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1. Classical facts about the defocusing NLS

iyt + yxx − 2|y|2y = 0 · · · (defocusing NLS)

z: spectral parameter (eigenvalue)

P = −izσ3 +
[
0 y
ȳ 0

]
, σ3 := diag(1,−1),

Q = −2iz2σ3 + 2z

[
0 y
ȳ 0

]
+

[
−i|y|2 iyx
−iȳx i|y|2

]
The Lax pair : ψx = Pψ, ψt = Qψ (The x- and t-parts)

(defocusing NLS)
⇔ compatibility (ψxt = ψtx) of the Lax pair.

(Zakharov-Shabat, Ablowitz-Kaup-Newell-Segur)

x-part: reflection coefficient r

t-part: its time evolution
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2. Reflection coefficient

P = −izσ3 +
[
0 y
ȳ 0

]
=

[
−iz 0
0 iz

]
+

[
0 y
ȳ 0

]
,

∂xψ = Pψ (x-part) y: potential, z: spectral parameter.

Eigenfunctions ψ ∼ t[0, 1]eizx, ψ∗ ∼ t[1, 0]e−izx as x→ ∞(right).

The reflection coefficient r = r(z) is defined by:

rψ︸︷︷︸
reflection

+ ψ∗︸︷︷︸
incidence

∼ const.t[1, 0]e−izx︸ ︷︷ ︸
transmission

as x→ −∞(left).

∂tψ = Qψ (t-part) determines the time evolution of r.

Summary y(x, 0) 7→
x
r(z, 0) 7→

t
r(z, t) (t > 0)
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3. Our tool: Riemann-Hilbert problem

Γ: oriented contour (the left-hand is the + side).
m(z): unknown matrix, holomorphic in C \ Γ

Examples: 1. Γ = R, m(z) in the upper/lower half planes
2. Γ = {|z| = 1}, m(z): holo. in |z| ̸= 1.

m+,m−: boundary values on Γ from the ± sides

RHP: m+ = m−J on Γ (J : the jump matrix)

We assume m→ I (identity) as z → ∞ to ensure uniqueness.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
If J = I, then m+ = m− and m is holomorphic near Γ
⇒Neglect Γ.
If J ≈ I on some parts of Γ, we neglect those parts up to a
certain error (asymptotic analysis).
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4. Contour Deformation

m+ = m−J on Γ (black line) ⇔ n+ = n−J on Γ̃ (red line).
(J = J(z))



5. Factorization and contour deformation

m+ = m−JK on Γ (black line).

⇔ n+ = n−J on Γ1 and n+ = n−K on Γ2 (red lines).



6. Factorization and contour deformation

If the jump matrix admits a certain kind of factorization, there
is an integral representation for the solution (Beals-Coifman).

The solution is continuous with respect to small perturbations
of the coefficients.

Given RHPs No.1 and No.2.

Assume their jump matrices are close.

Assume RHP No.1 is explicitly solvable.

Sol. No. 2≈ Sol. No. 1 + a small error.

This observation, together with contour deformation, leads to
the Riemann-Hilbert version of the classical method of steepest
descent: the Deift-Zhou method, nonlinear steepest descent.

NB: A nonlinear problem has been reduced to an RHP,
a linear problem. Superposition is now possible.
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7. Inverse scattering and RHP

Initial value problem of NLS can be solved by inverse
scattering.

iyt + yxx − 2|y|2y = 0, y(x, 0) given.

1 initial value y(x, 0) and the x-part determines the
reflection coefficient r(z, 0) on the real line.
It is a connection coefficient between eigenfunctions.

2 r(z, t) (t > 0) is determined. (t-part of the Lax pair)

3 RHP (Γ = R) with unknown m(z) = m(x, t; z).
The jump matrix is written in terms of r(z, t).

4 m(x, t; z) expanded near z = ∞.
y(x, t) (t: positive) is a coefficient of the expansion.

♯ y(x, 0) 7→ r(z, 0) 7→ r(z, t) 7→ m(x, t; z) 7→ y(x, t)



7. Inverse scattering and RHP

Initial value problem of NLS can be solved by inverse
scattering.

iyt + yxx − 2|y|2y = 0, y(x, 0) given.

1 initial value y(x, 0) and the x-part determines the
reflection coefficient r(z, 0) on the real line.
It is a connection coefficient between eigenfunctions.

2 r(z, t) (t > 0) is determined. (t-part of the Lax pair)

3 RHP (Γ = R) with unknown m(z) = m(x, t; z).
The jump matrix is written in terms of r(z, t).

4 m(x, t; z) expanded near z = ∞.
y(x, t) (t: positive) is a coefficient of the expansion.

♯ y(x, 0) 7→ r(z, 0) 7→ r(z, t) 7→ m(x, t; z) 7→ y(x, t)



7. Inverse scattering and RHP

Initial value problem of NLS can be solved by inverse
scattering.

iyt + yxx − 2|y|2y = 0, y(x, 0) given.

1 initial value y(x, 0) and the x-part determines the
reflection coefficient r(z, 0) on the real line.
It is a connection coefficient between eigenfunctions.

2 r(z, t) (t > 0) is determined. (t-part of the Lax pair)

3 RHP (Γ = R) with unknown m(z) = m(x, t; z).
The jump matrix is written in terms of r(z, t).

4 m(x, t; z) expanded near z = ∞.
y(x, t) (t: positive) is a coefficient of the expansion.

♯ y(x, 0) 7→ r(z, 0) 7→ r(z, t) 7→ m(x, t; z) 7→ y(x, t)



7. Inverse scattering and RHP

Initial value problem of NLS can be solved by inverse
scattering.

iyt + yxx − 2|y|2y = 0, y(x, 0) given.

1 initial value y(x, 0) and the x-part determines the
reflection coefficient r(z, 0) on the real line.
It is a connection coefficient between eigenfunctions.

2 r(z, t) (t > 0) is determined. (t-part of the Lax pair)

3 RHP (Γ = R) with unknown m(z) = m(x, t; z).
The jump matrix is written in terms of r(z, t).

4 m(x, t; z) expanded near z = ∞.
y(x, t) (t: positive) is a coefficient of the expansion.

♯ y(x, 0) 7→ r(z, 0) 7→ r(z, t) 7→ m(x, t; z) 7→ y(x, t)



7. Inverse scattering and RHP

Initial value problem of NLS can be solved by inverse
scattering.

iyt + yxx − 2|y|2y = 0, y(x, 0) given.

1 initial value y(x, 0) and the x-part determines the
reflection coefficient r(z, 0) on the real line.
It is a connection coefficient between eigenfunctions.

2 r(z, t) (t > 0) is determined. (t-part of the Lax pair)

3 RHP (Γ = R) with unknown m(z) = m(x, t; z).
The jump matrix is written in terms of r(z, t).

4 m(x, t; z) expanded near z = ∞.
y(x, t) (t: positive) is a coefficient of the expansion.

♯ y(x, 0) 7→ r(z, 0) 7→ r(z, t) 7→ m(x, t; z) 7→ y(x, t)



7. Inverse scattering and RHP

Initial value problem of NLS can be solved by inverse
scattering.

iyt + yxx − 2|y|2y = 0, y(x, 0) given.

1 initial value y(x, 0) and the x-part determines the
reflection coefficient r(z, 0) on the real line.
It is a connection coefficient between eigenfunctions.

2 r(z, t) (t > 0) is determined. (t-part of the Lax pair)

3 RHP (Γ = R) with unknown m(z) = m(x, t; z).
The jump matrix is written in terms of r(z, t).

4 m(x, t; z) expanded near z = ∞.
y(x, t) (t: positive) is a coefficient of the expansion.

♯ y(x, 0) 7→ r(z, 0) 7→ r(z, t) 7→ m(x, t; z) 7→ y(x, t)



8. Long-time asymptotics of the defocusing NLS

1 Zakhalov-Manakov: formal calculation

2 Deift-Its-Zhou: proof by nonlinear steepest descent

RHP with oscillatory coefficients (with a phase function)
⇒ new contour, new unknown and new jump matrix
⇒ new RHP, equivalent to the original one.

If t≫ 0, the jump matrix on R is almost I. Can be neglected.



9. saddle point and decaying oscillation

The original RHP involves exp(±iθ), θ = 2z2 + t−1xz.
z0 = −x/(4t) is the only saddle point of the phase function θ.

As t→ ∞, jump matrix→ I (rapidly) at z ̸= z0.
Long-time asymptotics can be calculated by looking at a small
neighborhood of z0.

y(x, t) ∼ α(z0)t
−1/2 exp (4itz20 − iν(z0) log 8t)

decaying oscillation
α, ν determined by the reflection coefficient.
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10. Integrable Discrete NLS (IDNLS)

Ablowitz-Ladik introduced

i
d

dt
Rn+(Rn+1−2Rn+Rn−1)−|Rn|2(Rn+1+Rn−1) = 0 · · · (IDNLS)

Theorem (Y; two terms, decaying oscillation)

If
∑

n∈Z n
10|Rn(0)| <∞ and supn∈Z |Rn(0)| < 1,

then there exist Cj ∈ C, pj ∈ R, qj ∈ R
such that in |n| < 2t (“timelike”), we have as t→ ∞,

Rn(t) =
2∑

j=1

Cjt
−1/2 exp

(
−i(pjt+ qj log t)

)
︸ ︷︷ ︸
DECAYING OSCILLATION

+O(t−1 log t)

cf. Formal calc. by Novokshënov-Habibullin (1981),
focusing, without solitons.

.. Go to details.
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11. IDNLS and its Lax pair

Lax pair (AKNS pair):

Xn+1 =

[
z Rn

Rn z−1

]
Xn

n-part, Ablowitz-Ladik scattering problem,

d

dt
Xn =

[
iRn−1Rn − i

2
(z − z−1)2 −i(zRn − z−1Rn−1)

i(z−1Rn − zRn−1) −iRnRn−1 +
i
2
(z − z−1)2

]
Xn

t-part, time evolution.

(IDNLS) is the compatiblity condition.

i
d

dt
Rn+(Rn+1−2Rn+Rn−1)−|Rn|2(Rn+1+Rn−1) = 0 · · · (IDNLS)
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12. AL scattering problem and eigenfunctions

Xn+1 =

[
z Rn

Rn z−1

]
Xn, n-part, AL scattering problem

ϕn(z, t), ψn(z, t): holo. sol. in |z| > 1, continuous in |z| ≥ 1

ψ∗
n(z, t): holo. sol. in |z| < 1, continuous in |z| ≤ 1

ϕn(z, t) ∼ zn
[
1
0

]
as n→ −∞(LEFT),

ψn(z, t) ∼ z−n

[
0
1

]
, ψ∗

n(z, t) ∼ zn
[
1
0

]
as n→ ∞(RIGHT).



13. Reflection coefficient

On C : |z| = 1, for some a(z, t) ̸= 0 and b(z, t),

ϕn(z, t) = b(z, t)ψn(z, t) + a(z, t)ψ∗
n(z, t)

The reflection coefficient r(z, t) =
b(z, t)

a(z, t)
is defined.

We have 0 ≤ |r| < 1.
If {Rn} decreases rapidly as |n| → ∞, r is smooth.

The time evolution is
r(z, t) = r(z) exp (it(z − z−1)2), where r(z) = r(z, 0).
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14. Oscillatory RHP

m+(z) = m−(z)v(z) on C : |z| = 1(clockwise),

m(z) → I as z → ∞,

v(z) =

[
1− |r(z)|2 −e−2φr̄(z)
e2φr(z) 1

]
oscillatory jump matrix

φ =
1

2
it(z − z−1)2 − n log z, phase function

Potential reconstruction Rn(t) = − d

dz
m(z)21

∣∣∣∣
z=0

RHP gives {Rn}. Ref. book by Ablowitz-Prinari-Trubatch
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15. Jump matrix and saddle points

v(z) =

[
1− |r(z)|2 −e−2φr̄(z)
e2φr(z) 1

]
oscillatory jump matrix

φ = 1
2
it(z − z−1)2 − n log z (phase function)

S1, . . . , S4: saddle points of φ.
{Reφ = 0} and the signature of Reφ is shown in the figure.



16. Rewriting into an equivalent RHP

A new unknown function and a new contour.
Crosses near Sj: the direction of the steepest descent of ±φ.
The new jump matrix has components coming from e±2φ.



17. New jump matrix∑
n10|Rn(0)| <∞ implies the smoothness of r on |z| = 1.

Decompose r. Extract terms that can be continued
analytically to the inside/outside of the circle.

r =Taylor polynomial and remainder (Fourier integral).

Divide Fourier integral — analytic continuation

f(x) =

∫ 0

−∞
eixξf̂(ξ) dξ︸ ︷︷ ︸

holo in Imx<0

+

∫ ∞

0

eixξf̂(ξ) dξ︸ ︷︷ ︸
holo in Imx>0

The remaining term decreases on the circle rapidly as t→ ∞.
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18. Four small crosses

The jump matrix → I as t→ ∞ on parts of the contour.
Those parts can be neglected.
On the crosses, only small neighborhoods of the saddle points
matter.

Our RHP can be approximated by a concrete, calculable one.
Its solution is given by Deift-Its-Zhou (or Deift-Zhou on
MKdV.)



18. Four small crosses

The jump matrix → I as t→ ∞ on parts of the contour.
Those parts can be neglected.
On the crosses, only small neighborhoods of the saddle points
matter.

Our RHP can be approximated by a concrete, calculable one.
Its solution is given by Deift-Its-Zhou (or Deift-Zhou on
MKdV.)



20. Result (details)

.. Go to outline

r(z) := r(z, 0) （initial reflection coefficient）

S1 = e−πi/4A, S2 = e−πi/4Ā, S3 = −S1, S4 = −S2, : saddle points,

A = 2−1
(√

2 + n/t − i
√

2− n/t
)
,

δ(0) = exp

(
−1

πi

∫ S2

S1

log(1− |r(τ)|2) dτ
τ

)
≥ 1,

β1 =
−eπi/4A

2(4t2 − n2)1/4
, β2 =

eπi/4Ā

2(4t2 − n2)1/4
←Decay, O(t−1/2)

D1 =
−iA

2(4t2 − n2)1/4(A− 1)
, D2 =

iĀ

2(4t2 − n2)1/4(Ā− 1)
.



For j = 1, 2,

χj(Sj) =
1

2πi

∫ Sj

exp(−πi/4)

log
1− |r(τ)|2

1− |r(Sj)|2
dτ

τ − Sj

,

νj = − 1

2π
log(1− |r(Sj)|2) ≥ 0,

δ̂j(Sj) = exp

(
1

2π

[
(−1)j

∫ S3−j

e−πi/4

−
∫ −S2

−S1

]
log(1− |r(τ)|2)

τ − Sj

dτ

)
,

δ0j = Sn
j e

−it(Sj−S−1
j )2/2D

(−1)j−1iνj
j e(−1)j−1χj(Sj)δ̂j(Sj) Oscillation



Theorem (Y; two terms, decaying oscillation)

Assume
∑
n10|Rn(0)| <∞ and sup |Rn(0)| < 1.

Then on |n| < 2t (“timelike”), as t→ ∞,

Rn(t) = −δ(0)
πi

2∑
j=1

βj︸︷︷︸
Decay

(δ0j )
−2︸ ︷︷ ︸

Oscill.

S−2
j Mj +O(t−1 log t).

Here

Mj =


√
2π exp ((−1)j3πi/4− πνj/2)

r̄(Sj)Γ((−1)j−1iνj)
if r(Sj) ̸= 0,

0 if r(Sj) = 0.

Four crosses can be dealt with separately.
(RHP being linear, superposition is possible).

Two pairs of antipodals⇒two terms.

.. Go to outline



23. Work in progress and an open problem

WORK in PROGRESS (to be announced in FASDE 4?):
We studied the asymptotic behavior in |n| < 2t.
What are the behaviors in |n| ≈ 2t and in |n| > 2t?
It seems that Painlevé II appears.
Similar phenomena have been observed in the cases of MKdV
(Deift-Zhou) and Toda (Kamvissis).

OPEN PROBLEM
focusing case, a sum of solitons asymptotically.
cf. Toda (Krüger-Teschl), NLS (Fokas-Its-Sung)
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cf. Toda (Krüger-Teschl), NLS (Fokas-Its-Sung)



Thank you very much!

Dziȩkujȩ! Wymowa polska jest trundna.


