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In science one tries to tell people, in such a way as to be
understood by everyone, something that no one ever knew
before. But in the case of poetry, it’s the exact opposite!

P.A.M. Dirac
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Why the interest?

‘Categorified’ objects in the category of Lie groupoids and Lie algebroids

◮ Mackenzie’s ‘double structures’, for example double Lie
groupoids and double Lie algebroids etc, all related to Poisson
geometry.

◮ VB-groupoids generalise linear representations of Lie
groupoids. (see for example Gracia-Saz & Mehta 2010)
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Manifold F , homogeneous coordinates (yaw ), where w = 0, 1, · · · , k
Associated with a smooth action

h : R≥0 × F → F ,

of the multiplicative monoid (R≥0, ·)
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A function is homogeneous of order q if

ht(f ) = tqf ,

for all t > 0.

Only non-negative integer weights are allowed.
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The action reduced to R>0 is the one-parameter group of
diffeomorphisms integrating the weight vector field

Weight vector field is h-complete.

The action can be canonically extended to h : R× F → F and we
shall call this extended action a homogeneity structure.
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Fundamental result: Any smooth action of (R, ·) leads to a
graded bundle.

For t 6= 0, ht is a diffeomorphism and when t = 0 it is a smooth
surjection τ = h0 onto F0 = M, the fibres being R

N .

Get a series of ‘affine fibrations’

F = Fk → Fk−1 → · · · → F1 → F0 = M

A point of Fl is a class of points in F described by coordinates of
weight ≤ l .

Grabowski & Rotkiewicz 2012
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Weighted Lie algebroids

Recall: Lie algebroid (E → M, [, ], ρ) ! Q-manifold (ΠE ,Q)
where Q is of weight one.

Definition
A weighted Lie algebroid of degree k is a Lie algebroid (ΠE ,Q)
equipped with a homogeneity structure of degree k − 1 such that

Πĥt : ΠE → ΠE

is a Lie algebroid morphism for all t ∈ R. That is

Q ◦ (Πĥt)
∗ = (Πĥt)

∗ ◦Q.
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Examples

◮ VB-algebroids are weighted Lie algebroids of degree 1.
Bursztyn + Cabrera + de Hoyo (2014)

◮ The tangent bundle of a graded bundle.

◮ Higher order tangent bundles of a Lie algebroid.



Question: What are the global objects that ‘integrate’ weighted Lie
algebroids?



Question: What are the global objects that ‘integrate’ weighted Lie
algebroids?

On to Lie groupoids...



Weighted Lie groupoids



Weighted Lie groupoids

Definition
A weighted Lie groupoid of degree k is a Lie groupoid Γk ⇒ Bk ,
together with a homogeneity structure h : R× Γk → Γk of degree
k , such that ht is a Lie groupoid morphism for all t ∈ R.
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Unravel:

◮ Bk is a graded bundle of degree k .

◮ Let ht = (ht , gt)

Γk
ht

✲ Γk

Bk

s
❄

t
❄

gt
✲ Bk

s
❄

t
❄

s ◦ ht = gt ◦ s, and t ◦ ht = gt ◦ t

ht(g ◦ h) = ht(g) ◦ ht(h)
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Examples

◮ If G ⇒ M is Lie groupoid the TkG ⇒ TkM is a weighted Lie
groupoid of degree k

◮ VB-groupoids = degree 1 weighted Lie groupoids
Bursztyn + Cabrera + de Hoyo (2014)
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Theorem
If Γk ⇒ Bk is a weighted Lie groupoid of degree k, then we have
the following tower of weighted groupoid structures of lower order:

Γk
τk

✲ Γk−1

τk−1
✲ · · ·

τ2
✲ Γ1

τ1
✲ G

Bk

sk
❄

tk
❄

πk
✲ Bk−1

sk−1
❄

tk−1
❄

πk−1
✲ · · ·

π2
✲ B1

s1
❄

t1
❄

π1
✲ M

σ
❄

τ
❄

In particular, Γ1 ⇒ B1 is a VB-groupoid.
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Weighted Lie theory

Theorem
If Γk ⇒ Bk is a weighted Lie groupoid of degree k with respect to
a homogeneity structure h on Γk , then A(Γk) → Bk is a weighted
Lie algebroid of degree k + 1 with respect to the homogeneity
structure ĥ defined by

ĥt = (ht)
′ = Lie(ht) ∗

Theorem
Let Ek+1 → Bk be a weighted Lie algebroid of degree k + 1 with
respect to a homogeneity structure ĥ and Γk its (source
simply-connected) integration groupoid. Then Γk is a weighted Lie
groupoid of degree k with respect to the homogeneity structure h
uniquely determined by ∗.
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Closing remarks

◮ Compatible grading → morphisms in the appropriate category

◮ Weighted Poisson–Lie groupoids, weighted Lie bi-algebroids
and weighted Courant algebroids

◮ Expect further links with physics
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