

(2.1)

To
ko




2.3. Ouchi’s theorem
In the picture (2.1) we denoted:

(lo,e0), ==+, (lp=,epx): the vertices of N(E),
I'o,...,Ip=41: the boundary of N(E),
k; (i=0,1,...,p" +1): the slope of T;.

We denote by (IN(E))° the interior of the set N (E)



2.3. Ouchi’s theorem
In the picture (2.1) we denoted:

(lo,e0), ==+, (lp=,epx): the vertices of N(E),
I'o,...,Ip=41: the boundary of N(E),
k; (i=0,1,...,p" +1): the slope of T;.

We denote by (IN(E))° the interior of the set N (E)
Theorem (Ouchi (J. Diff. Equations, 2002)). If

(O  (Gra)eAand|af >0
= (J + |af, ordi(aja) — j) € (N(E))°,

the formal solution 4(t, ) is (kp*, ..., k1)-multisummable
(in a suitable direction).



2.4. Example

Let us consider

© { dru = 82u + c(t) (t8;)3u,

u’t:O = p(x).



2.4. Example

Let us consider

© { dru = 82u + c(t) (t8;)3u,

u’t:O = p(x).

If ¢(0) # 0, our Newton polygon is as follows.

N(e)

c(t)(t0r)®

O



2.4. Example

Let us consider
Ou = 82u + c(t)(t0:)3wu,
(e)

u”t:O = (p($).
If ¢(0) # 0, our Newton polygon is as follows.

Therefore, by Ouchi’s result
we see: N(e)

the formal solution is
1/2-summable in the 2

direction d (# 0, ). c(.t)(tam

O



2.5. In the case c(t) =0

In the case c(t) = 0, our equation is

(e) Ou = d3u, u‘t:o = p(x).



2.5. In the case c(t) =0

In the case c(t) = 0, our equation is

(e) Ou = d3u, u‘t:o = p(x).

. N(e)
In this case the Newton polygon

is as follows:

0y



2.5. In the case c(t) =0

In the case c(t) = 0, our equation is

(e) Ou = d3u, u‘t:o = p(x).

. N(e)
In this case the Newton polygon

is as follows:

Theorem (Lutz-Miyake-Schafke, 92
(Nagoya J. Math., 1999)).
The formal solution 4 (t, x) is a
1-summable in the direction d,

if and only if () can be analytically continued to infinity in
directions d/2 and 7 + d/2, and is of exponential order at
most 2 when x is going to infinity in these directions.




2.6. In the case c(t) = ty(t)

In the case c(t) = ty(t) with v(0) # 0, our equation is

(e) du = &2u + v ()t (t0:)>u, u‘t:O = p(x).
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In the case c(t) = ty(t) with v(0) # 0, our equation is

(e) du = &2u + v ()t (t0:)>u, u‘t:O = p(x).

In this case, the Nerwton polygon
is as follows: N(e)

t(tdy)3
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2.6. In the case c(t) = ty(t)

In the case c(t) = ty(t) with v(0) # 0, our equation is

(e) du = &2u + v ()t (t0:)>u, u‘t:O = p(x).

In this case, the Nerwton polygon
is as follows: N(e)

Theorem (Yamazawa, 2012).
If p(x) is an entire function a;

t(tdy)3

of order 2, the formal
solution @(t, x) is 1-summable

in the direction d (# 0, 7). o




2.6. In the case c(t) = ty(t)

In the case c(t) = ty(t) with v(0) # 0, our equation is

(e) du = &2u + v ()t (t0:)>u, u‘t:O = p(x).

In this case, the Nerwton polygon
is as follows: N(e)
t(tdy)3

Theorem (Yamazawa, 2012).

If p(x) is an entire function a;
of order 2, the formal

solution #(t, x) is 1-summable | /
in the direction d (# 0, 7). o

Later, " of order 2” is improved to " of finite order”.



2.7. In the case c(t) = tP~(t)

In the case c(t) = tP~(t) with p > 2 and ~(0) # 0, our
equation is

(e) Ou = 2u + v (1)tP (t8)3u, u|t:0 = p(x).



2.7. In the case c(t) = tP~(t)

In the case c(t) = tP~(t) with p > 2 and ~(0) # 0, our
equation is

(e) Ou = 2u + v (1)tP (t8)3u, u|t:0 = p(x).

In this case the Newton polygon
is as follows:
tP(t0;)3

N(e)

O



2.7. In the case c(t) = tP~(t)

In the case c(t) = tP~(t) with p > 2 and ~(0) # 0, our

equation is
(e) Oru = 82u + v(+)tP (td:)>u,

In this case the Newton polygon
is as follows:

By our calculation.

If () is an entire function

of order less than 2(p+1)/(p — 1),
the formal solution (%, ) is

u|t:0 = p(x).

N(e)

tP(t0;)3

(p 4+ 1)/2-summable
in the direction d (# 0, ).

O



2.8. Summary

Thus, on the equation
(e) Ou = &32u + c(t) (t8y)>u, u‘t:o = p(x).

we have seen that the admissible exponential order at
x = oo is as follows (in our calculation):

case 1) : ¢(t) = 0 = exponential order < 2,
case 2) : c(t) =tvy(t) and v(0) #0

—> exponential order < oo,
case 3) : c(t) =tPv(t),p > 2 and ~(0) # 0
2(p+1)

— exponential order < 1
p —_—



2.9. Problem

By looking at these examples, we have come to be
interested in the following problem:

Problem. What determine the bound of the admissible
exponential order
< 2(p+1) ?

<27, <oco? or
p—1



2.9. Problem

By looking at these examples, we have come to be
interested in the following problem:

Problem. What determine the bound of the admissible
exponential order
< 2(p+1) ?

<27, <oco? or
p—1

Since to study this problem in the general case is very
difficult, from now we will study this problem under the
assumption that

the data are entire functions in the x-variable.



3. Main Theorem

- A sufficient condition for summability -



3.1. A class of entire functions

Let v > 0. We say that a function () is an entire function
of order ~, if it is holomorphic on CV and satisfies

o(2)] < Aexp(alz]’) on CN

for some A > 0 and a > 0. We denote by Exp{"}(CN) the
set of all entire functions of order ~.



3.1. A class of entire functions

Let v > 0. We say that a function () is an entire function
of order ~, if it is holomorphic on CV and satisfies

o(2)] < Aexp(alz]’) on CN

for some A > 0 and a > 0. We denote by Exp{"}(CN) the
set of all entire functions of order ~.

Similarly, we denote by Exp{7}(D, x CN) the set of all
holomorphic functions f(t,x) on D, x C¥ having the
estimate

|f(t,z)| < Bexp(blz|”) on D, x CN

for some B > 0 and b > 0.



3.2. Equation and Problem

As before, we consider the Cauchy problem

' u+ Y. aja(t)d]du = f(t,x),
(F) ‘ (Jra)eA
BZ’U,L_O = pi(xr), 1=0,1,....m—1
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As before, we consider the Cauchy problem

' u+ Y. aja(t)d]du = f(t,x),
(F) (Jra)eA
BZ’U,L_O = pi(xr), 1=0,1,....m—1

under the consitions (A1), (A2), aj,«(t) is holomorphic on
D, = {|t| < r} and the following:

3 wi(x) € ExpH(CN), i=0,1,...,m — 1.



3.2. Equation and Problem

As before, we consider the Cauchy problem

' u+ Y. aja(t)d]du = f(t,x),
(E) (d,a)eA
BZ’U,L_O = pi(xr), 1=0,1,....m—1

under the consitions (A1), (A2), aj,«(t) is holomorphic on
D, = {|t| < r} and the following:

3 wi(x) € ExpH(CN), i=0,1,...,m — 1.

Problem. Under what condition on ~, can we get the
summability of the formal solution @(t, x)?



3.3. t-Newton polygon

In order to describe our condition on v we must define a new
Newton polygon of the equation (E).



3.3. t-Newton polygon

In order to describe our condition on v we must define a new
Newton polygon of the equation (E).
We define t-Newton polygon N;(E) by

N;(E) = the convex hull of the set

C(m,—m)u | ] C(j,ordi(aja) — j)-
(,a)EA



3.3. t-Newton polygon

In order to describe our condition on v we must define a new
Newton polygon of the equation (E).
We define t-Newton polygon N;(E) by

N;(E) = the convex hull of the set

C(m,—m)u | ] C(j,ordi(aja) — j)-
(,a)EA

Recall that usual Newton polygon N (E) was defined by

N (E) = the convex hull of the set

C(m,—m)U ] C(@+l|al,orde(aja) — j)-
() EA



3.4. Picture of t-Newton polygon

pr 41

(Ip~s epr)

(3.1)
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3.5. Important data in (3.1)
In the picture (3.1) we denoted:

(lo,eo0)s +++, (Ipx,epx): the vertices of N¢(E),
I'o,...,Ip«+1: the boundary of N¢(E),
k; (¢=0,1,...,p* +1): the slope of T;.

Then we have

ko =0<ky <ky<-:+ <kp <kpryq1 = o0.



3.5. Important data in (3.1)
In the picture (3.1) we denoted:

(lo,eo0)s +++, (Ipx,epx): the vertices of N¢(E),
I'o,...,Ip«+1: the boundary of N¢(E),
k; (¢=0,1,...,p* +1): the slope of T;.

Then we have
ko =0<ky <ky<-:+ <kp <kpryq1 = o0.

We denote by (IV:(E))° the interior of the set N.(E), and
we suppose:
(Ayg) (joa) € Aand |a] >0

= (J, Ordt(aj,a) —Jj) € (Nt(E))O'



3.6. Set of admissible exponents %

Next, let us define the set of admissible exponets . We set

A" ={(J,a) € A; (j + |al,ord(aj,a) — j) & Ne(E)}-
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A" ={(,a) € A; (§ + |al,ord¢(aj,a) — J) € Ne(E)}-

(1) If A* =0, we set € = (0,00) in R.
(2) If A* # 0, we define the interval € by
¢= () %o
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and ¢ o are defined as follows:



3.6. Set of admissible exponents %

Next, let us define the set of admissible exponets . We set
A" ={(,a) € A; (§ + |al,ord¢(aj,a) — J) € Ne(E)}-

(1) If A* =0, we set € = (0,00) in R.
(2) If A* # 0, we define the interval € by
¢= () %o
(J,o)EA*

and ¢ o are defined as follows:

If (,a) € A*, we have |a| > 0,

e (j,ordi(aja) —J) € (Ne(E))° by (A4),
o (j+ |af,ordi(aj,a) —3) € Ni(E).



3.7. Definition of € . (1)

Case 1.
Ly e)

(ja Ordt(aj,a) - ]) s .
............................... (G + |al, ords(aj.a) — )

(3.2)

(li—1,€i—1)




3.7. Definition of € . (1)

Case 1.
(L, €5)
r;
(ja Ordt(aj,a) - ]) R
............................... (G + |al, ords(aj) — 7)
(3.2)
(li—1,€i—1)

We set




3.8. Definition of € . (2)

Case (2).

62 Ordt(aj,a) —7J) G+ |a|a0rdt(aj,a) —J)

|a| _Ljaa Lj,Ot

(3.3)

(Ip~s ep)




3.8. Definition of € . (2)

Case (2).
(4, Ordt(aj,a) -3) G+ |a|a0rdt(aj,a) —J)
la| — Lja Lja
(3.3)
(Ip~; ep*)
We set Cja = <O, lod ]
Lj,o



Recall

Recall: ¢ = ﬂ %j,o and the t-Newton polygon:
(F,a)enx

N(E)

1 (li,e1)

kO (l07 80)




3.9. Characteristic polynomial on T';

In the case p* > 1, we define the characteristic polynomial
P;(X) on T'; as follows.
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3.9. Characteristic polynomial on T';

In the case p* > 1, we define the characteristic polynomial
P;(X) on T'; as follows. We set

Ii - {(.7’ O) S A; (.79 Ordt(a'j,O) - .7) S Fi}a

For (j,0) € Iy Ul U ---U I, we set gjo = ord¢(ajo);
then we have

ajo(t) = tqﬂ"oa?’o(t) with a?’O(O) #0

for some holomorphic function a;-”o ().



3.9. Characteristic polynomial on T';

In the case p* > 1, we define the characteristic polynomial
P;(X) on T'; as follows. We set

Ii - {(.7’ O) S A; (.79 Ordt(a'j,O) - .7) S Fi}a

For (j,0) € Iy Ul U ---U I, we set gjo = ord¢(ajo);
then we have

ajo(t) = tqﬂ"oa?’o(t) with a?’O(O) #0
for some holomorphic function a? ;(t). We set

Y ady(oNT -1, ifi=1,

(j,O)EIl
Pi(\) = .
o > ad ()M Th-,if2 < i < pr

(j,O)EIi



3.10. Singular directions

In the case p* > 1 we denote by
Aiyl ey Aijli—l;_q

the roots of P;(A) = O that are called the characteristic
roots on T';.



3.10. Singular directions

In the case p* > 1 we denote by

Ail geees Nijli—l;_y

the roots of P;(A) = O that are called the characteristic
roots on T';.

Definition (1) We define the set = of singular directions by

E = U U {arg)"";fr 27 = 0,:|:1,:|:2,...}.

(2) We take & C (—m, «] so that 2 = = (mod. 27). We
note that Z is a finite set.
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e % be the set of singular directions.
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v € €. Then, we have:
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v € €. Then, we have:

(1) If p* = 0, a(t,x) is convergent on D5 x CN.



3.11. Main Theorem

Let us present our main theorem. Let

e u(t,x) be the formal solution of (E),
e % be the set of admissible exponents,
e % be the set of singular directions.

Then, we have.
Main Theorem. Suppose the conditions (A1) — (A4) and

v € . Then, we have:

(1) If p* = 0, a(t,x) is convergent on D5 x CN.
(2) f p* > 1, a(t,x) is (kp*, ..., k1)-multisummable
in any direction d € (—m,w] \ Z.



3.12. Consequence

Corollary. If p* > 1, for any d € (—m, w| \ Z we can find
o S={teR(Cs/\{0});0< |t| <4,
|argt — d| < w/2kp~ + €}
for some e > 0 and § > 0, and
e a holomorphic solution u(t,x) of (E) on § x CV

such that the following asymptotic relation holds:

u(t, ) — Y un(x)t"| < AHN NF N exp(bla|™)

' N-1
n=0

on S x CN for any N =0,1,2,...

forsome A >0, H >0and b > 0.



3.13. Example (1)

In the case

(e) du = d3u, u|t=0 = p(x).

In t-Newton polygon,
02 corresponds to (0, 0) Ni(e)
and so (A,) is satisfied.

Note: in usual Newton polygon, ©.0 ©+20)

92 corresponds to (2,0). o2

0y



3.13. Example (1)

In the case

(e) du = d3u, u|t=0 = p(x).

In t-Newton polygon,
02 corresponds to (0, 0) Ni(e)
and so (A,) is satisfied.

Note: in usual Newton polygon, ©.0 ©+20)

92 corresponds to (2,0). z

0y

Therefore, we have |a| =2, L =1, and so ¥ = (0, 2].



3.14. Example (2)
In the case

(e) Ou = O2u + y(t)t(td)%u, wu i—o = P(x).

In t-Newton polygon,

92 corresponds to (0, 0)
and so (A,) is satisfied.
Note: in usual Newton polygon, ©0 (2,0)

N¢(e)
t(tdy)3

02 corresponds to (2, 0). /

0y




3.14. Example (2)
In the case

(e) Ou = O2u + y(t)t(td)%u, wu i—o = P(x).

In t-Newton polygon,

92 corresponds to (0, 0)
and so (A,) is satisfied.
Note: in usual Newton polygon, ©0 (2,0)

N¢(e)
t(tdy)3

02 corresponds to (2, 0). /

0y

In this case, (2,0) is on the boundary of N;(e) and so
A* = (: this shows ¢ = (0,00). We can regard as |a| = 2
and L = 0.



3.15. Example (3)

In the case

(e) Owu = O%u + v (t)tP(td:)>u, u|t:0 = p(x) (p > 2).

(0,0

N(e) tP(t8y)3

"

\

/ (2,0)

Oy




3.15. Example (3)

In the case

(e) Owu = O%u + v (t)tP(td:)>u, u|t:0 = p(x) (p > 2).

We have |a| = 2 and

—9_pt3 _ p—1
ST

_ oy _ P
¢ =(0,'7) = (0, ,057)-
We note that the slope of IT'y
is pT+1_ Our conclusion is:

the formal solution 4(t, x) is
p+ -summable.

(0,0

N(e) tP(t8y)3

"

\

/ (2,0)

Oy



3.16. Ichinobe’s result

In the lecture of Ichinobe, he has treated the following
equation:

Oru = Z a0t 8% u, u|t=0=go(:c).
(i, )EA

" (0, 50)
ag—1

1,-1)



3.16. Ichinobe’s result

In the lecture of Ichinobe, he has treated the following
equation:

Oru = Z ai,ati(‘?;"u, u}t=0=go(:c).
(i, )EA

In this case, we have
|a| =apand L = g — 1
and so

¢ = (0,

" (0, 50)

(7)) i| ap—1
ag — 1 )
Thus, the admissible

. (871]
exponential order <

ao—]_.

1,-1)




4. Idea of the proof



4.1. Entire functions as Gevrey functions

In the proof, the following lemma is very important:

Lemma 1. Let v > 0 and let f(x) be an entire function. Set
o =1 — 1/~. The following two conditions are equivalent:
(1) f(z) € ExpOH(CN).

(2) For any compact subset K of CV there are A > 0 and
h > 0 such that the following estimates hold:

max |97 f (x)| < Ah®l|a|!”  for any o € NNV,



4.1. Entire functions as Gevrey functions

In the proof, the following lemma is very important:

Lemma 1. Let v > 0 and let f(x) be an entire function. Set
o =1 — 1/~. The following two conditions are equivalent:
(1) f(z) € ExpOH(CN).

(2) For any compact subset K of CV there are A > 0 and
h > 0 such that the following estimates hold:

max |97 f (x)| < Ah®l|a|!”  for any o € NNV,
Hence, we can regard entire functions of order ~ as functions

of the Gevrey class of order . We note that v > 1 is
equivalent to 0 < o < 1.



4.2. Meaning of the condition v € ¥

We note that by the definition of ¥ we can see that
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4.2. Meaning of the condition v € ¥

We note that by the definition of ¥ we can see that
¢ D (0,14 9) for some d > 0.

Lemma 2. Under the relation & = 1 — 1/~, the following
two conditions are equivalent:

(1) vy € € and v > 1.

(2) For any (j,a) € A with |a| > 0 we have

(.7 + 0'|0(|, ordt(aj,a) - .7)
€ (Ne(E))° U (Tp=41 \ {(lp=5 €p=)})-
This shows that if we regard entire functions as functions in

the Gevrey Icass of order o, then our equation is considered
as a perturbation of ordinary differential equations.
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argument to our case, and we can obtain our result.



4.3. Idea of the proof

In the paper of Ouchi (J. Diff. Equations, 2002), he studied
the summability of formal solutions to linear partial
differential equations which can be considered as a
perturbation of ordinary differential equations.

If we use two Lemmas 1 and 2, we can apply quite similar
argument to our case, and we can obtain our result.
For details, please see the following paper:

H. Tahara and H. Yamazawa, Multisummability of formal
solutions to the Cauchy problem for some linear partial

differential equations,
Journal of Differential Equations 255 (2013) pp. 3592-3637



Thank you very much.
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