Borel sums of Voros coefficients of Gauss's hypergeometric differential equation with a large parameter

Mika TANDA (Kinki Univ.) Collaborator :Takashi AOKI (Kinki Univ.)

Formal Analytic Solutions of Differential, Difference and Discrete Equations August 26

We consider the following differential equation with a large parameter η :

$$\Big(-\frac{d^2}{dx^2}+\eta^2 Q\Big)\psi=0$$

We consider the following differential equation with a large parameter η :

$$\Big(-\frac{d^2}{dx^2}+\eta^2 Q\Big)\psi=0$$

with $Q = Q_0 + \eta^{-2}Q_1$, $Q_0 = \frac{(\alpha - \beta)^2 x^2 + 2(2\alpha\beta - \alpha\gamma - \beta\gamma)x + \gamma^2}{4x^2(x - 1)^2},$ $Q_1 = -\frac{x^2 - x + 1}{4x^2(x - 1)^2}.$

The Classical HGDE (Gauss's hypergeometric differential equation):

$$x(1-x)\frac{d^2w}{dx^2} + (c - (a+b+1)x)\frac{dw}{dx} - abw = 0$$

The Classical HGDE (Gauss's hypergeometric differential equation):

$$x(1-x)\frac{d^2w}{dx^2} + (c - (a+b+1)x)\frac{dw}{dx} - abw = 0$$

Introduce a large parameter η by setting

$$a=\frac{1}{2}+\eta\alpha, b=\frac{1}{2}+\eta\beta, c=1+\eta\gamma$$

The Classical HGDE (Gauss's hypergeometric differential equation):

$$x(1-x)\frac{d^2w}{dx^2} + (c - (a+b+1)x)\frac{dw}{dx} - abw = 0$$

Introduce a large parameter η by setting

$$a=\frac{1}{2}+\eta \alpha, b=\frac{1}{2}+\eta \beta, c=1+\eta \gamma$$

and eliminate the first-order term by

$$\psi = x^{\frac{1}{2} + \frac{\eta\gamma}{2}} (1 - x)^{\frac{1}{2} + \frac{\eta(\alpha + \beta - \gamma)}{2}} w.$$

□ ▷ < 큠 ▷ < 호 ▷ < 호 ▷ < 호 ○ < ↔ 3/29 Our equation:

$$\Big(-\frac{d^2}{dx^2}+\eta^2 Q\Big)\psi=0$$

where $Q = Q_0 + \eta^{-2}Q_1$ with

$$Q_0 = \frac{(\alpha - \beta)^2 x^2 + 2(2\alpha\beta - \alpha\gamma - \beta\gamma)x + \gamma^2}{4x^2(x - 1)^2}, \ Q_1 = -\frac{x^2 - x + 1}{4x^2(x - 1)^2}.$$

We denote by ι_j the following mappings.

Q: invariant under involutions ι_i (i = 0, 1, 2)

$$\iota_{0}: \qquad (\alpha, \beta, \gamma) \mapsto (-\alpha, -\beta, -\gamma)$$
$$\iota_{1}: \qquad \mapsto (\gamma - \alpha, \gamma - \beta, \gamma)$$
$$\iota_{2}: \qquad \mapsto (\beta, \alpha, \gamma)$$

We have to keep in mind that Q is invariant under these involutions.

WKB solutions

Our equation has the following formal solutions (WKB solutions) :

$$\psi_{\pm} = \frac{1}{\sqrt{S_{\text{odd}}}} \exp(\pm \int_{a}^{x} S_{\text{odd}} \, dx)$$

WKB solutions

Our equation has the following formal solutions (WKB solutions) :

$$\psi_{\pm} = \frac{1}{\sqrt{S_{\text{odd}}}} \exp(\pm \int_{a}^{x} S_{\text{odd}} \, dx)$$

a is a zero of $\sqrt{Q_0}dx$. (*a* is a turning point.) a formal solution $S = S_{\text{odd}} + S_{\text{even}} = \sum_{j=-1}^{\infty} \eta^{-j}S_j$ to Riccati equation

$$\frac{dS}{dx} + S^2 = \eta^2 Q$$

 $S_{-1} = \sqrt{Q_0}.$

Stokes graph

A Stokes curve is an integral curve of $\text{Im } \sqrt{Q_0} dx = 0$ emanating from a turning point.

A Stokes graph of our equation is a collection of all Stokes curves, turning points $a_k(k = 0, 1)$ and singular points $b_0 = 0, b_1 = 1, b_2 = \infty$.

Stokes graph

A Stokes curve is an integral curve of $\text{Im } \sqrt{Q_0} dx = 0$ emanating from a turning point.

A Stokes graph of our equation is a collection of all Stokes curves, turning points $a_k(k = 0, 1)$ and singular points $b_0 = 0, b_1 = 1, b_2 = \infty$. Let us assume

(i)
$$\alpha\beta\gamma(\alpha-\beta)(\alpha-\gamma)(\alpha+\beta-\gamma)\neq 0$$

(ii) Re α Re β Re $(\gamma-\alpha)$ Re $(\gamma-\beta)\neq 0$
(iii) Re $(\alpha-\beta)$ Re $(\alpha+\beta-\gamma)$ Re $\gamma\neq 0$

Assumption(i)

 $\alpha\beta\gamma(\alpha-\beta)(\alpha-\gamma)(\alpha+\beta-\gamma)\neq 0$

Assumption(i) $\alpha\beta\gamma(\alpha-\beta)(\alpha-\gamma)(\alpha+\beta-\gamma)\neq 0$

⇒ There are two distinct turning points a_0, a_1 and $a_0, a_1 \neq 0, 1, \infty$.

□ > 4 目 > 4 目 > 4 目 > 9 Q Q

Assumption(i)
$$\alpha\beta\gamma(\alpha-\beta)(\alpha-\gamma)(\alpha+\beta-\gamma)\neq 0$$

⇒ There are two distinct turning points a_0, a_1 and $a_0, a_1 \neq 0, 1, \infty$.

Assumption (ii) and (iii)

Re
$$\alpha$$
 Re β Re $(\gamma - \alpha)$ Re $(\gamma - \beta) \neq 0$
Re $(\alpha - \beta)$ Re $(\alpha + \beta - \gamma)$ Re $\gamma \neq 0$

Assumption(i)
$$\alpha\beta\gamma(\alpha-\beta)(\alpha-\gamma)(\alpha+\beta-\gamma)\neq 0$$

⇒ There are two distinct turning points a_0, a_1 and $a_0, a_1 \neq 0, 1, \infty$.

Assumption (ii) and (iii)

Re
$$\alpha$$
 Re β Re $(\gamma - \alpha)$ Re $(\gamma - \beta) \neq 0$
Re $(\alpha - \beta)$ Re $(\alpha + \beta - \gamma)$ Re $\gamma \neq 0$

 \implies There is no Stokes curves which connect turning point(s).

Assumption(i)
$$\alpha\beta\gamma(\alpha-\beta)(\alpha-\gamma)(\alpha+\beta-\gamma)\neq 0$$

⇒ There are two distinct turning points a_0, a_1 and $a_0, a_1 \neq 0, 1, \infty$.

Assumption (ii) and (iii)

Re
$$\alpha$$
 Re β Re $(\gamma - \alpha)$ Re $(\gamma - \beta) \neq 0$
Re $(\alpha - \beta)$ Re $(\alpha + \beta - \gamma)$ Re $\gamma \neq 0$

 \implies There is no Stokes curves which connect turning point(s).

If the LHS of conditions (ii) or (iii) vanishes then the Stokes graph is degenerate.

We assume that (α, β, γ) are not contained in (i). Let n_0, n_1 and n_2 be numbers of Stokes curves that flow into 0, 1 and ∞ , respectively. \hat{n} will denote (n_0, n_1, n_2) .

We assume that (α, β, γ) are not contained in (i). Let n_0, n_1 and n_2 be numbers of Stokes curves that flow into 0, 1 and ∞ , respectively. \hat{n} will denote (n_0, n_1, n_2) .

- \hat{n} characterizes topological configration of Stokes graphs.
- \hat{n} is constant on a connected component of the set of all (α, β, γ) satisfying (ii) and (iii).

We defined

$$\begin{split} \omega_1 &= \{ (\alpha, \beta, \gamma) \in \mathbb{C}^3 \mid 0 < \operatorname{Re}\alpha < \operatorname{Re}\gamma < \operatorname{Re}\beta \}, \\ \omega_2 &= \{ (\alpha, \beta, \gamma) \in \mathbb{C}^3 \mid 0 < \operatorname{Re}\alpha < \operatorname{Re}\beta < \operatorname{Re}\gamma < \operatorname{Re}\alpha + \operatorname{Re}\beta \}, \\ \omega_3 &= \{ (\alpha, \beta, \gamma) \in \mathbb{C}^3 \mid 0 < \operatorname{Re}\gamma < \operatorname{Re}\alpha < \operatorname{Re}\beta \}, \\ \omega_4 &= \{ (\alpha, \beta, \gamma) \in \mathbb{C}^3 \mid 0 < \operatorname{Re}\gamma < \operatorname{Re}\alpha + \operatorname{Re}\beta < \operatorname{Re}\beta \}. \end{split}$$

If (α, β, γ) are contained in ω_h (h = 1, 2, 3, 4) respectively, we give a characterization of the Stokes geometry of our equation.

< 注▶ < 注▶ 注 ∽ Q (~ 10/29

Each uncolored domain is covered by one of colored domains via involutions.

Hypergeometric differential equations	Stokes graph	Voros coefficients	Borel sums of Voros coefficier	
Q : invariant under	involutions ι_j (j =	: 0, 1, 2)		
ι_0 :	(α, β, γ)	$\mapsto (-\alpha, -\beta, -\gamma)$		
ι_1 :		$\mapsto (\gamma - \alpha, \gamma - \beta, \gamma)$)	
ι ₂ :		$\mapsto (\beta, \alpha, \gamma)$		

We set *G*=the group generated by ι_j (j = 0, 1, 2)

$$\Pi_h = \bigcup_{r \in G} r(\omega_h) \quad (h = 1, 2, 3, 4).$$

Hypergeometric differential equations	Stokes graph	Voros coefficients	Borel sums of Voros coefficien
Q : invariant under i	involutions ι_j (j =	= 0, 1, 2)	
ι_0 :	(α, β, γ)	$\mapsto (-\alpha, -\beta, -\gamma)$	
ι_1 :		$\mapsto (\gamma - \alpha, \gamma - \beta, \gamma)$)
12 *		$\mapsto (\beta, \alpha, \gamma)$	

We set *G*=the group generated by ι_j (j = 0, 1, 2)

$$\Pi_h = \bigcup_{r \in G} r(\omega_h) \quad (h = 1, 2, 3, 4).$$

Theorem 1

(1) If $(\alpha, \beta, \gamma) \in \Pi_1$, then $\hat{n} = (2, 2, 2)$. (2) If $(\alpha, \beta, \gamma) \in \Pi_2$, then $\hat{n} = (4, 1, 1)$. (3) If $(\alpha, \beta, \gamma) \in \Pi_3$, then $\hat{n} = (1, 4, 1)$. (4) If $(\alpha, \beta, \gamma) \in \Pi_4$, then $\hat{n} = (1, 1, 4)$.

Voros coefficients

$$\sqrt{Q_0} \sim -\frac{\gamma}{2x} \quad \text{at } x = 0,$$

$$\sqrt{Q_0} \sim \frac{\alpha + \beta - \gamma}{2(x - 1)} \quad \text{at } x = 1,$$

$$\sqrt{Q_0} \sim \frac{\beta - \alpha}{2x} \quad \text{at } x = \infty,$$

 V_j for (b_j, a) (j = 0, 1, 2) has following form: the Voros coefficient

$$V_0 = V_0(\alpha, \beta, \gamma) := \int_0^a (S_{\text{odd}} - \eta S_{-1}) dx,$$

$$V_1 = V_1(\alpha, \beta, \gamma) := \int_1^a (S_{\text{odd}} - \eta S_{-1}) dx,$$

$$V_2 = V_2(\alpha, \beta, \gamma) := \int_\infty^a (S_{\text{odd}} - \eta S_{-1}) dx$$

Since residues of S_{odd} and ηS_{-1} as the singular points coincide, V_j are well defined and we have a formal power series V_j in η^{-1} .

Voros coefficients

$$\sqrt{Q_0} \sim -\frac{\gamma}{2x} \quad \text{at } x = 0,$$

$$\sqrt{Q_0} \sim \frac{\alpha + \beta - \gamma}{2(x - 1)} \quad \text{at } x = 1,$$

$$\sqrt{Q_0} \sim \frac{\beta - \alpha}{2x} \quad \text{at } x = \infty,$$

 V_j for (b_j, a) (j = 0, 1, 2) has following form: the Voros coefficient

$$V_0 = V_0(\alpha, \beta, \gamma) := \int_0^a (S_{\text{odd}} - \eta S_{-1}) dx,$$

$$V_1 = V_1(\alpha, \beta, \gamma) := \int_1^a (S_{\text{odd}} - \eta S_{-1}) dx,$$

$$V_2 = V_2(\alpha, \beta, \gamma) := \int_\infty^a (S_{\text{odd}} - \eta S_{-1}) dx$$

Since residues of S_{odd} and ηS_{-1} as the singular points coincide, V_j are well defined and we have a formal power series V_j in η^{-1} .

Voros coefficients

$$\sqrt{Q_0} \sim -\frac{\gamma}{2x} \quad \text{at } x = 0,$$

$$\sqrt{Q_0} \sim \frac{\alpha + \beta - \gamma}{2(x - 1)} \quad \text{at } x = 1,$$

$$\sqrt{Q_0} \sim \frac{\beta - \alpha}{2x} \quad \text{at } x = \infty,$$

 V_j for (b_j, a) (j = 0, 1, 2) has following form: the Voros coefficient

$$V_0 = V_0(\alpha, \beta, \gamma) := \int_0^a (S_{\text{odd}} - \eta S_{-1}) dx,$$

$$V_1 = V_1(\alpha, \beta, \gamma) := \int_1^a (S_{\text{odd}} - \eta S_{-1}) dx,$$

$$V_2 = V_2(\alpha, \beta, \gamma) := \int_\infty^a (S_{\text{odd}} - \eta S_{-1}) dx$$

Since residues of S_{odd} and ηS_{-1} as the singular points coincide, V_j are well defined and we have a formal power series V_j in η^{-1} .

Voros coefficient $V_j(\alpha, \beta, \gamma)$ describes the discrepancy between WKB solutions normalized at *a* and those normalized at b_j :

$$\psi_{\pm} = \frac{1}{\sqrt{S_{\text{odd}}}} \exp\left(\pm \int_{a}^{x} S_{\text{odd}} dx\right)$$

$$\psi_{\pm}^{(b_j)} = \frac{1}{\sqrt{S_{\text{odd}}}} \exp\left(\pm \int_{b_j}^x (S_{\text{odd}} - \eta S_{-1}) dx \pm \eta \int_a^x S_{-1} dx\right)$$

Voros coefficient $V_j(\alpha, \beta, \gamma)$ describes the discrepancy between WKB solutions normalized at a and those normalized at b_j :

$$\psi_{\pm} = \frac{1}{\sqrt{S_{\text{odd}}}} \exp\left(\pm \int_{a}^{x} S_{\text{odd}} dx\right)$$
$$\psi_{\pm}^{(b_j)} = \frac{1}{\sqrt{S_{\text{odd}}}} \exp\left(\pm \int_{b_j}^{x} (S_{\text{odd}} - \eta S_{-1}) dx \pm \eta \int_{a}^{x} S_{-1} dx\right)$$
$$\Longrightarrow \psi_{\pm}^{(b_j)} = \exp(\pm V_j) \psi_{\pm}$$

....

Theorem 2

 V_j for (j, a) (j = 0, 1, 2) has following forms:

$$\begin{split} V_0 &= -\frac{1}{2} \sum_{n=2}^{\infty} \frac{B_n \eta^{1-n}}{n(n-1)} \left\{ (1-2^{1-n}) \left(\frac{1}{\alpha^{n-1}} + \frac{1}{\beta^{n-1}} + \frac{1}{(\gamma-\alpha)^{n-1}} \right. \\ & \left. + \frac{1}{(\gamma-\beta)^{n-1}} \right) + \frac{2}{\gamma^{n-1}} \right\}, \end{split}$$

$$\begin{split} V_1 &= \frac{1}{2} \sum_{n=2}^{\infty} \frac{B_n \eta^{1-n}}{n(n-1)} \left\{ (1-2^{1-n}) \left(\frac{1}{\alpha^{n-1}} + \frac{1}{\beta^{n-1}} - \frac{1}{(\gamma-\alpha)^{n-1}} \right. \\ &\left. - \frac{1}{(\gamma-\beta)^{n-1}} \right) + \frac{2}{(\alpha+\beta-\gamma)^{n-1}} \right\}, \end{split}$$

$$V_{2} = \frac{1}{2} \sum_{n=2}^{\infty} \frac{B_{n} \eta^{1-n}}{n(n-1)} \left\{ (1-2^{1-n}) \left(\frac{1}{\alpha^{n-1}} - \frac{1}{\beta^{n-1}} - \frac{1}{(\gamma-\alpha)^{n-1}} + \frac{1}{(\gamma-\beta)^{n-1}} \right) - \frac{2}{(\beta-\alpha)^{n-1}} \right\}.$$

Here, B_n are Bernoulli numbers defined by

$$\frac{te^t}{e^t-1}=\sum_{n=0}^\infty\frac{B_n}{n!}t^n.$$

レトマクトマミトマミト ミックへぐ
 19/29

Borel sums of Voros coefficients

Q : :invariant under involutions ι_j ($j = 0, 1, \dots, 6$)

ι_0	$: (\alpha, \beta, \gamma)$	$\mapsto (-\alpha, -\beta, -\gamma)$
ι_1	:	$\mapsto (\gamma-\beta,\gamma-\alpha,\gamma)$
ι_2	:	$\mapsto (\beta, \alpha, \gamma)$
$\iota_3 = \iota_1 \iota_2$:	$\mapsto (\gamma-\alpha,\gamma-\beta,\gamma)$
$\iota_4 = \iota_0 \iota_2$:	$\mapsto (-\beta,-\alpha,-\gamma)$
$\iota_5 = \iota_0 \iota_1$:	$\mapsto (\beta-\gamma,\alpha-\gamma,-\gamma)$
$\iota_6 = \iota_0 \iota_1 \iota_2$:	$\mapsto (\alpha - \gamma, \beta - \gamma, -\gamma)$

 $\omega_{hm} = \iota_m(\omega_h)$: Images in ω_h by ι_m . Here, $h = 1, 2, 3, 4, m = 0, 1, \dots, 6$.

Theorem 3

(i) The Borel sums V_j^4 of V_j in ω_4 have following forms:

$$V_0^4 = \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} + \beta\eta)\Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)(-\alpha)^{-\alpha\eta}(\beta - \gamma)^{(\beta - \gamma)\eta}\gamma^{2\gamma\eta - 1}2\pi}{\Gamma(\frac{1}{2} - \alpha\eta)\Gamma(\frac{1}{2} + (\beta - \gamma)\eta)\Gamma^2(\gamma\eta)\beta^{\beta\eta}(\gamma - \alpha)^{(\gamma - \alpha)\eta}\eta},$$

$$V_{1}^{4} = \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} - \alpha \eta) \Gamma(\frac{1}{2} + (\gamma - \alpha)\eta) \Gamma^{2}((\alpha + \beta - \gamma)\eta) \beta^{\beta\eta} (\beta - \gamma)^{(\beta - \gamma)\eta} \eta}{\Gamma(\frac{1}{2} + \beta \eta) \Gamma(\frac{1}{2} + (\beta - \gamma)\eta) (-\alpha)^{-\alpha\eta} (\gamma - \alpha)^{(\gamma - \alpha)\eta} (\alpha + \beta - \gamma)^{2(\alpha + \beta - \gamma)\eta - 1} 2\pi}$$

$$V_2^4 = \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} - \alpha \eta) \Gamma(\frac{1}{2} + \beta \eta) \Gamma(\frac{1}{2} + (\gamma - \alpha)\eta) \Gamma(\frac{1}{2} + (\beta - \gamma)\eta) (\beta - \alpha)^{2(\beta - \alpha)\eta - 1}}{\Gamma^2((\beta - \alpha)\eta)(-\alpha)^{-\alpha \eta} \beta^{\beta \eta} (\gamma - \alpha)^{(\gamma - \alpha)\eta} (\beta - \gamma)^{(\beta - \gamma)\eta} 2\pi \eta}.$$

(ii) The Borel sums V_i^{41} of V_j in ω_{41} have following forms:

$$\begin{split} V_0^{41} &= \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} + \beta\eta)\Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)(-\alpha)^{-\alpha\eta}(\beta - \gamma)^{(\beta - \gamma)\eta}\gamma^{2\gamma\eta - 1}2\pi}{\Gamma(\frac{1}{2} - \alpha\eta)\Gamma(\frac{1}{2} + (\beta - \gamma)\eta)\Gamma^2(\gamma\eta)\beta^{\beta\eta}(\gamma - \alpha)^{(\gamma - \alpha)\eta}\eta}.\\ V_1^{41} &= \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} - \alpha\eta)\Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)\beta^{\beta\eta}(\beta - \gamma)^{(\beta - \gamma)\eta}(\gamma - \alpha - \beta)^{2(\gamma - \alpha - \beta)\eta - 1}2\pi}{\Gamma(\frac{1}{2} + \beta\eta)\Gamma(\frac{1}{2} + (\beta - \gamma)\eta)\Gamma^2((\gamma - \alpha - \beta)\eta)(-\alpha)^{-\alpha\eta}(\gamma - \alpha)^{(\gamma - \alpha)\eta}\eta},\\ V_2^{41} &= \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} - \alpha\eta)\Gamma(\frac{1}{2} + \beta\eta)\Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)\Gamma(\frac{1}{2} + (\beta - \gamma)\eta)(\beta - \alpha)^{2(\beta - \alpha)\eta - 1}}{\Gamma^2((\beta - \alpha)\eta)(-\alpha)^{-\alpha\eta}\beta^{\beta\eta}(\gamma - \alpha)^{(\gamma - \alpha)\eta}(\beta - \gamma)^{(\beta - \gamma)\eta}2\pi\eta}. \end{split}$$

In the same way, we can compute the Borel sums of V_j in the other Stokes regions of Voros coefficients.

G the group generated by $\iota_m(m = 0, 1, \dots, 6)$. τ : An element of *G* of the form:

$$\tau = \iota_0^{\epsilon_0} \iota_1^{\epsilon_1} \iota_2^{\epsilon_2} = \iota_m$$

 $(\epsilon_n = 0, 1; m = 0, 1, \cdots, 6)$

The unify the notation, we denote V_j^{hm} by $V_j^{h\tau}$ for $\tau = \iota_m$ We define the action of $\tau \in G$ on $V_i^h(\alpha, \beta, \gamma)$ by

$$\tau_*V^h_j(\alpha,\beta,\gamma)=V^h_j(\tau(\alpha,\beta,\gamma))$$

Theorem 5

Let $sgn(\iota, j)$ denote the function defined by

$$\begin{aligned} & \text{sgn}(\tau, 0) &= (-1)^{\epsilon_0}, \\ & \text{sgn}(\tau, j) &= (-1)^{\epsilon_0 + \epsilon_j} \ (j = 1, 2). \end{aligned}$$

The Borel resummed Voros coefficients $V_j^{h\tau}$ in $\tau(\omega_h)$ are related to $\tau_*V_j^h$ by

$$V_j^{h\tau} = \operatorname{sgn}(\tau;j) \,\tau_* V_j^h.$$

26/29

We compare V_0^{41} with $\tau_* V_0^4$.

$$V_0^{41} = \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} + \beta\eta)\Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)(-\alpha)^{-\alpha\eta}(\beta - \gamma)^{(\beta - \gamma)\eta}\gamma^{2\gamma\eta - 1}2\pi}{\Gamma(\frac{1}{2} - \alpha\eta)\Gamma(\frac{1}{2} + (\beta - \gamma)\eta)\Gamma^2(\gamma\eta)\beta^{\beta\eta}(\gamma - \alpha)^{(\gamma - \alpha)\eta}\eta}.$$

$$V_{0}^{41} = \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} + \beta\eta)\Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)(-\alpha)^{-\alpha\eta}(\beta - \gamma)^{(\beta - \gamma)\eta}\gamma^{2\gamma\eta - 1}2\pi}{\Gamma(\frac{1}{2} - \alpha\eta)\Gamma(\frac{1}{2} + (\beta - \gamma)\eta)\Gamma^{2}(\gamma\eta)\beta^{\beta\eta}(\gamma - \alpha)^{(\gamma - \alpha)\eta}\eta},$$
$$\iota_{1} : (\alpha, \beta, \gamma) \mapsto (\gamma - \beta, \gamma - \alpha, \gamma)$$
$$(\gamma - \alpha, \beta - \gamma, \gamma - \alpha - \beta, \beta - \alpha) \mapsto (\beta, -\alpha, \alpha + \beta - \gamma, \beta - \alpha)$$

$$V_0^4 = \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} + \beta\eta)\Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)(-\alpha)^{-\alpha\eta}(\beta - \gamma)^{(\beta - \gamma)\eta}\gamma^{2\gamma\eta - 1}2\pi}{\Gamma(\frac{1}{2} - \alpha\eta)\Gamma(\frac{1}{2} + (\beta - \gamma)\eta)\Gamma^2(\gamma\eta)\beta^{\beta\eta}(\gamma - \alpha)^{(\gamma - \alpha)\eta}\eta},$$

$$\iota_{1*}V_0^4 = \frac{1}{2}\log\frac{\Gamma(\frac{1}{2} + \beta\eta)\Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)(-\alpha)^{-\alpha\eta}(\beta - \gamma)^{(\beta - \gamma)\eta}\gamma^{2\gamma\eta - 1}2\pi}{\Gamma(\frac{1}{2} - \alpha\eta)\Gamma(\frac{1}{2} + (\beta - \gamma)\eta)\Gamma^2(\gamma\eta)\beta^{\beta\eta}(\gamma - \alpha)^{(\gamma - \alpha)\eta}\eta}$$

Iロト 4 部 ト 4 注 ト 4 注 ト 2 の Q (~ 26/29

$$\begin{split} V_0^{41} &= \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} + \beta \eta) \Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)(-\alpha)^{-\alpha\eta} (\beta - \gamma)^{(\beta - \gamma)\eta} \gamma^{2\gamma\eta - 1} 2\pi}{\Gamma(\frac{1}{2} - \alpha\eta) \Gamma(\frac{1}{2} + (\beta - \gamma)\eta) \Gamma^2(\gamma\eta) \beta^{\beta\eta} (\gamma - \alpha)^{(\gamma - \alpha)\eta} \eta}, \\ \iota_1 &: (\alpha, \beta, \gamma) \mapsto (\gamma - \beta, \gamma - \alpha, \gamma) \\ (\gamma - \alpha, \beta - \gamma, \gamma - \alpha - \beta, \beta - \alpha) \mapsto (\beta, -\alpha, \alpha + \beta - \gamma, \beta - \alpha) \end{split}$$

$$V_0^4 = \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} + \beta\eta)\Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)(-\alpha)^{-\alpha\eta}(\beta - \gamma)^{(\beta - \gamma)\eta}\gamma^{2\gamma\eta - 1}2\pi}{\Gamma(\frac{1}{2} - \alpha\eta)\Gamma(\frac{1}{2} + (\beta - \gamma)\eta)\Gamma^2(\gamma\eta)\beta^{\beta\eta}(\gamma - \alpha)^{(\gamma - \alpha)\eta}\eta},$$

$$\iota_{1*}V_0^4 = \frac{1}{2}\log\frac{\Gamma(\frac{1}{2} + \beta\eta)\Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)(-\alpha)^{-\alpha\eta}(\beta - \gamma)^{(\beta - \gamma)\eta}\gamma^{2\gamma\eta - 1}2\pi}{\Gamma(\frac{1}{2} - \alpha\eta)\Gamma(\frac{1}{2} + (\beta - \gamma)\eta)\Gamma^2(\gamma\eta)\beta^{\beta\eta}(\gamma - \alpha)^{(\gamma - \alpha)\eta}\eta}$$

$$\begin{split} V_0^{41} &= \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} + \beta \eta) \Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)(-\alpha)^{-\alpha\eta} (\beta - \gamma)^{(\beta - \gamma)\eta} \gamma^{2\gamma\eta - 1} 2\pi}{\Gamma(\frac{1}{2} - \alpha\eta) \Gamma(\frac{1}{2} + (\beta - \gamma)\eta) \Gamma^2(\gamma\eta) \beta^{\beta\eta} (\gamma - \alpha)^{(\gamma - \alpha)\eta} \eta}, \\ \iota_1 &: (\alpha, \beta, \gamma) \mapsto (\gamma - \beta, \gamma - \alpha, \gamma) \\ (\gamma - \alpha, \beta - \gamma, \gamma - \alpha - \beta, \beta - \alpha) \mapsto (\beta, -\alpha, \alpha + \beta - \gamma, \beta - \alpha) \end{split}$$

$$V_0^4 = \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} + \beta\eta)\Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)(-\alpha)^{-\alpha\eta}(\beta - \gamma)^{(\beta - \gamma)\eta}\gamma^{2\gamma\eta - 1}2\pi}{\Gamma(\frac{1}{2} - \alpha\eta)\Gamma(\frac{1}{2} + (\beta - \gamma)\eta)\Gamma^2(\gamma\eta)\beta^{\beta\eta}(\gamma - \alpha)^{(\gamma - \alpha)\eta}\eta},$$

$$\iota_{1*}V_0^4 = \frac{1}{2}\log\frac{\Gamma(\frac{1}{2} + \beta\eta)\Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)(-\alpha)^{-\alpha\eta}(\beta - \gamma)^{(\beta - \gamma)\eta}\gamma^{2\gamma\eta - 1}2\pi}{\Gamma(\frac{1}{2} - \alpha\eta)\Gamma(\frac{1}{2} + (\beta - \gamma)\eta)\Gamma^2(\gamma\eta)\beta^{\beta\eta}(\gamma - \alpha)^{(\gamma - \alpha)\eta}\eta}$$

「ロト 4 部 ト 4 茎 ト 4 茎 ト 5 - 今 Q (~ 26/29

$$\begin{split} V_0^{41} &= \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} + \beta \eta) \Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)(-\alpha)^{-\alpha\eta} (\beta - \gamma)^{(\beta - \gamma)\eta} \gamma^{2\gamma\eta - 1} 2\pi}{\Gamma(\frac{1}{2} - \alpha\eta) \Gamma(\frac{1}{2} + (\beta - \gamma)\eta) \Gamma^2(\gamma\eta) \beta^{\beta\eta} (\gamma - \alpha)^{(\gamma - \alpha)\eta} \eta}, \\ \iota_1 &: (\alpha, \beta, \gamma) \mapsto (\gamma - \beta, \gamma - \alpha, \gamma) \\ (\gamma - \alpha, \beta - \gamma, \gamma - \alpha - \beta, \beta - \alpha) \mapsto (\beta, -\alpha, \alpha + \beta - \gamma, \beta - \alpha) \end{split}$$

$$V_0^4 = \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} + \beta\eta)\Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)(-\alpha)^{-\alpha\eta}(\beta - \gamma)^{(\beta - \gamma)\eta}\gamma^{2\gamma\eta - 1}2\pi}{\Gamma(\frac{1}{2} - \alpha\eta)\Gamma(\frac{1}{2} + (\beta - \gamma)\eta)\Gamma^2(\gamma\eta)\beta^{\beta\eta}(\gamma - \alpha)^{(\gamma - \alpha)\eta}\eta},$$

$$\begin{split} \iota_{1*}V_0^4 &= \frac{1}{2}\log\frac{\Gamma(\frac{1}{2}+\beta\eta)\Gamma(\frac{1}{2}+(\gamma-\alpha)\eta)(-\alpha)^{-\alpha\eta}(\beta-\gamma)^{(\beta-\gamma)\eta}\gamma^{2\gamma\eta-1}2\pi}{\Gamma(\frac{1}{2}-\alpha\eta)\Gamma(\frac{1}{2}+(\beta-\gamma)\eta)\Gamma^2(\gamma\eta)\beta^{\beta\eta}(\gamma-\alpha)^{(\gamma-\alpha)\eta}\eta}\\ V_0^{4\tau} &= \tau_*V_0^4 \end{split}$$

We compare V_1^{41} with $\tau_* V_1^4$ and V_2^{41} with $\tau_* V_2^4$.

$$\begin{split} V_1^{41} &= \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} - \alpha \eta) \Gamma(\frac{1}{2} + (\gamma - \alpha) \eta) \beta^{\beta \eta} (\beta - \gamma)^{(\beta - \gamma)\eta} (\gamma - \alpha - \beta)^{2(\gamma - \alpha - \beta)\eta - 1} 2\pi}{\Gamma(\frac{1}{2} + \beta \eta) \Gamma(\frac{1}{2} + (\beta - \gamma) \eta) \Gamma^2((\gamma - \alpha - \beta)\eta)(-\alpha)^{-\alpha \eta} (\gamma - \alpha)^{(\gamma - \alpha)\eta} \eta}, \\ V_2^{41} &= \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} - \alpha \eta) \Gamma(\frac{1}{2} + \beta \eta) \Gamma(\frac{1}{2} + (\gamma - \alpha) \eta) \Gamma(\frac{1}{2} + (\beta - \gamma)\eta) (\beta - \alpha)^{2(\beta - \alpha)\eta - 1}}{\Gamma^2((\beta - \alpha)\eta)(-\alpha)^{-\alpha \eta} \beta^{\beta \eta} (\gamma - \alpha)^{(\gamma - \alpha)\eta} (\beta - \gamma)^{(\beta - \gamma)\eta} 2\pi \eta}. \end{split}$$

$$\begin{split} \iota_1 \ : \ (\alpha,\beta,\gamma) \mapsto (\gamma-\beta,\gamma-\alpha,\gamma) \\ (\gamma-\alpha,\beta-\gamma,\gamma-\alpha-\beta,\beta-\alpha) \mapsto (\beta,-\alpha,\alpha+\beta-\gamma,\beta-\alpha) \end{split}$$

$$\begin{split} \iota_{1*}V_{1}^{4} &= \frac{1}{2}\log\frac{\Gamma(\frac{1}{2}+\beta\eta)\Gamma(\frac{1}{2}+(\beta-\gamma)\eta)\Gamma^{2}((\gamma-\alpha-\beta)\eta)(-\alpha)^{-\alpha\eta}(\gamma-\alpha)^{(\gamma-\alpha)\eta}\eta}{\Gamma(\frac{1}{2}-\alpha\eta)\Gamma(\frac{1}{2}+(\gamma-\alpha)\eta)\beta^{\beta\eta}(\beta-\gamma)^{(\beta-\gamma)\eta}(\gamma-\alpha-\beta)^{2(\gamma-\alpha-\beta)\eta-1}2\pi}\\ \iota_{1*}V_{2}^{4} &= \frac{1}{2}\log\frac{\Gamma(\frac{1}{2}-\alpha\eta)\Gamma(\frac{1}{2}+\beta\eta)\Gamma(\frac{1}{2}+(\gamma-\alpha)\eta)\Gamma(\frac{1}{2}+(\beta-\gamma)\eta)(\beta-\alpha)^{2(\beta-\alpha)\eta-1}}{\Gamma^{2}((\beta-\alpha)\eta)(-\alpha)^{-\alpha\eta}\beta^{\beta\eta}(\gamma-\alpha)^{(\gamma-\alpha)\eta}(\beta-\gamma)^{(\beta-\gamma)\eta}2\pi\eta} \end{split}$$

٠

We compare V_1^{41} with $\tau_*V_1^4$ and V_2^{41} with $\tau_*V_2^4$.

$$V_{1}^{41} = \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} - \alpha\eta)\Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)\beta^{\beta\eta}(\beta - \gamma)^{(\beta - \gamma)\eta}(\gamma - \alpha - \beta)^{2(\gamma - \alpha - \beta)\eta - 1}2\pi}{\Gamma(\frac{1}{2} + \beta\eta)\Gamma(\frac{1}{2} + (\beta - \gamma)\eta)\Gamma^{2}((\gamma - \alpha - \beta)\eta)(-\alpha)^{-\alpha\eta}(\gamma - \alpha)^{(\gamma - \alpha)\eta}\eta},$$

$$V_{2}^{41} = \frac{1}{2} \log \frac{\Gamma(\frac{1}{2} - \alpha\eta)\Gamma(\frac{1}{2} + \beta\eta)\Gamma(\frac{1}{2} + (\gamma - \alpha)\eta)\Gamma(\frac{1}{2} + (\beta - \gamma)\eta)(\beta - \alpha)^{2(\beta - \alpha)\eta - 1}}{\Gamma^{2}((\beta - \alpha)\eta)(-\alpha)^{-\alpha\eta}\beta^{\beta\eta}(\gamma - \alpha)^{(\gamma - \alpha)\eta}(\beta - \gamma)^{(\beta - \gamma)\eta}2\pi\eta}$$

$$\iota_{1} : (\alpha, \beta, \gamma) \mapsto (\gamma - \beta, \gamma - \alpha, \gamma)$$
$$(\gamma - \alpha, \beta - \gamma, \gamma - \alpha - \beta, \beta - \alpha) \mapsto (\beta, -\alpha, \alpha + \beta - \gamma, \beta - \alpha)$$

$$\begin{split} \iota_{1*}V_1^4 &= \frac{1}{2}\log\frac{\Gamma(\frac{1}{2}+\beta\eta)\Gamma(\frac{1}{2}+(\beta-\gamma)\eta)\Gamma^2((\gamma-\alpha-\beta)\eta)(-\alpha)^{-\alpha\eta}(\gamma-\alpha)^{(\gamma-\alpha)\eta}\eta}{\Gamma(\frac{1}{2}-\alpha\eta)\Gamma(\frac{1}{2}+(\gamma-\alpha)\eta)\beta^{\beta\eta}(\beta-\gamma)^{(\beta-\gamma)\eta}(\gamma-\alpha-\beta)^{2(\gamma-\alpha-\beta)\eta-1}2\pi}\\ \iota_{1*}V_2^4 &= \frac{1}{2}\log\frac{\Gamma(\frac{1}{2}-\alpha\eta)\Gamma(\frac{1}{2}+\beta\eta)\Gamma(\frac{1}{2}+(\gamma-\alpha)\eta)\Gamma(\frac{1}{2}+(\beta-\gamma)\eta)(\beta-\alpha)^{2(\beta-\alpha)\eta-1}}{\Gamma^2((\beta-\alpha)\eta)(-\alpha)^{-\alpha\eta}\beta^{\beta\eta}(\gamma-\alpha)^{(\gamma-\alpha)\eta}(\beta-\gamma)^{(\beta-\gamma)\eta}2\pi\eta}\\ V_1^{4\tau} &= -\tau_*V_1^4, \quad V_2^{\tau4} = \tau_*V_2^4 \end{split}$$

1 ▶ ◀ ┛ ▶ ◀ 亘 ▶ ◀ 亘 ▶ 亘 の Q (~ 27/29

References

[1] B. Candelpergher, M. A. Coppo and E. Delabaere, La sommation de Ramanujan, L'Enseignement Mathématique, 43 (1997), 93–132.

[2]Kawai, T. and Takei, Y., Algebraic Analysis of Singular Perturbation Theory, Translation of Mathematical Monographs, vol. 227, AMS, 2005.

[3] T. Koike and Y. Takei, On the Voros coefficient for the Whittaker equation with a large parameter, – Some progress around Sato's conjecture in exact WKB analysis, Publ. RIMS, Kyoto Univ. 47 (2011), 375–396.

[4] Y. Takei, Sato's conjecture for the Weber equation and transformation theory for Schrödinger equations with a merging pair of turning points, RIMS Kôkyûroku Bessatsu B10 (2008), 205-224.

Hypergeometric differential equations	Stokes graph	Voros coefficients	Borel sums of Voros coefficients
FND			

Thank you for your attention.