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Geometric series and power function

The starting point of the theory of hypergeometric functions is, perhaps,
the Eulers’ analysis of the function deined by the series

(1− t)−r =
∑
n0

(r)n
n!

tn, (1)

for |t| < 1 and where (x)n := x(x + 1)...(x + n − 1) is the Pochhammer
function.

If r = 1, then (1) reduces to the well known geometric series. This
propably motivated the name for generalisations of (1), which will be
treated in this talk.

Although the formula (1) has allready been known before Euler, it was
him, who made significant contributions in the study of (1) and noticed,
that many known special functions can be put into the similar framework.
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Euler-Gauss hypergeometric function

The classical Euler-Gauss hypergeometric function is defined by the series

2F1

(
u, v
w

∣∣∣∣ t
)

=
∑
n0

(u)n(v)n
(w)n

tn

n!
(2)

= 1 +
u · v

w
t +

u(u + 1) · v(v + 1)

w(w + 1)

t2

2!
+ O(t3),

where |t| < 1.

It has been introduced by Euler and studied by the leading matematicians
of the XIX and the beginning of XX century, including Gauss, Riemann
(monodromy, P-function, Riemann surfaces), Kummer (bases of
solutions, special values), Shwarz (Shwarz list) and others.
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General classical hypergeometric function

One can easily generalize the classical Euler-Gauss hypergeometric
function, by the series (0 < p, q ∈ Z are parameters, such that p ¬ q + 1)

pFq

(
u1, u2, ..., up

w1,w2, ...,wq

∣∣∣∣ t
)

=
∑
n0

(u1)n(u2)n... (up)n
(w1)n(w2)n... (wq)n

tn

n!
, (3)

where |t| < 1. This is the classical general hypergeometric function.

If p < q + 1, then function (3) is called confluent and if p = q + 1, then
it is called balanced.
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Hypergeometric differential equation

We introduce the following operators: the multiplication operator
f (t) 7→ tf (t), wich we simply denote by t, differential operator
∂t := d/dt and the Euler operator θt = t∂t.

We have

θt 2F1

(
u, v
w

∣∣∣∣ t
)

=
∑
n0

(u)n(v)n
(w)n

n
tn

n!
(4)

= u
∑
n0

{
(u + 1)n(v)n

(w)n
− (u)n(v)n

(w)n

}
tn

n!
,

= u
{
2F1

(
u + 1, v

w

∣∣∣∣ t
)
− 2F1

(
u, v
w

∣∣∣∣ t
)}

.
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Hypergeometric differential equation

Hence

(θt + u) 2F1

(
u, v
w

∣∣∣∣ t
)

= u 2F1

(
u + 1, v

w

∣∣∣∣ t
)
. (5)

And in a similar way

(θt + v) 2F1

(
u, v
w

∣∣∣∣ t
)

= v 2F1

(
u, v + 1

w

∣∣∣∣ t
)

(6)

and

(θt + w − 1) 2F1

(
u, v
w

∣∣∣∣ t
)

= (w − 1) 2F1

(
u, v

w − 1

∣∣∣∣ t
)
. (7)
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Hypergeometric differential equation

From the above differential-difference relations together with

∂t 2F1

(
u, v
w

∣∣∣∣ t
)

=
uv
w 2F1

(
u + 1, v + 1

w + 1

∣∣∣∣ t
)
. (8)

one obtains

(θt + u)(θt + v) 2F1

(
u, v
w

∣∣∣∣ t
)

= (θt + w)∂t 2F1

(
u + 1, v

w

∣∣∣∣ t
)
. (9)

Or in equivalent form:

{
t(t − 1)∂2t + ((u + v + 1)t − w)∂t + uv

}
2F1

(
u, v
w

∣∣∣∣ t
)

= 0. (10)
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General classical hypergeometric equation

The analog of the Euler-Gauss hypergeometric equation for general
classical hypergeometric function can be written as

t P(θt) pFq = Q(θt) pFq, (11)

where

P(x) = (x + u1)(x + u2)...(x + up)

Q(x) = (x + w1 − 1)(x + w2 − 1)...(x + wq − 1).

From the above differential equation, one can restore the classical
hypergeometric series, as a particular solution. But the hypergeometric
equation has order p, so there are p − 1 independent solutions to (11).
Usually they are also called hypergeometric functions. However they may
not be representable by hypergeometric series.
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Balanced and confluent differential equations

Although general classical hypergeometric equation has polynomial
coefficients, there is significant difference between balanced and confluent
equations (coresponding to balanced and confluent functions).

Balanced equation has only regular singular points, i.e. solutions in zeros
of the indical equations are at most of polynomial growth. This implies
significant differences between the two above cases.



Balanced and confluent differential equations

Although general classical hypergeometric equation has polynomial
coefficients, there is significant difference between balanced and confluent
equations (coresponding to balanced and confluent functions).

Balanced equation has only regular singular points, i.e. solutions in zeros
of the indical equations are at most of polynomial growth. This implies
significant differences between the two above cases.



Integral representations

Hypergeometric functions can be represented by several types of
integrals.

One of them is the Euler representation:

Γ (v)Γ (w − v)

Γ (w)
2F1

(
u, v
w

∣∣∣∣ t
)

=

∫ 1
0

xv−1(1− x)w−v−1(1− tx)−u dx .

Formula (12) follows from the expansion of power function and integral
representation of Beta function

B(x , y) =

∫ 1
0

tx−1(1− t)y−1 dt.

It is also closely related to harmonic analysis on S1.
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Integral representations

The other useful formula is the Mellin-Barnes integral:

Γ (u)Γ (v)

Γ (w)
2F1

(
u, v
w

∣∣∣∣ t
)

(12)

=
1

2πi

∫
C

Γ (u + s)Γ (v + s)

Γ (w + s)
Γ (−s)(−t)s ds,

where the contour C is a line from −i∞+ s0 to −i∞+ s0, for some
s0 ∈ R, separating poles of Γ (−s) from the poles of the other Γ -factors.

Formula (12) follows from the Residue Theorem. It is also closely related
to harmonic analysis on R.

There are also other very interesting integral formulas which follow from
the integral geometry.
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Integral representations and Meijer G -function

General hypergeometric series also admits the Mellin-Barnes integral
representation:

Γ (u1)...Γ (up)
Γ (w1)...Γ (wq)

pFq

(
u1, ..., up
w1, ...,wq

∣∣∣∣ t
)

=
1

2πi

∫
C

Γ (u1 + s)...Γ (up + s)

Γ (w1 + s)...Γ (wq + s)
Γ (−s)(−t)s ds. (13)

with appropriately chosen contour C .

Formula (13) led Cornelis Simon
Meijer to the definition of the Meijer G -function:

Gm,np,q

(
u1, ..., up
w1, ...,wq

∣∣∣∣ t
)

=
1

2πi

∫
C

∏m
j=1 Γ (wj − s)

∏n
j=1 Γ (1− uj + s)∏p

j=1 Γ (uj − s)
∏q
j=1 Γ (1− wj + s)

Γ (s)ts ds. (14)
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Appell functions

In 1880 P. Appell defined the following list of hypergeometric functions of
two variables:

F1

(
u, v1, v2

w

∣∣∣∣ x , y
)

=
∑
n,m0

(u)m+n(v1)m(v1)n
(w)m+n

xmyn

m!n!
, (15)

F2

(
u, v1, v2
w1,w2

∣∣∣∣ x , y
)

=
∑
n,m0

(u)m+n(v1)m(v1)n
(w1)m(w2)n

xmyn

m!n!
, (16)

F3

(
u1, u2, v1, v2

w

∣∣∣∣ x , y
)

=
∑
n,m0

(u1)m(u2)n(v1)m(v1)n
(w)m+n

xmyn

m!n!
,(17)

F4

(
u, v

w1,w2

∣∣∣∣ x , y
)

=
∑
n,m0

(u)m+n(v)m+n
(w1)m(w2)n

xmyn

m!n!
. (18)



Appell and Horn functions

Series defining functions F1,F2,F3,F4 converge in regions

D1 = {(x , y) ∈ C2 : |x | < 1, |y | < 1},
D2 = {(x , y) ∈ C2 : |x |+ |y | < 1},
D3 = {(x , y) ∈ C2 : |x | < 1, |y | < 1},
D4 = {(x , y) ∈ C2 : |x |1/2 + |y |1/2 < 1}.

In addition to the list of four Appell functions, there are 10 other
balanced hypergeometric series and futher 20 confluent series, that have
been enumerated by Horn (1931) and corrected by Borngässer (1933).

Lauricella (1893) generalized the notion of Appell’s functions to n
variables.
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Differential equations and integral representations

All Appell and Horn (as well as Luricella) functions satisfy meromorphic
differential equations. In addition they can be representad by integrals.

For example, the Euler-type integral for F2 is

Γ (v1)Γ (v2)Γ (w1 − v1)Γ (w2 − v2)
Γ (w1)Γ (w2)

F2

(
u, v1, v2
w1,w2

∣∣∣∣ x , y
)

=

∫ 1
0

∫ 1
0

tv1−11 tv2−12 (1− t1)w1−v1−1(1− t2)w2−v2−1 ×

(1− t1x − t2y)−u dt1 dt2.

Surprisingly, the function F1 can also be expressed by the simple integral

Γ (w)Γ (w − u)

Γ (v1)Γ (v2)
F1

(
u, v1, v2

w

∣∣∣∣ x , y
)

=

∫ 1
0

tu−1(1− t)w−u−1(1− tx)−v1(1− ty)−v1 dt.
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Mellin-Barnes integral representations

For general complex parameters, the F1 function can be written as the
following contour integral

Γ (u)Γ (v1)Γ (v2)
Γ (w)

F1

(
u, v1, v2

w

∣∣∣∣ x , y
)

(19)

=
1

(2πi)2

∫
C

Γ (u − s1 − s2)Γ (v1 − s1)Γ (v2 − s2)
Γ (w − s1 − s2)

× Γ (s1)Γ (s2)(−x)−s1(−y)−s2 ds1 ds2,

where C is an appropriately chosen 2-cycle in C2.

Analogous formulas exist for all other Appel and Horn functions.
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Horn’s condition

Common properties of the classical, Appell’s and Lauricella’s
hypergeometric functions led Horn to the following definition.

Definition (Horn function)

Consider a Taylor series of the form (we use standard multiindex notation)

f (t) =
∑
n∈Np

antn, (20)

where an are such that an+ej/an ∈ C(n1, ..., np).

All of the above functions (Euler-Gauss, Appell, Lauricella) are special
cases of Horn hypergeometric functions. Horn functions can also be
divided into confluent and balanced ones. All of them possess integral
representations and satisfy meromorphic differential equations
generalizing the one-dimensional case.



Horn’s condition

Common properties of the classical, Appell’s and Lauricella’s
hypergeometric functions led Horn to the following definition.

Definition (Horn function)

Consider a Taylor series of the form (we use standard multiindex notation)

f (t) =
∑
n∈Np

antn, (20)

where an are such that an+ej/an ∈ C(n1, ..., np).

All of the above functions (Euler-Gauss, Appell, Lauricella) are special
cases of Horn hypergeometric functions. Horn functions can also be
divided into confluent and balanced ones. All of them possess integral
representations and satisfy meromorphic differential equations
generalizing the one-dimensional case.



Euler-Gauss function in the multivariable context

Following W. Miller and his school, one may give the Euler-Gauss
function the following interpretation.

Consider the Laplace operator

∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
+

∂2

∂x24
, (21)

which can be rewritten as

∂1∂2 − ∂3∂4 (22)

in coordinates x1 = t1 + t2, x2 = i(t1 − t2), x3 = t3 − t4 and
x4 = i(t3 + t4).

Here (and further on) ∂i := ∂ti ; the same convention applies to θi := θti .
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PDE satisfied by multivariable Euler-Gauss function

One may then prove (by straightforward calculation), the following

Proposition

The function

Φ

(
u, v
w

∣∣∣∣ t1, t2, t3, t4

)
:= t−u1 t−v2 tw−13 2F1

(
u, v
w

∣∣∣∣ t3t4
t1t2

)
(23)

satisfies the equation

(∂1∂2 − ∂3∂4)Φ = 0. (24)

This approach, which was motivated by the desire to find systems of
PDEs whose solutions could be expressed in terms of generalized
hypergeometric series, leads to the notion of GKZ systems.
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Euler-Gauss PDE; towards GKZ system

For Euler-Gauss hypergeometric series, the operator θt + u may be
viewed as an index-raising operator. Similar is true in the case of θt + v ,
while and θt + w lowers the third index.

One may introduce other raisingand lowering operators using the
recursion properties of the Pochhammer symbols. However, the
dependence of these operators on the parameters makes it difficult to
study, for example, their composition properties and thus the algebra
they generate.

Miller’s idea is to replace the multiplication operators u, v ,w by by Euler
operators θx , θy , θz , corresponding to new variables x , y , z , respectively.
Now, since the Euler operator, θx acts as multiplication by u on xu, it is
natural, to define

Φu,v ,w (t) := xuy vzw−1 2F1

(
u, v
w

∣∣∣∣ t
)
. (25)
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Euler-Gauss PDE; towards GKZ system

The following relations are immediate consequence of the above:

θx Φu,v ,w = u Φu,v ,w

θy Φu,v ,w = v Φu,v ,w

θz Φu,v ,w = (w − 1) Φu,v ,w .

So

(θt + θx) Φu,v ,w = xuy vzw−1 (θt + u) 2F1

(
u, v
w

∣∣∣∣ t
)

(26)

and

x(θt + θx) Φu,v ,w = u Φu+1,v ,w . (27)

There are similar formulas for v and w .
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Euler-Gauss PDE; towards GKZ system

Together with relation

xyz∂t Φu,v ,w =
uv
w

Φu,v ,w (28)

we get all relations leading to the Euler-Gauss equation (i.e. one can
reconstruct 2F1).

However, there are several advantages. Identities (27), (28) and two
remaining ones are in parameter free form and they make sense for any
(appropriately regular) function on the variables t, x, y, z, while the
previous (the classica) form depended on the non-intrinsic parameters
u, v and w .

Another advantage is provided by the following

Proposition

The operators L1 := x(θt + θx), L2 := y(θt + θy ), L3 := z−1(θt + θz) and
L4 := xyz∂t commute. Consequently, there exist coordinates ξ1, ..., ξ4 on
C4 such that Lj = ∂ξj .
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Euler-Gauss PDE; towards GKZ system

Existence of such ∂ξ1 , ∂ξ2 , ∂ξ3 and ∂ξ4 follows from Frobenius’ Theorem.
However, in this case we can write them explicitly as:

ξ1 = −x−1,

ξ2 = −v−1,

ξ3 = z ,

ξ1 = (xyz)−1t.

Therefore

θx = −θξ1 − θξ4
θy = −θξ2 − θξ4
θz = θξ3 − θξ4
θt = θξ4 .
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Euler-Gauss PDE; towards GKZ system

The above analysis leads to the following

Theorem

Given complex numbers u, v and w /∈ −N, the function Φu,v ,w defined in
(62) satisfies the system of partial differential equations:

(θ1 + θ4 + u)Φu,v ,w = 0

(θ2 + θ4 + v)Φu,v ,w = 0

(−θ3 + θ4 + w − 1)Φu,v ,w = 0

(∂1∂2 − ∂3∂4)Φu,v ,w = 0.

First three equations can be written more simply, as

AθΦu,v ,w = 0, (29)

with matrix A and θ := (θ1, ..., θ4).
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GKZ hypergeometric system

Let A denote d × n matrix of rank d with coefficients in Z.

Furthermore, assume, that

The column vectos of A span Zd over Z.

The row span of A contains the vector (1, 1, ..., 1).

Definition

Let u ∈ Cd . Define

IA = {∂α − ∂β : Aα = Aβ;α, β ∈ Nd}. (30)

The GKZ hypergeometric system is the left ideal H(A, u) in the Weyl
algebra generated by the union of IA and Aθ − u. Solutions of GKZ
systams are called A-hypergeometric functions.

GKZ stands for Gelfand, Kapranov and Zelevinsky, who first studied the
general multivariable hypergeometric systems associated to A, u.
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Euler-Gauss function as GKZ hypergeometric system

As it has been allready seen before, the multivariable Euler-Gauss
function satisfies GKZ system associated to the data

A =

1 0 0 1
0 1 0 1
0 0 −1 1

 (31)

and ū = (−u,−v , 1− w).



Appell function as GKZ hypergeometric system

Consider a GKZ system associated to the following data:

A =


1 0 0 1 0 1
0 1 0 1 0 0
0 0 0 0 1 1
0 0 1 −1 0 −1

 (32)

and ū = (−u,−v1,−v2, 1− w).

Theese data correspond to the function Φ associated with Appell F1.

Note, that here IA is not principal, i.e. we have

IA = 〈∂1∂2 − ∂3∂2, ∂1∂5 − ∂3∂6, ∂2∂6 − ∂4∂5〉 . (33)
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’Hypergeometric properties’ of GKZ system

Solutions of GKZ system have properties analogous to the classical
(including Euler-Gauss) hypergeometric functions. In ”Generalized Euler
integrals and A-hypergeometric functions (Adv. Math. 84, 255–271),
Gelfand, Kapranov and Zelevinsky proved the following

Theorem (GKZ)

Let f1, f2, ..., fn ∈ C[x1, x2, ..., xm], x , β ∈ Cm and α ∈ Cn. Then∫
C

f α11 f α22 ...f αnn xβdx . (34)

where C is an m-dimensional real cycle, are A-hypergeometric functions
of the coefficients of the polynomials f1, f2, ..., fn.



The Γ -series and Mellin-Barnes integral

Solutions of GKZ system can be represented as Γ -series

∑
m

∏
j∈J

tmj

mj !

∏
i∈I

t(Am)i+ui

Γ ((Am)i + ui + 1)
. (35)

The numbers m = (m1,m2, ...,mn) are divided to I and J, such tahat
I ∩ J = ∅, w. r. t. relation defining IA.

There is also a Mellin-Barnes representation, which can be regarded as
continuous analog of the Γ -series.
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Grassmannian manifolds

In mathematics, a Grassmannian Gr(k ,V ) is a (moduli) space which
parameterizes all linear subspaces of a vector space V of dimension k.

For example, the Grassmannian Gr(1,V ) is the space of lines through the
origin in V , so it is the same as the projective space P(V ). The
Grassmannians are compact, smooth manifolds. They are named in honor
of Hermann Grassmann.

From now on the base field is going to be C. We will also write Gr(k, n)
instead of Gr(k,Cn).
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Description of Gr(1, n)

Space Gr(1, n) parametrizes lines in Cn.

It can be described with use of
simple linear algebra and a group action. Every line in Cn can be
identified, up to rescaling, with homomorphism of rank one from z Cn to
C.

Thus we have Gr(1, n) = C∗\(Cn − {0}), or in more fancy way:
Gr(1, n) = GL(1,C)\hom1(Cn,C), where the action is described by
multiplication GL(1,C) 3 t.φ ∈ hom1(Cn,C). It is standard to describe
points of Gr(1, n) with use of classes of matrices [x0, x1, .., xn−1], where
[x0, x1, ..., xn−1] = [y0, y1, ..., yn−1] if and only if
(x0, x1, ..., xn−1) = t · (y0, y1, ..., yn−1) dla t ∈ GL(1,R).
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Gr(1, n) as a homogeneous space

Definition

Let G be a Lie group and H ⊂ G its closed subgroup. Homogeneous
space is the quotient H\G with the induced topology.

Using hermitian form on Cn one can proove that taking unitary
projections in place of space hom1(Cn,C) and the unitary group U(1) in
place of GL(1,C), one gets the same space, i.e. we have
Gr(1, n) = U(1)× U(n− 1)\U(n). This construction makes Gr(1, n) into
a homogeneous space. Since unitary groups are compact, Gr(1, n) is a
compact manifold.
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Atlas on Gr(1, n)

For homogeneous coordinates [x0, x1, ..., xn−1] on Gr(1, n) there are n
natural maps ϕi : Gr(1, n) ⊃ Ui → Cn−1, where i ∈ {0, 1, ..., n − 1 },
Ui = {[x0, x1, ..., xn−1] : xi 6= 0} and
ϕi ([x0, x1..., xn−1]) = (x1, ..., x1−i , x1+i , ..., xn−1)/xi .

On the intersections Ui ∩ Uj map ϕi ◦ ϕ−1j : Ui ∩ Uj → Ui ∩ Uj is a
diffeomorphism, thus we have an atlas on Gr(1, n).
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Gr(2, 4)

Let us consider Grassmannian that is not a projective space, Gr(2, 4,R),
parametrizing planes in C4.

Let hom2(C4,C2), denote homomorphisms of maximal rank.

Analogously to homogeneous coordinates on the projective spaces, we
can consider equiv. classes of matrices x ∈ hom2(C4,C2), given by[

x00 x01 x02 x03
x00 x01 x02 x03

]
, (36)

where we identify x , y ∈ hom2(C4,C2), if x = ty for some t ∈ GL(2,C).

Thus we have Gr(2, 4) = GL(2,C)\ hom2(C4,C2).
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Gr(2, 4,R) as a homogeneous space

As in the case of projective space, Gr(2, 4,R) can be described as a
homogeneous space. We can repace GL(2,C)\ hom2(C4,C2) by
Gr(2, 4) = U(2)× U(2)\U(4).

One can also construct open covering Uij ⊂ Gr(2, 4) and family of
diffeomorphisms ϕij : Uij → C4. Sets Uij are defined so that the square
matrix consisting of i-th and j-th collumn must be invertible.

For example, we have

ϕ01

([
1 0 x02 x03
0 1 x02 x03

])
=

(
x02 x03
x02 x03

)
. (37)
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General Gr(k , n,F)

In the same way as above, we can describe all Grassmannians.

We have

Gr(k, n,R) = O(k)× O(n − k)\O(n), (38)

Gr(k, n,C) = U(k)× U(n − k)\U(n), (39)

Gr(k, n,H) = Sp(k)× Sp(n − k)\Sp(n). (40)
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Vector bundles over Grassmannians

Consider submanifold τ in Gr(k , n,C)× Cn, given by set of pairs
x ,V (x), where x ∈ Gr(k , n,C) and V (x) ⊂ Cn is the vector space
cooresponding to x .

Manifold τ possess natural vector bundle structure
over Gr(k, n,C). We will call τ tautological bundle.

Let σ be the quotient bundle (Gr(k, n,C)× Cn)/τ . By definition, bundle
τ ⊕ σ is trivial.

We have TGr(k, n,C) ' hom(τ, σ).
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Plücker embedding

Assume x ∈ Gr(k , n,C) corresponds to V = V (x) ⊂ Cn, spanned by
v1, v2, ..., vk . Then the mapping (v1, v2, ..., vk) 7→ v1 ∧ v2 ∧ ...∧ vk induces
an embedding p : Gr(k , n,C)→ P(∧kCn).

It is, so called, Plücker
embedding, making Gr(k, n,C) into a compact complex algebraic variety.
We will call coordinates p(xij) =: pij Plücker coordinates.

We have (τ → Gr(k , n,C)) = p∗(τ → P(∧kCn)), where
(τ → P(∧kCn)) ' OP(∧kCn)(1). Thus (∧nτ∗ → Gr(k, n,C)), where τ∗

denotes the bundle that is dual to τ .
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The GKZ connection

From the integral representation of Φ it follows that under the action of
g ∈ GL(k,C) on Gr(k, n,C) the formula transforms as follows

Φ(α, gx) = (det g)−1Φ(α, x), (41)

i.e. Φ is SL(k ,C)-automorphic.

Bundle (∧kτ∗ → Gr(k, n,C)) admits a lift (η → hom(Cn,Ck) associated
with the quotient construction. So, we have
∧kτ∗ ' SL(k,C)\homk(Cn,Ck).

Thus Φ can be interpreted as a section of (∧kτ∗ → Gr(k, n,C)). This
means that Φ depends only on the geometrical properties (of the
canonical bundle over) Gr(k, n,C). In this way GKZ system defines the
connection ∇τ on ∧nτ .
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Hypergeometric function on Gr(k , n,C)

There are natural actions of GL(k ,C) and GL(n,C) on hom(Cn,Ck). So
is the action of maximal torus T n ⊂ GL(n,C).

Let α = (α1, ..., αn) ∈ Cn
and α1 + ...+ αn = n − k. Hypergeometric functions on Grassmannian
Gr(k, n) are solutions of the system

k∑
i=1

xir
∂Φ

∂xir
= (αr − 1)Φ, (42)

n∑
i=1

xir
∂Φ

∂xjr
= −δijΦ, (43)

∂2Φ

∂xir∂xjs
=

∂2Φ

∂xis∂xjr
. (44)

Coordinates xir are entries of a matrix x ∈ hom(Cn,Ck). Equations (42)
correspond to action of the torus, while relations (43) give the invariance
under the action of gl(k).
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Hypergeometric function on Gr(k , n)

Solutions Φ = Φ(α, x) depend on variables x ∈ hom(Cn,Ck) and
parameters α ∈ Cn.

Gerlfand, Graev, Kapranov and Zalevinsky studied properties of systems
(42)-(44) in papers:

”Holonomic systems of equations and series of hypergeometric type”,

”Hypergeometric functions and toric varietes”,

”Generalized Euler integrals and A-hypergeometric functions”.
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Multiple ζ function

Definition

The multiple zeta function is defined by the series∑
np>...>n2>n1>0

n−s11 n−s22 ...n−spp := ζ(s1, s2, ..., sp), (45)

whenever (45) converges. Number p is called depth, and
|s| := s1 + s2 + ...+ sp - weight of ζ(s1, s2, ..., sp). Multiple zeta values
(in short MZV), are values of multiple zeta function at integral points.

To simplify nontation, one writes ({s1, ..., sq}n), meaning
(s1, ..., sq, s1, ..., sq, ..., s1, ..., sq), where (s1, ..., sq) is repeated n times.



Multiple ζ function

Definition

The multiple zeta function is defined by the series∑
np>...>n2>n1>0

n−s11 n−s22 ...n−spp := ζ(s1, s2, ..., sp), (45)

whenever (45) converges. Number p is called depth, and
|s| := s1 + s2 + ...+ sp - weight of ζ(s1, s2, ..., sp). Multiple zeta values
(in short MZV), are values of multiple zeta function at integral points.

To simplify nontation, one writes ({s1, ..., sq}n), meaning
(s1, ..., sq, s1, ..., sq, ..., s1, ..., sq), where (s1, ..., sq) is repeated n times.



Multiple ζ values

Multiple zeta values apeared for the first time in Euler’s Meditationes
circa singulare serierum genus (1775), where he found the following
formula relating Multiple Zeta Values to ’single’ ones:∑

n>0

Hn
(n + 1)2

= ζ(2, 1) = ζ(3) =
∑
n>0

1
n3
, (46)

where Hm is the m-th harmonic number.

If p = 1, then multiple zeta function is simply the Riemann zeta function∑
n>0

n−s = ζ(s), (47)

function which is a fundamental object of study in number theory.
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If p = 1, then multiple zeta function is simply the Riemann zeta function∑
n>0

n−s = ζ(s), (47)

function which is a fundamental object of study in number theory.



Relations between multiple zeta values

MZV satisfy a lot of relations. For example

ζ(r)ζ(s) =
∑
m,n>0

m−rn−s

=

( ∑
m>n>0

+
∑
n>m>0

+
∑
m=n>0

)
m−rn−s

= ζ(r , s) + ζ(s, r) + ζ(r + s). (48)

Other nontrivial relations can be obtained from Drinfeld-Kontsevich
integral:

Iε1,...,ε|p|(t) :=

∫
T

dt1
Aε1(t1)

...
dtk

Aε|s|(t|s|)
, (49)

where T = {(t1, t2, ..., t|s|) ∈ Rk : 0 < t1 < ... < t|s| < t < 1},
εi ∈ {0, 1}, A0(x) = x and A1(x) = 1− x . Morover we assume that
ε1 = 1 i ε|s| = 0.
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Generating function and associated differential equation

The Drinfeld-Kontsevich integral can be used to construct Fuchsian
differential equation associaded to generating function of the sequence
ζ({(s1, s2, ..., sp)}n).

We define opertor T as:

T := (1− t)∂t(t∂t)s1−1...(1− t)∂t(t∂t)sp−1. (50)

Holomorphic solution F (t, λ) of the eigenequation

(T + λ|s|)f = 0, (51)

such that F (1, 0) = 1, has the following expansion around t = 1:

F (1, λ) =
∑
n0

(−1)nζ({s1, ..., sp}n)λ|s|n. (52)

In other words, function F (1, λ) is a generating function of the sequence
ζ({s1, ..., sp}n).
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Particular solutions associated to ζ({s}n)

If the depth p is equal to one, then T has the form

T := (1− t)(t∂t)s−1 (53)

and F (1, λ) is the generating function of ζ({s}n).

In that case F is a sum of the series

F (t, λ) =
∑
n0

(µλ)n(µ
2λ)n...(µ

sλ)n
(n!)s

(−t)n, (54)

obtained from differential equation. Here µ denotes the primitive s-th
degree root of unity.

We have

F (t, λ) = sFs−1

(
µλ, µ2λ, ..., µsλ

1, .., 1

∣∣∣∣ t
)
. (55)
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Multiple ζ values

Recently MZV have been extensivelly studied in several different
directions and many interesting results were obtained.

For exmaple, in three papers written together with proffesor Żołądek:

Z. Ż., Linear meromorphic differential equations and multiple zeta-values
I. Zeta (2), Fund. Math. 210 (2010), 207-242.

Z. Ż., Linear meromorphic differential equations and multiple zeta-values
II. Generalization of the WKB method, J. Math. Anal. Appl. 383 (2011),
55-70.

Z. Ż., Linear meromorphic differential equations and multiple zeta-values
I. Zeta (3), J. Math. Phys. 53 (2012), 1-40.

we give new proofs of certain MZV-identities, examining equation (51)
asymptotic methods (WKB series, stationary phase approximation).
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Multivariable polylogarithms

Let q1, q2, ..., qr be linear forms in r variables.

If the series

Liq1,q2,...,qr

(
t1, t2, ..., tr
s1, s2, ..., sr

)
=

∑
ni>0

tn11 tn22 ...t
nr
r

qs11 qs22 ...q
sr
r

(56)

converges, then we will call it multivariable polylogarithm (associated to
q1, q2, ..., qr ).

If r = 1, t1 = t and s1 = s, then it reduces to familiar polylogarithm

Liq1

(
t
s

)
=
∑
ni>0

tn

ns
= Lis(t). (57)
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Multivariable polylogarithms associated to MZV’s

Of particular importance is MPL associated to forms q1 = n1,
q2 = n1 + n2, ..., qr = n1 + ...+ nr .

In this case we have

Liq1,q2,...,qr

(
1, 1, ..., 1

s1, s2, ..., sr

)
=

∑
ni>0

1
ns11 (n1 + n2)s2 ...(n1 + ...+ nr )sr

= ζ(s1, s2, ..., sr ). (58)

We will denote multivariable polylogarithm associated to the above
choice by

Li
(

t1, t2, ..., tr
s1, s2, ..., sr

)
=

∑
ni>0

tn11 tn22 ...t
nr
r

ns11 (n1 + n2)s2 ...(n1 + ...+ nr )sr
. (59)
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Multivariable polylogarithms associated to MZV’s

It is well known, that all classical (one variable) hypergeometric functions
associated to multiple zeta values admit polylogarythmic series
representations. For example if r = 1 and s = 2 (i.e. we deal with
generating function of ζ({2}n)), then

2F1

(
λ,−λ

1

∣∣∣∣ t
)

=
∑
n0

(−1)nλ2nLi{2}n(t) (60)

and (from Gauss formula) we get

2F1

(
λ,−λ

1

∣∣∣∣ 1
)

=
1

Γ (1 + λ)Γ (1− λ)
=
∑
n0

(−1)nλ2nζ({2}n). (61)



Multivariable polylogarithms associated to MZV’s

Unfortunatelly, such formulas are not known for general r > 1.

However if
we consider generating functions from the point of view of multivariable
polylogarithms (and GKZ functions associated to them), then formulas
like the Drinfeld-Kontsevich integral can be used to obtain apropriate
representations of generating functions. To obtain theese formulas one
uses the integral recurence properties of multivariable polylogarithms. For
example

∫ u
0

du
u
· Li
(

u, v
r , s

)
= ·Li

(
u, v

r + 1, s

)
(62)∫ u

0

du
u
· Li
(

u, v
r , s

)
+

∫ v
0

dv
v
· Li
(

u, v
r , s

)
= ·Li

(
u, v

r , s + 1

)
. (63)
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Relations between MZV’s of geometric origin

With use of symmetry properties of GKZ hypergeometric functions
associated to Grassmannians one may find a lot of relations between
multiple zeta values. For example it is possible to obtain Euler’s identity

ζ(3) = ζ(2, 1), (64)

which follows from the geometry of Grassmannians.

Further study may reveal new identities. Furthermore, from Euler-type
integral representations of GKZ functions it may be possible to deliver
analogs of the Gauss identity:

2F1

(
u, v
w

∣∣∣∣ 1
)

=
Γ (w)Γ (w − u − v)

Γ (w − u)Γ (w − v)
(65)

for certain types of GKZ functions. And those could be used to obtain
the generating functions not only for multiple zeta values, but their
generalizations.
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	Introduction
	The classical theory of hypergeometric functions
	Multivariable hypergeometric functions
	GKZ systems

	Grassmannians
	Analytic structure and properties of Grassmannians
	Hypergeometric systems associated to Grassmannians

	Hypergeometric functions and multiple zeta values
	Multiple   functions and multiple   values
	Multivariable polylogarithms and GKZ systems


