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1. Linearization problem of a singular vector field

Let y = (y1, . . . , yn) ∈ Cn, n ≥ 2 be the variable of Cn, and consider the
holomorphic vector field in some domain of Cn containing the origin

X =
n∑

j=1

aj(y)
∂

∂yj
. (1)

We assume that the number of singular points of X is finite, hence
the singular points are isolated. Moreover we suppose aj(0) = 0 for
j = 1, . . . , n.

Assume that the change of coordinates preserving the origin

y = u(x), u = (u1, . . . , un), x = (x1, . . . , xn), n ≥ 1

transforms X to its linear part. This is equivalent to

A(u(x))

(
∂u

∂x

)−1

= xΛ, (2)

where A(y) = (a1(t), . . . , an(y)) and ∂u
∂x

is the Jacobian matrix, and Λ =
DA(0) is the linear part of X at the origin.

We define v(x) by u(x) = x + v(x), v(x) = O(|x|2) and we set

A(y) = yΛ + R(y), R(y) = (R1(y), . . . , Rn(y)) = O(|y|2).



Then we have A(u) = (x + v)Λ + R(x + v) and ∂u
∂x

= I + ∂v
∂x

. Hence by (2)
we have

A(u(x)) = (x + v)Λ + R(x + v) = xΛ

(
I +

∂v

∂x

)
.

It follows that our linearization condition can be written in

vΛ + R(x + v) = xΛ
∂v

∂x
. (3)

This is a system of semilinear first order partial differential equations
for v. Let λj, j = 1, . . . , n be the eigenvalues of Λ. Poincaré’s theorem
asserts the existence of a local holomorphic solution provided the non
resonance condition and the Poincaré condition, Reλj > 0 are satisfied.
We note that the solution may not be globally defined because the
nonlinear term R(x + v) may cause the singularity.

We note that similar relation like (3) holds at every isolated singular
point of X .

Instead of solving (3) globally we introduce a parameter η in the equa-
tion and we want to construct an approximate global transformation.
Namely, we approximate our equation with the following

vΛ + R(x + v) = η−1xΛ
∂v

∂x
. (4)

Clearly if η = 1, then we have the linearization relation (3).



In this talk I will show the global solvability of (4) by virtue of the
Borel sum with respect to η of some formal series solution. Then we
show that the solution of (4) is naturally related to the solution of the
original equation (3).

2. Formal transformation

We assume that Λ is a diagonal matrix with eigenvalues λj �= 0, j =
1,2, . . . , n. Define

L =
n∑

j=1

λjxj
∂

∂xj
. (5)

Then (4) is written in

η−1Lvj = λjvj + Rj(x + v(x)), j = 1, . . . , n. (6)

Definition 1 A singular perturbative solution (SP-solution in short) v(x, η)
of (6) is a formal power series in η−1 of the form

v(x, η) =
∞∑

ν=0

η−νvν(x) = v0(x) + η−1v1(x) + · · · , (7)

where the coefficients vν(x) are holomorphic vector functions of x in
some open set independent of ν.



We want to construct a SP-solution of (6) in the following form

vj ≡ vj(x, η) =
∞∑

ν=0

vj
ν(x)η

−ν, vj
ν(x) = O(|x|2), j = 1, . . . , n. (8)

By substituting the expansion (8) into (6), and by comparing the co-
efficients of η, η0 = 1 we obtain

λjv
j
0(x) + Rj(x1 + v1

0, . . . , xn + vn
0) = 0. (9)

One can determine v0 = (v1
0, . . . , vn

0) from (9). In the rest of the talk we
assume that v0 is holomorphic in the domain Ω(v0) which contains the
origin. The other terms are determined inductively.

We define the set Σ0 by

Σ0 := {x ∈ Cn; det (Λ + ∇R(x + v0(x))) = 0} . (10)

We assume

0 �∈ Σ0. (11)

We note that (11) implies λk �= 0 for every k. The next theorem gives
the existence of a SP-solution.

Proposition 1 Assume (11). Then every coefficient of the SP-solution
(8) is uniquely determined as a holomorphic function in a neighborhood
of the origin x = 0 independent of ν.



Remark. Let C̃n \ Σ0 be the universal covering space of Cn \Σ0. We can
make analytic continuation of the formal SP-solution in Proposition 1

from the origin to C̃n \ Σ0∩Ω(v0), assuming that R(x) is an entire function
on x ∈ Cn. Indeed, every coefficient of SP-solution (8) is analytically

continued to C̃n \ Σ0 ∩Ω(v0) because it is calculated inductively through
differentiations and algebraic calculations.

3. Definition of Borel sum

Let v(x, η) =
∑∞

ν=0 vν(x)η−ν be the SP-solution of (6). Then the formal
Borel transform of v(x, η) is defined by

B(v)(x, ζ) :=
∞∑

ν=0

vν(x)
ζν

Γ(ν + 1)
, (12)

where Γ(z) is the Gamma function.

For an opening θ > 0 and the direction ξ we define the sector Sθ,ξ in the
direction ξ by

Sθ,ξ =

{
z ∈ C; |arg z − ξ| <

θ

2

}
. (13)

We say that v(x, η) is Borel summable in the direction ξ with respect
to η if B(v)(x, ζ) converges in some neighborhood of the origin of (x, ζ),
and there exist a neighborhood U of the origin x = 0 and a θ > 0 such



that B(v)(x, ζ) can be analytically continued to (x, ζ) ∈ U × Sθ,ξ and of
exponential growth of order 1 with respect to ζ in Sθ,ξ. For the sake of
simplicity we denote the analytic continuation with the same notation
B(v)(x, ζ). The Borel sum V (x, η) of v(x, η) is, then, given by the Laplace
transform

V (x, η) :=

∫
Lξ

ζ−1e−ζηB(v)(x, ζ)dζ (14)

where the integral is taken on the ray starting from the origin to the
infinity in the direction ξ.

4. Convergence of the formal Borel transform

Theorem 2 Assume that R(x) is an entire function on x ∈ Cn. Let v be

the SP-solution given by (8). Let K be the compact set in C̃n \ Σ0 ∩
Ω(v0). Suppose that every vν(x) in v is analytic in some neighborhood
of K independent of ν. Then there exist a neighborhood U of K and
a neighborhood W of the origin ζ = 0 in C such that the formal Borel
transform B(v)(x, ζ) converges in U × W .

Remark. If K is a neighborhood of the origin x = 0, then we only need
to assume that R(x) is analytic in some neighborhood of the origin
x ∈ Cn. Note that 0 �∈ Σ0 by (11) and every vν(x) in v is analytic in some
neighborhood of the origin independent of ν.



5. Summability at the origin.
Define C0 as the smallest convex closed cone with vertex at the origin
containing λj (j = 1,2, . . . , n). Then we have

Theorem 3 Suppose (11). Assume that ∇R(x+v0) is a diagonal matrix.
Assume that, for some direction ξ

|arg λj − ξ| < π/4 for j = 1,2, . . . , n. (15)

Then there exists a neighborhood U of the origin of x such that v(x, η)
is Borel-summable in the direction η such that η−1 ∈ (C0)c and x ∈ U,
where (C0)c is the complement of C0 in the complex plane.

Remark. There exist dense singular directions in C0.

Σ0

L

6. Some geometry.
Let v0(x) and Σ0 be given by (9) and (10), respectively. Because Σ0 is a



main analytic set, it has the pure codimension one. Hence, by the well
known embedding theorem in several complex variables, for every point
b of Σ0 there exists a complex line L such that b ∈ Σ0∩L is isolated in L.
In the following we assume that L is given by xj = 0 (1 ≤ j ≤ n − 1) and
Σ0 ∩ L consists of isolated points in L. (See the figure in the above).
We denote the variable in L by ζ. We may also assume λn = 1 without
loss of generality by dividing the equation with λn.

Let (∇R)j be the j-th diagonal component of the matrix ∇R. We
consider the system of equations

Lwj − (λj + (∇R)j(x + v0))
∂wj

∂y
= f, j = 1,2, . . . , n, (16)

where f ≡ f(x, y) is a holomorphic function of x ∈ Cn and y ∈ C. Consider
the characteristic equation corresponding to (16)

dζ

ζ
=

dxk

λk

= − dy

λj + (∇R)j(x + v0)
, k = 1,2, . . . , n − 1. (17)

By integration we have

xk = ckζ
λk (k = 1,2, . . . , n − 1), y = y0 − Φ(ζ, b), (18)

where ck’s and y0 are some constants. Fix a branch of v0 and define

Φ(ζ, b) ≡ Φj(ζ, b) =

∫ ζ

b

λj + (∇R)j(x + v0(x))

s
ds, (19)



where x = (x1, . . . , xn), xk = cks
λk (k = 1,2, . . . , n − 1) and b ∈ C. Note that

the relations (18) give the (multi-valued) change of variable between
(xk, ζ, y) and (ck, ζ, y0).

7. Local summability

In Theorem 3 we have proved Borel summability of the formal SP-
solution v(x, η) in a neighborhood of the origin x = 0. We will study
Borel summability at other points ξ ∈ Cn \ Σ0, ξ �= 0. Note that 0 �∈ Σ0.

Let ξ = (ξ′, ξn) and determine c′ = (ck)k by the relations ζ = ξn and (18)
with x = ξ. Determine L with x′ = ξ′. Define the set T0 ⊂ L by

T0 := Σ0 ∩ {(ξ′, ζ); ζ ∈ L}.
Let a ∈ T0. With c′ = (ck) define Φ(s, a) by (19). Define the curve Sa

by the set of points s such that ImΦ(s, a) = 0 Clearly, ξn �∈ T0 because
ξ ∈ (Cn \ Σ0) ∩ Ω0. Hence the following two cases occur:
(a) ξn �∈ Sa for any a ∈ Σ0.
(b) ξn ∈ Sa for some a ∈ Σ0.
We will show the summability in these two cases.

Theorem 4 Assume that R(x) is an entire function on Cn and that
∇R(x + v0) is a diagonal matrix. Suppose 0 �∈ Σ0. Moreover, assume
that Reλj > 0 for j = 1,2, . . . , n. Let ξ ∈ Cn \ Σ0 . Then we have
The case (a). There exist an ε > 0 and a neighborhood D of ξ such



that if ‖v0‖ < ε, then v(x, η) is Borel-summable in the direction η with
η−1 ∈ (C0)c for any x ∈ D.
The case (b). Assume that ξn ∈ Sa for some Sa which is not a branch cut
of Φ′(s, ·) = (d/ds)Φ(s, ·). Then there exist an ε > 0 and a neighborhood D
of ξ such that if ‖v0‖ < ε, then v(x, η) is Borel-summable in the direction
η with η−1 ∈ (C0)c for any x ∈ D.

8. Global summability

By using the results in the preceeding sections we will show the following
fact. Given a domain K whose closure is compact. Then there exists
an ε > 0 such that if ‖v0‖ < ε and v0 is holomorphic in K, then the
SP-solution is Borel summable in the direction η with η−1 ∈ (C0)c for
any x ∈ K. Indeed, one can make analytic continuation by covering K
with a finite number of open sets. We note that the Borel sum gives
the desired solution of our equation.



9. Connection problem across singular directions and Poincaré’s theo-
rem

This is the main topic in this talk. Consider the connection problem
with respect to η of the summed SP-solution V (x, η) of (6) across every
singular direction in C0. Let E0 be given by

E0 :=

{〈λ, α〉
λk

; k = 1,2, . . . , n, α ∈ Zn
≥0, |α| ≥ 2

}
. (20)

We can show:
E0 is contained in the right half-plane Re η > 0 and η/|η| (η ∈ E0) are
dense in some sector of the complex plane.

Note that E0 gives the singular directions for the Borel sum V (x, η) which
is dense in C0. A connection problem occurs at a singular direction in
C0. We shall study the analytic continuation of V (x, η) from the negative
real axis to the point η = 1.

Theorem 5 Assume there exists a real ξ such that |arg λj − ξ| < π/4 for
j = 1,2, . . . , n and that λj (j = 1,2, . . . , n) be linearly independent over Z.
Then there exists a neighborhood W of the origin of x ∈ Cn such that
the connection coefficient across every singular direction in C0 vanishes.
Especially, V (x, η) is a single-valued meromorphic function with respect
to η and analytic in x when (x, η) ∈ W × C \ E0.



singular directions

We say that a solution of (6) with η = 1 is said to be a classical Poincaré
solution if it is constructed as a power series of x at the origin x = 0,
which is convergent provided the Poincaré condition is satisfied. By
Theorem 5 we have the corollary.

Theorem 6 Assume there exists a real ξ such that |arg λj − ξ| < π/4 for
j = 1,2, . . . , n and that λj (j = 1,2, . . . , n) be linearly independent over
Z. Then the analytic continuation of the Borel summed SP-solution
V (x, η) to η = 1 in C \ E0 coincides with the classical Poincaré solution
of (6) with η = 1.



Open problem

We hope that the Birkoff normalizing transformation of the Hamiltonian
system is also obtained in the same manner as above.
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for attending to the conference and to
my lecture


