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Hierarchy of higher order Pl equations

(cf. Kudryashev, Phys. Lett. A (1997))
(P1)m : (2m)-th order Pl equation with a large parameter

For example,
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In terms of the symmetric variables
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it is equivalent to
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Purpose of this talk

To show the importance of the fourth order Pl equation (FP;)-.



Motivation

Dubrovin’s result (Comm. Math. Phys. (2006))
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(€ > 0 : small parameter, c : constant)

=0 : KdV equation

u = ug + €?us + --+ : perturbative solution

where




“point of gradient catastrophe”
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Claim

Under some genericity condition near a point of gradient
catastrophe the behavior of the perturbative solution u of the
KdV equation is described by a (special) solution of (Py)-.
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Remark (Correspondence of variables)

KdV (Pr)-
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Remark
The above claim holds universally for any Hamiltonian
_ . Ou ou
perturbations of the equation — + a(u)— = 0.
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Question

» Why does (P;). appear in the description of the behavior
of solutions of the KdV equation near a point of gradient
catastrophe ?

» What is the characteristic feature of (Pp)- related to this
problem ?

Key facts in our approach

(1) Relation between (Pr)2 and Garnier systems.

(2) Stokes geometry (especially, turning points) of (P;)-.



Relation between (Pr)2 and Garnier systems

ﬁl‘heorem (Koike, RIMS Koékyiroku Bessatsu (2007, 2008))\

(Pr)2 is the restriction of the most degenerate Garnier sys-
tem G(9/2;2) of two variables
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Thus we should consider the following system:
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Stokes geometry of (Pp)-

We denote the above system as follows:
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Proposition 1
There exists a formal power series solution (w.r.t. =) of (Pp)2:

(
’“’§'O) = a;(t) + n~ a5 (t) + - - -

< (0) - —1a
o = 85(8) + 0 05 (8) + -+

where (a1, U2, V1, 02) satisfies a system of algebraic equations

WS + taliy —t; =0, 347 + 243+t = 0,
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and higher order terms (1 4, U2, 01,1, 02,) (I > 1) are recursively

determined.



To define the Stokes geometry of (Pr)2, we consider the Fréchet
(0) . (0)

derivative of (Pr)2 at the formal power series solution (u;’,v;™").
Definition (Fréchet derivative of (Pp), at (ugo),v§0)))
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The Fréchet derivative of (P;), at (u§0),v§0)), denoted by
(A Pr)5 in what follows, is a system of linear differential equations
for (A’LLj, A”Uj).

Note that, in the case of a linear differential equation (with a
large parameter), a turning point should be defined as a point
where two characteristic roots of the differential equation merge,
that is, a zero of the descriminant of the characteristic equation.



Proposition 2

The characteristic equation of (A Py)- is given as follows:
» (in the t; direction)

v — 200107 + 16(647 — d2) = 0

Hence zeros of the discriminant are given by

o 6’&,% — ’&2 =0
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» (in the t, direction)
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Definition

(i) A first kind turning point of (Pr)2
— 6’&% — Uz =0
— 13512443 =0

(ii) A second kind turning point of (Pr)-
— ai+4a2 =0
— 5t% 2753 =0




Coalescence of nonlinear turning points

o

coalescing point of
nonlinear turning points
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Coalescence of turning points for linear equations

Pearcey system
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Theorem (Hirose, to appear in Publ. RIMS)

In the case of a system of linear differential equations of two
variables, the Pearcey system gives a normal form near a
point of coalescence of turning points.




To be more specific, let us consider

0 - ~ -
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(1) (P(%),Q(Z) : 3 X 3 matrices)

oY = Q(2)¥
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Assume that coalescence of turning points occurs at £ = (0, 0).

Then, under some genericity condition, (1) can be transformed to

(2)
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That is, there exist

x(x) = (x1(x1,T2), x2(x1,x2)) : coordinate transform,

T(x,n) = Z n~ "T,(x) : formal Gauge transform of

n=0

3 X 3 matrices

so that the following holds

\il(ja n) =T (x,n)¥(x(Z),n).

Remark

The completely integrable system (2) is equivalent to the Pearcey
system.



Main claim (conjecture)

Claim (Conjecture)

In the case of a higher order Painlevé equation, (P;)- gives a
normal form near a point of coalescence of nonlinear turning
points.
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To state the main claim in a more specific manner, let us
consider, for example, the fourth order Pll equation (FPjy)s:
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Assume o # 0. We then find that coalescence of nonlinear
turning points for (Pjy)2 occurs at

9t2 + 10a = 0, 135t7 + 512t3 = 0.

Our claim is that, near such a point of coalescence of nonlinear
turning points, there exist
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such that the following holds:

0 ~ =~ ~ =~ ~0),7 = ~ =
>\§- )(t1(t1, t2,m),t2(t1,t2,m),m) = 330‘5 )(t19t2v n),t1,t2,Mm),
where

)\§0) (t1,t2,m) : formal power series solution of (Py)-,

5\§-O) (t1,t2,m) : formal power series solution of (Pi)a.



Remark

We guess that a coalescing phenomenon of nonlinear turning
points is occurring at a point of gradient catastrophe of the
KdV equation, and consequently Dubrovin’s result can be
deduced from our main claim. But this is still just a guess.



Toward the proof of the main claim

We make full use of the isomonodromic deformation theory
associated to (Py)», that is, we consider the Lax pair associated

to (PI)Z:
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where A = A(x,t, A\, u,n) and By = Br(x,t, A\, u,n) (k. =1,2)
are 2 X 2 matrices. Note that

compatibility condition of (LP;), <= (P;)2



Substitute the formal power series solution ()\g-o), u§0)) of (Pp)2
into the coefficients A and By of the Lax pair (LP;)2, then we
find the following:

1 __ ¥ = AW has double turning points at = = 5\3-

ox
(s = 1, 2) and one simple turning point at * = —2X; =: a.
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» At the coalescing point (t1,t2) = (0,0) of nonlinear turning
points of (P;)2, these three turning points © = Ay, = A\, and
x = a merge to one point.

» Let

+

o~ : characteristic root of A,

B,j;t : characteristic root of By, (k = 1, 2),

I/,j:,j : characteristic root of the Fréchet derivative

of (P)- in the t; direction (7, k = 1, 2).



Then we have
+ +
Vi i = 203,
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» The following relation holds:

(t17t2) X.7'
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Remark

Similar results also hold for (Pig)».



We then construct a formal transformation
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that transforms (171511)2, the Lax pair associated to (Pry)a2,
to (LPy)- in an open set ) containing three turning points

Al, )\2 and a.
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Lax pair (1/}\1/311)2 Lax pair (LPr)-

The transformation (3) is expected to give a transformation from
(Pi1)2 to (Pr)2. This is our strategy to prove the main claim.



