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Hierarchy of higher order PI equations

(cf. Kudryashev, Phys. Lett. A (1997))

(PI)m : (2m)-th order PI equation with a large parameter

For example,

(PI)1 : η−1dλ

dt
=
∂H

∂µ
, η−1dµ

dt
= −

∂H

∂λ

where H = H(λ, µ, t) = µ2 − (λ3 + tλ)

and η (> 0) : large parameter

⇐⇒ η−1dλ

dt
= 2µ, η−1dµ

dt
= 3λ2 + t

⇐⇒ η−2dλ
2

dt2
= 6λ2 + 2t



(PI)2 : η−1dλj

dt
=
∂H

∂µj

, η−1dµj

dt
= −

∂H

∂λj

(j = 1, 2)

where

H = H(λ1, λ2, µ1, µ2, t, c)

=
µ2

1 − µ2
2

λ1 − λ2

−
(λ5

1 − λ5
2) + c(λ3

1 − λ3
2) + t(λ2

1 − λ2
2)

λ1 − λ2

In terms of the symmetric variables

u1 = λ1 + λ2, u2 = −λ1λ2,

v1 =
µ1 − µ2

λ1 − λ2

, v2 =
λ1µ2 − λ2µ1

λ1 − λ2

,



it is equivalent to

η−4d
4u1

dt4
−10η−2

[
2u1

d2u1

dt2
+

(du1

dt

)2
]
+40u3

1+8cu1−8t = 0

Purpose of this talk

To show the importance of the fourth order PI equation (PI)2.



Motivation

Dubrovin’s result (Comm. Math. Phys. (2006))

∂u

∂t
+ u

∂u

∂x
+ cε2

∂3u

∂x3
= 0 : KdV equation

( ε > 0 : small parameter, c : constant)

u = u0 + ε2u2 + · · · : perturbative solution

where

∂u0

∂t
+ u0

∂u0

∂x
= 0



t

x

t0

x0

u0(t0, x)

x

“point of gradient catastrophe”

u0(t0, x0)

x0

?
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Claim

Under some genericity condition near a point of gradient

catastrophe the behavior of the perturbative solution u of the

KdV equation is described by a (special) solution of (PI)2.

Remark (Correspondence of variables)

KdV (PI)2

t ←→ c

x ←→ t

Remark

The above claim holds universally for any Hamiltonian

perturbations of the equation
∂u

∂t
+ a(u)

∂u

∂x
= 0.



Question

I Why does (PI)2 appear in the description of the behavior

of solutions of the KdV equation near a point of gradient

catastrophe ?

I What is the characteristic feature of (PI)2 related to this

problem ?

Key facts in our approach

(1) Relation between (PI)2 and Garnier systems.

(2) Stokes geometry (especially, turning points) of (PI)2.



Relation between (PI)2 and Garnier systems'
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Theorem (Koike, RIMS Kôkyûroku Bessatsu (2007, 2008))

(PI)2 is the restriction of the most degenerate Garnier sys-

tem G(9/2; 2) of two variables

η−1∂λj

∂tk
=
∂hk

∂µj

, η−1∂µj

∂tk
= −

∂hk

∂λj

(j, k = 1, 2)

with

h1 = H(λ1, λ2, µ1, µ2, t1, t2)

h2 =
λ1µ

2
2 − λ2µ

2
1

λ1 − λ2

− η−1µ1 − µ2

λ1 − λ2

+
λ1λ2

λ1 − λ2

{(λ4
1−λ

4
2) + t2(λ

2
1−λ

2
2) + t1(λ1−λ2)}

onto the complex line { t2 = c }.



Thus we should consider the following system:

η−1
∂u1

∂t1
= 2v1,

η−1
∂u2

∂t1
= 2v2,

η−1
∂v1

∂t1
= 3u2

1 + 2u2 + t2,

η−1
∂v2

∂t1
= u3

1 + 4u1u2 − v21 + t2u1 + t1.



η−1
∂u1

∂t2
= 2

3
v2,

η−1
∂u2

∂t2
= 2

3
(v1u2 − u1v2)− 1

3
η−1,

η−1
∂v1

∂t2
= 1

3
(u3

1 + 4u1u2 − v21 + t2u1 + t1),

η−1
∂v2

∂t2
= −1

3
(u4

1+u2u
2
1−2u2

2−u1v
2
1+t2(u

2
1−u2)+t1u1).



Stokes geometry of (PI)2

We denote the above system as follows:

(PI)2


η−1

∂uj

∂tk
= Fjk(u, v, t, η)

η−1
∂vj

∂tk
= Gjk(u, v, t, η)

(j, k = 1, 2)



Proposition 1

There exists a formal power series solution (w.r.t. η−1) of (PI)2: u
(0)
j = ûj(t) + η−1ûj,1(t) + · · ·

v
(0)
j = v̂j(t) + η−1v̂j,1(t) + · · ·

where (û1, û2, v̂1, v̂2) satisfies a system of algebraic equations

5û3
1 + t2û1 − t1 = 0, 3û2

1 + 2û2 + t2 = 0,

v̂1 = v̂2 = 0

and higher order terms (û1,l, û2,l, v̂1,l, v̂2,l) (l ≥ 1) are recursively

determined.



To define the Stokes geometry of (PI)2, we consider the Fréchet

derivative of (PI)2 at the formal power series solution (u
(0)
j , v

(0)
j ).

Definition (Fréchet derivative of (PI)2 at (u
(0)
j , v

(0)
j ))

η−1
∂

∂tk
(∆uj) =

∑
p

[
∂Fjk

∂up

(u
(0)
j , v

(0)
j , t, η)∆up

+
∂Fjk

∂vp
(u

(0)
j , v

(0)
j , t, η)∆vp

]
η−1

∂

∂tk
(∆vj) =

∑
p

[
∂Gjk

∂up

(u
(0)
j , v

(0)
j , t, η)∆up

+
∂Gjk

∂vp
(u

(0)
j , v

(0)
j , t, η)∆vp

]
(j, k = 1, 2).



The Fréchet derivative of (PI)2 at (u
(0)
j , v

(0)
j ), denoted by

(∆PI)2 in what follows, is a system of linear differential equations

for (∆uj,∆vj).

Note that, in the case of a linear differential equation (with a

large parameter), a turning point should be defined as a point

where two characteristic roots of the differential equation merge,

that is, a zero of the descriminant of the characteristic equation.



Proposition 2

The characteristic equation of (∆PI)2 is given as follows:

I (in the t1 direction)

ν4
1 − 20û1ν

2
1 + 16(6û2

1 − û2) = 0

Hence zeros of the discriminant are given by

• 6û2
1 − û2 = 0

• (10û1)
2 − 16(6û2

1 − û2) = 4(û2
1 + 4û2) = 0

I (in the t2 direction)

ν4
1 −

4

9
û1(2û

2
1 + 3û2)ν

2
1 +

16

81
û2
2(6û

2
1 − û2) = 0

Hence zeros of the discriminant are given by

• û2
2(6û

2
1 − û2) = 0

•
4

81
(2û2

1 − û2)
2(û2

1 + 4û2) = 0



Definition

(i) A first kind turning point of (PI)2

⇐⇒ 6û2
1 − û2 = 0

⇐⇒ 135t21 + 4t32 = 0

(ii) A second kind turning point of (PI)2

⇐⇒ û2
1 + 4û2 = 0

⇐⇒ 5t21 + 2t32 = 0



Coalescence of nonlinear turning points

t2

t1

2nd kind turning point

1st kind turning point

R

coalescing point of
nonlinear turning points



Coalescence of turning points for linear equations

Pearcey system
(
∂3

∂x3
1

+
x2

2
η2

∂

∂x1

+
x1

4
η3

)
ψ = 0,(

η
∂

∂x1

−
∂2

∂x2
1

)
ψ = 0.

Turning points : { 27x2
1 + 8x3

2 = 0 }
x2

x1
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Theorem (Hirose, to appear in Publ. RIMS)

In the case of a system of linear differential equations of two

variables, the Pearcey system gives a normal form near a

point of coalescence of turning points.



To be more specific, let us consider

(1)


η−1

∂

∂x̃1

Ψ̃ = P̃ (x̃)Ψ̃

η−1
∂

∂x̃2

Ψ̃ = Q̃(x̃)Ψ̃

(P̃ (x̃), Q̃(x̃) : 3× 3 matrices)

Assume that coalescence of turning points occurs at x̃ = (0, 0).

Then, under some genericity condition, (1) can be transformed to
(2)

η−1
∂

∂x1

Ψ = P (x)Ψ, P =

 0 1 0
0 0 1

−x1/4 −x2/2 0


η−1

∂

∂x2

Ψ = Q(x)Ψ, Q = P 2+
x2

3
−
η−1

4

0 0 0
0 0 0
1 0 0





That is, there exist

x(x̃) = (x1(x̃1, x̃2), x2(x̃1, x̃2)) : coordinate transform,

T (x̃, η) =

∞∑
n=0

η−nTn(x̃) : formal Gauge transform of

3× 3 matrices

so that the following holds

Ψ̃(x̃, η) = T (x̃, η)Ψ(x(x̃), η).

Remark

The completely integrable system (2) is equivalent to the Pearcey

system.



Main claim (conjecture)
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Claim (Conjecture)

In the case of a higher order Painlevé equation, (PI)2 gives a

normal form near a point of coalescence of nonlinear turning

points.



To state the main claim in a more specific manner, let us

consider, for example, the fourth order PII equation (PII)2:

η−1∂λ̃j

∂t̃k
=
∂h̃k

∂µ̃j

, η−1∂µ̃j

∂t̃k
= −

∂h̃k

∂λ̃j

(j, k = 1, 2)

with

h̃1 =
1

2

µ̃2
1−µ̃2

2

λ̃1−λ̃2

−
λ̃3
1µ̃1−λ̃3

2µ̃2

λ̃1−λ̃2

− t̃2
λ̃1µ̃1−λ̃2µ̃2

λ̃1−λ̃2

−
t̃1

2

µ̃1−µ̃2

λ̃1−λ̃2

− α(λ̃1+λ̃2) +
1

2
t̃1t̃2,

h̃2 =
1

2

λ̃1µ̃
2
2−λ̃2µ̃

2
1

λ̃1−λ̃2

+ λ̃1λ̃2

λ̃2
1µ̃1−λ̃2

2µ̃2

λ̃1−λ̃2

+ t̃2λ̃1λ̃2

µ̃1−µ̃2

λ̃1−λ̃2

−
t̃1

2

λ̃1µ̃2−λ̃2µ̃1

λ̃1−λ̃2

−
η−1

2

µ̃1−µ̃2

λ̃1−λ̃2

− αλ̃1λ̃2 +
1

8
t̃21 +

1

2
t̃2.



Assume α 6= 0. We then find that coalescence of nonlinear

turning points for (PII)2 occurs at

9t̃22 + 10α = 0, 135t̃21 + 512t̃32 = 0.

Our claim is that, near such a point of coalescence of nonlinear

turning points, there exist

t1(t̃1, t̃2, η) =

∞∑
n=0

η−nt1,n(t̃1, t̃2),

t2(t̃1, t̃2, η) =
∞∑

n=0

η−nt2,n(t̃1, t̃2),

and

x(x̃, t̃1, t̃2, η) =
∞∑

n=0

η−nxn(x̃, t̃1, t̃2),



such that the following holds:

λ
(0)
j (t1(t̃1, t̃2, η), t2(t̃1, t̃2, η), η) = x(λ̃

(0)
j (t̃1, t̃2, η), t̃1, t̃2, η),

where

λ
(0)
j (t1, t2, η) : formal power series solution of (PI)2,

λ̃
(0)
j (t̃1, t̃2, η) : formal power series solution of (PII)2.



Remark

We guess that a coalescing phenomenon of nonlinear turning

points is occurring at a point of gradient catastrophe of the

KdV equation, and consequently Dubrovin’s result can be

deduced from our main claim. But this is still just a guess.



Toward the proof of the main claim

We make full use of the isomonodromic deformation theory

associated to (PI)2, that is, we consider the Lax pair associated

to (PI)2:

(LPI)2



η−1
∂

∂x
Ψ = AΨ

η−1
∂

∂t1
Ψ = B1Ψ

η−1
∂

∂t2
Ψ = B2Ψ

where A = A(x, t, λ, µ, η) and Bk = Bk(x, t, λ, µ, η) (k = 1, 2)

are 2× 2 matrices. Note that

compatibility condition of (LPI)2 ⇐⇒ (PI)2



Substitute the formal power series solution (λ
(0)
j , µ

(0)
j ) of (PI)2

into the coefficients A and Bk of the Lax pair (LPI)2, then we

find the following:

I η−1 ∂

∂x
Ψ = AΨ has double turning points at x = λ̂j

(j = 1, 2) and one simple turning point at x = −2λ̂j =: â.

I At the coalescing point (t1, t2) = (0, 0) of nonlinear turning

points of (PI)2, these three turning points x = λ̂1, x = λ̂2 and

x = â merge to one point.

I Let

α± : characteristic root of A,

β±
k : characteristic root of Bk (k = 1, 2),

ν±
k,j : characteristic root of the Fréchet derivative

of (PI)2 in the tk direction (j, k = 1, 2).



Then we have

ν±
k,j = 2β±

k

∣∣∣∣
x=λ̂j

I The following relation holds:∫ (t1,t2)

(0,0)

(
ν±
1,j dt1 + ν±

2,j dt2

)
= 2

∫ λ̂j

â

α± dx

Remark

Similar results also hold for (PII)2.



We then construct a formal transformation

(3)



x = x(x̃, t̃1, t̃2, η) =
∞∑

n=0

η−nxn(x̃, t̃1, t̃2),

t1 = t1(t̃1, t̃2, η) =
∞∑

n=0

η−nt1,n(t̃1, t̃2),

t2 = t2(t̃1, t̃2, η) =
∞∑

n=0

η−nt2,n(t̃1, t̃2)

that transforms (L̃P II)2, the Lax pair associated to (PII)2,

to (LPI)2 in an open set Ω̃ containing three turning pointŝ̃
λ1,

̂̃
λ2 and ̂̃a.



x̃ ̂̃
λ1

̂̃
λ2̂̃aΩ̃

Lax pair (L̃P II)2

-{
x = x(x̃, t̃, η)

tk = tk(t̃, η)

x

λ̂1

λ̂2

â

Ω

Lax pair (LPI)2

The transformation (3) is expected to give a transformation from

(PII)2 to (PI)2. This is our strategy to prove the main claim.


