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Abstract

The classical result of Lie on integrability by quadratures will be reviewed and some
generalizations will be proposed. After a short review of the classical Lie theorem,
a finite dimensional Lie algebra of vector fields is considered and the most general
conditions under which the integral curves of one of the fields can be obtained by
quadratures in a prescribed way will be discussed, determining also the number of
quadratures needed to integrate the system. The theory will be illustrated with
examples and an extension of the theorem where the Lie algebras are replaced by
some distributions will also be presented.
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Motivation

I know Janusz for more than 20 years: summer of 1993 at El Escorial (Spain) during
the meeting

“Advanced Topics in Classical and Quantum Systems".

After some years of meetings in different countries we started our collaboration

We have had a nice and fruitful collaboration both in Poland and in Spain, with other
colleagues, mainly focused on:

A) Geometrical properties of differential equations (Lie systems and generalizations)

B) Deformation of algebraic structures and its physical applications

C) Integrability

Nowadays we are not only scientific collaborators but also very good friends
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The meaning of Integrability

An autonomous system of first-order differential equations,

ẋi = f i(x1, . . . , xN ) , i = 1, . . . , N,

is geometrically interpreted in terms of a vector field Γ in a N -dimensional manifold
M with a local coordinate expression

Γ = f i(x1, . . . , xN )
∂

∂xi
.

The integral curves of Γ are the solutions of the given system.

Integrate the system means to determine the general solution of the system.

More specifically, integrability by quadratures means that you can determine the
solutions (i.e. the flow of Γ) by means of a finite number of algebraic operations and
quadratures of some functions.
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The two main techniques in the process of solving the system:

��� Determination of constants of motion

Constants of motion provide us foliations such that Γ is tangent to the leaves,
and reducing in this way the problem to a family of lower dimensional problems,
one on each leaf

��� Search for symmetries of the vector field

The knowledge of infinitesimal groups of symmetries of the vector field (i.e. of
the system of differential equations), suggests us to use adapted local coordi-
nates, the system decoupling then into lower dimensional subsystems.

More specifically, the knowledge of r functionally independent (i.e. such that dF1 ∧
· · · ∧ dFr 6= 0) constants of motion F1, . . . , Fr, allows us to reduce the problem to
that of a family of vector fields Γ̃c defined in the N − r dimensional submanifolds
Mc given by the level sets of the vector function of rank r, (F1, . . . , Fr) : M → Rr.

Of course the best situation is when r = N − 1: the leaves are one-dimensional,
giving us the solutions to the problem, up to a reparametrization.
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There is another way of reducing the problem. Given an infinitesimal symmetry (i.e.
a vector field X such that [X,Γ] = 0), in a neighbourhood of a point where X is
different form zero we can choose adapted coordinates, (y1, . . . , yN ), for which X is
written (Straightening out Theorem)

X =
∂

∂yN
.

Then [X,Γ] = 0 implies that Γ has the form

Γ = f̄1(y1, . . . , yN−1)
∂

∂y1
+. . .+f̄N−1(y1, . . . , yN−1)

∂

∂yN−1
+f̄N (y1, . . . , yN−1)

∂

∂yN
,

and its integral curves are obtained by solving the system
dyi

dt
= f̄ i(y1, . . . , yN−1) , i = 1, . . . , N − 1

dyN

dt
= f̄N (y1, . . . , yN−1).

We have reduced the problem to a subsystem involving only the first N−1 equations,
and and once this has been solved, the last equation is used to obtain the function
yN (t) by means of one quadrature.

12



Note that the new coordinates y1, . . . , yN−1, are constants of the motion for X and
therefore we cannot easily find such coordinates in a general case.

Moreover, the information provided by two different symmetry vector fields cannot
be used simultaneously in the general case, because it is not possible to find local
coordinates (y1, . . . , yN ) such that

X1 =
∂

∂yN−1
, X2 =

∂

∂yN
,

unless that [X1, X2] = 0.

In terms of adapted coordinates for Γ the integration is immediate, the solution being

yk(t) = yk0 , k = 1, . . . , N − 1, yN (t) = yN (0) + t.

This proves that the concept of integrability by quadratures depends on the choice
of initial coordinates.

However, it will be proved that when Γ is part of a family of vector fields satisfying
appropriate conditions, then it is integrable by quadratures for any choice of initial
coordinates

13



Both, constants of motion and infinitesimal symmetries, can be used simultaneously
if some compatibility conditions are satisfied.

We can say that a system admitting r < N−1 functionally independent constants of
motion, F1, . . . , Fr, is integrable when we know furthermore s commuting infinitesi-
mal symmetries X1, . . . , Xs, with r + s = N such that

[Xa, Xb] = 0, a, b = 1, . . . , s, and XaFα = 0, ∀a = 1, . . . , s, α = 1, . . . r.

The constants of motion determine a s-dimensional foliation (with s = N − r) and
the former condition means that the restriction of the s vector fields Xa to the leaves
are tangent to such leaves.

Sometimes we have additional geometric structures that are compatible with the
dynamics. For instance, a symplectic structure ω on a 2n-dimensional manifold M .

Such 2-form relates, by contraction, in a one-to-one way vector fields and 1-forms.

Vector fields XF associated with exact 1-forms dF are said to be Hamiltonian vector
fields.
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Compatible means that the dynamical vector field itself is a Hamiltonian v.f. XH .

Particularly interesting is Arnold–Liouville definition of (Abelian) complete integra-
bility (r = s = n). The vector fields are Xa = XFa and, for instance, F1 = H.

The regular Poisson bracket defined by ω (i.e. {F1, F2} = XF2
F1), allows us to

express the above tangency conditions as

XFb
Fa = {Fa, Fb} = 0,

– i.e. the n functions are constants of motion in involution and the corresponding
Hamiltonian vector fields commute.

Our aim is to study integrability in absence of additional compatible structures, the
main tool being properties of Lie algebras containing the given vector field, very much
in the approach started by Lie.

The problem of integrability by quadratures depends on the determination by quadra-
tures of the necessary first-integrals and on finding adapted coordinates, or, in another
words, in finding a sufficient number of invariant tensors.
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The set XΓ(M) of strict infinitesimal symmetries of Γ ∈ X(M) is a linear space:

XΓ(M) = {X ∈ X(M) | [X,Γ] = 0} .

The flow of a vector field X ∈ XΓ(M) preserves the set of integral curves of Γ.

The set of vector fields generating flows preserving the set of integral curves of Γ up
to a reparametrization is a real linear space containing XΓ(M) and will be denoted

XΓ(M) = {X ∈ X(M) | [X,Γ] = fX Γ} , fX ∈ C∞(M).

Vector fields in XΓ(M) preserve the one-dimensional distribution generated by Γ.

One chan check that:

��� XΓ(M) is a real Lie algebra

��� XΓ(M) is a subalgebra of XΓ(M).

However XΓ(M) is not an ideal in XΓ(M).
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Lie theorem of integrability by quadratures

The first important result is due to Lie who established the following theorem:

Theorem: If n vector fields X1,. . . ,Xn, which are linearly independent in each
point of an open set U ⊂ Rn, generate a solvable Lie algebra and are such that
[X1, Xi] = λiX1 with λi ∈ R, then the differential equation ẋ = X1(x) is solvable
by quadratures in U .

Consider first the simplest case n = 2.

The differential equation can be integrated if we are able to find a first integral F
(i.e. X1F = 0), such that dF 6= 0 in U . The straightening out theorem says that
such a function F locally exists.

Such a function F implicitly defines one variable, for instance x2, in terms of the
other one by F (x1, φ(x1)) = k.
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If X1 and X2 are such that [X1, X2] = λ2X1, and α0 is a 1-form, defined up to
multiplication by a function, such that i(X1)α0 = 0, as X2 is linear independent of
X1 at each point, i(X2)α0 6= 0, and we can see that the 1-form α = (i(X2)α0)−1α0

is such that i(X1)α = 0 and satisfies the condition i(X2)α = 1. Such 1-form α is
closed, because X1 and X2 generate X(R2) and

dα(X1, X2) = X1α(X2)−X2α(X1) +α([X1, X2]) = α([X1, X2]) = λ2 α(X1) = 0.

Therefore, there exists, at least locally, a function F such that α = dF , and it is
given by

F (x1, x2) =

∫
γ

α,

where γ is any curve with end in the point (x1, x2), is the function we were looking
for, because dF = α and then

i(X1)α = 0⇐⇒ X1F = 0, i(X2)α = 1⇐⇒ X2F = 1.
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Recalling some basic concepts of cohomology

Let be g a Lie algebra and a a g-module: a is a linear space that is the carrier space
for a linear representation Ψ of g, Ψ: g→ End a – i.e. satisfying

Ψ(a)Ψ(b)−Ψ(b)Ψ(a) = Ψ([a, b]), ∀a, b ∈ g.

By a k-cochain we mean a k-linear alternating map α : g× · · · × g→ a.

Ck(g, a) denotes the linear space of k-cochains.

For every k ∈ N we define δk : Ck(g, a)→ Ck+1(g, a) by

(δkα)(a1, . . . , ak+1) =

k+1∑
i=1

(−1)i+1Ψ(ai)α(a1, . . . , âi, . . . , ak+1)+

+
∑
i<j

(−1)i+jα([ai, aj ], a1, . . . , âi, . . . , âj , . . . , ak+1),

where âi denotes, as usual, that the element ai is omitted.

The linear maps δk can be shown to satisfy δk+1 ◦ δk = 0.
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The linear operator δ on C(g, a) =
⊕∞

n=0 C
k(g, a) whose restriction to each Ck(g, a)

is δk, satisfies δ2 = 0. We will then denote

Bk(g, a) = {α ∈ Ck(g, a) | ∃β ∈ Ck−1(g, a) such that α = δβ} = Image δk−1,

Zk(g, a) = {α ∈ Ck(g, a) :| δα = 0} = ker δk.

The elements of Zk(g, a) are called k-cocycles, and those of Bk(g, a) are called
k-coboundaries.

Since δ2 = 0, we see Bk(g, a) ⊂ Zk(g, a). The k-th cohomology group Hk(g, a) is

Hk(g, a) :=
Zk(g, a)

Bk(g, a)
,

and we will define B0(g, a) = 0, by convention.

An interesting example: g = a finite-dimensional Lie subalgebra of X(M), a =∧p
(M), and the action given by Ψ(X)ζ = LXζ.

The case p = 0, has been used, for instance, in the study of weakly invariant differ-
ential equations as shown in a paper with M.A. del Olmo and P. Winternitz, Lett.
Math. Phys. 29, 151 (1993). The cases p = 1, 2, are also interesting in mechanics.
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Coming back to the particular case p = 0, a =
∧0

(M) = C∞(M), g = X(M), the
elements of Z1(g,

∧0
(M)) are linear maps h : g→ C∞(M) satisfying

(δ1h)(X,Y ) = LXh(Y )− LY h(X)− h([X,Y ]) = 0 , X, Y ∈ X(M),

and those of B1(g, C∞(M)) are those h for which ∃g ∈ C∞(M) with

h(X) = LXg .

Lemma Let {X1, . . . , Xn} be a set of n vector fields whose values are linearly
independent at each point of an n-dimensional manifold M . Then:

1) The necessary and sufficient condition for the system of equations for f ∈
C∞(M)

Xif = hi, hi ∈ C∞(M), i = 1, . . . , n,

to have a solution is that the 1-form α ∈
∧1

(M) such that α(Xi) = hi be an
exact 1-form.

2) If the previous n vector fields generate a n-dimensional real Lie algebra g

(i.e. there exist real numbers cij k such that [Xi, Xj ] = cij
kXk), then the neces-

sary condition for the system of equations to have a solution is that the R-linear
function h : g→ C∞(M) defined by h(Xi) = hi is a cochain that is a cocycle.
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Proof.- 1) If i, j, if Xif = hi and Xjf = hj , then, as ∃fij k ∈ C∞(M) such that
[Xi, Xj ] = fij

kXk,

Xi(Xjf)−Xj(Xif) = [Xi, Xj ]f = fij
kXkf =⇒ Xi(hj)−Xj(hi)− fij k hk = 0,

and as α(Xi) = hi, we obtain that

dα(Xi, Xj) = Xiα(Xj)−Xjα(Xi)− α([Xi, Xj ]) = Xi(hj)−Xj(hi)− fij k hk.

Consequently, a necessary condition for the existence of the solution of the system is
that α be closed.

2) Consider a = C∞(M) and the cochain determined by the linear map h. Now the
necessary condition for the existence of the solution is written as:

Xi(hj)−Xj(hi)− cij k hk = (δ1h)(Xi, Xj) = 0.

The is just the 1-cocycle condition.

22



Most properties of differential equations are of a local character: closed forms are
locally exact and we can restrict ourselves to appropriate open subsets U of M , i.e.
open submanifolds, where the closed 1-form is exact, .

Then if α is closed, it is locally exact, α = df in a certain open U , f ∈ C∞(U), and
the solution of the system can be found by one quadrature: the solution function f
is given by the quadrature

f(x) =

∫
γx

α,

where γx is any path joining some reference point x0 ∈ U with x ∈ U .

We also remark that α is exact, α = df , if and only if α(Xi) = df(Xi) = Xif = hi,
i.e. h is a coboundary, h = δf .

In the particular case of the appearing functions hi being constant the condition for
the existence of local solution reduces to α([X,Y ]) = 0, for each pair of elements,
X and Y in g, i.e. α vanishes on the derived Lie algebra g′ = [g, g]. In particular
when g is Abelian there is not any condition
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A generalization of Lie theory of integration

Consider a family of n vector fields, X1, . . . , Xn, defined on a n-dimensional manifold
M and assume that they close a Lie algebra L over the real numbers

[Xi, Xj ] = cij
kXk , i, j, k = 1, . . . , n,

and that in addition they span a basis of TxM at every point x ∈ M . We pick up
an element in the family, X1, the dynamical vector field.

To emphasize its special rôle we will often denote it by Γ ≡ X1.

Our goal, is to obtain the integral curves Φt : M →M of Γ

(Γf)(Φt(x)) =
d

dt
f(Φt(x)), ∀f ∈ C∞(x),

using quadratures (operations of integration, elimination and partial differentiation).

The number of quadratures is given by the number of integrals of known functions
depending on a finite number of parameters, that are performed.
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Γ plays a distinguished and important rôle since it represents the dynamics to be
integrated.

Our approach is concerned with the construction of a sequence of nested Lie subal-
gebras LΓ,k of the Lie algebra L, and it will be essential that Γ belongs to all the
subalgebras. This construction will be carried out in several steps.

The first one will be to reduce, by one quadrature, the original problem to a similar
one but with a Lie subalgebra LΓ,1 of the Lie algebra L (with Γ ∈ LΓ,1) whose
elements span at every point the tangent space of the leaves of a certain foliation.

If iterating the procedure we end up with an Abelian Lie algebra we can, with one
more quadrature, obtain the flow of the dynamical vector field.

We determine the foliation through a family of functions that are constant on the
leaves. We first consider the ideal

LΓ,1 = 〈Γ〉+ [L,L] , dimLΓ,1 = n1,

that, in order to make the notation simpler, we will assume to be generated by the
first n1 vector fields of the family (i.e. LΓ,1 = 〈Γ, X2, . . . , Xn1

〉). This can be always
achieved by choosing appropriately the basis of L.
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Now take ζ1 ∈ L0
Γ,1 = annihilator of LΓ,1 = {elements in L∗ killing vectors of LΓ,1}

and define the 1-form αζ1 on M by its action on the vector fields in L:

αζ1(X) = ζ1(X), for X ∈ L.

As αζ1(X) is a constant function on M , for any vector field in L, we have

dαζ1(X,Y ) = αζ1([X,Y ]) = ζ1([X,Y ]) = 0, for X,Y ∈ L, ζ1 ∈ L0
Γ,1.

Therefore the 1-form αζ1 is closed and by application of the result of the lemma the
system of partial differential equations

XiQζ1 = αζ1(Xi), i = 1, . . . , n, Qζ1 ∈ C∞(M),

has a unique (up to the addition of a constant) local solution which can be obtained
by one quadrature.

If we fixe the same reference point x0 for any ζ1, αζ1 depends linearly on ζ1 and, if
γx is independent of ζ1, we have that the correspondence

L0
Γ,1 3 ζ1 7→ Qζ1 ∈ C∞(M),

defines an injective linear map.
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The system expresses that the vector fields in LΓ,1 (including Γ) are tangent to

N
[Y1]
1 = {x | Qζ1(x) = ζ1(Y1), ζ1 ∈ L0

Γ,1} ⊂M

for any [Y1] ∈ L/LΓ,1. Locally, for an open neigbourhood U , the N [Y1]
1 ’s define a

smooth foliation of n1-dimensional leaves.

Now, we repeat the previous procedure by taking LΓ,1 as the Lie algebra and any
leaf N [Y1]

1 as the manifold. The new subalgebra LΓ,2 ⊂ LΓ,1 is defined by

LΓ,2 = 〈Γ〉+ [LΓ,1, LΓ,1] , dimLΓ,2 = n2 ,

and taking ζ2 ∈ L0
Γ,2 ⊂ L∗Γ,1 (the annihilator of LΓ,2), we arrive at a new system of

partial differential equations

XiQ
[Y1]
ζ2

= ζ2(Xi), i = 1, . . . , n1, Q
[Y1]
ζ2
∈ C∞(N

[Y1]
1 ) ,

that can be solved with one quadrature and such Q[Y1]
ζ2

depends linearly on ζ2.
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It will be useful to extend Q[Y1]
ζ2

to U . We first introduce the map

U 3 x 7→ [Y
x

1 ] ∈ LΓ,0/LΓ,1

where x and [Y
x

1 ] are related by the equation Qζ1(x) = ζ1(Y
x

1 ), that correctly
determines the map. Now, we define Qζ2 ∈ C∞(U) by

Qζ2(x) = Q
[Y

x

1 ]
ζ2

(x).

Note that by construction x ∈ N [Y
x

1 ]
1 and, therefore the definition makes sense.

The resulting function Qζ2(x) is smooth provided the reference point of the lemma
changes smoothly from leave to leave.

The construction is then iterated by defining

N
[Y1][Y2]
2 = {x | Qζ1(x) = ζ1(Y1), Qζ2(x) = ζ2(Y2), with ζ1 ∈ L0

Γ,1, ζ2 ∈ L0
Γ,2} ⊂M,

for [Y1] ∈ LΓ,0/LΓ,1 and [Y2] ∈ LΓ,1/LΓ,2. Note that LΓ,2 generates at every point
the tangent space of N [Y1][Y2]

2 , therefore we can proceed as before.

The algorithm ends if after some steps, say k, the Lie algebra LΓ,k = 〈X1, . . . , Xnk
〉,

whose vector fields are tangent to the nk-dimensional leaf N [Y1],...,[Yk]
k , is Abelian.
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In this moment the system of equations

XiQ
[Y1],...,[Yk]
ζk

= ζk(Xi), i = 1, . . . , nk−1, Q
[Y1],...,[Yk]
ζk

∈ C∞(N
[Y1],...,[Yk]
k ),

can be solved locally by one more quadrature for any ζk ∈ L∗Γ,k.

Remark that, as the Lie algebra LΓ,k is Abelian, the integrability condition is always
satisfied and we can take ζk in the whole of L∗Γ,k instead of L0

Γ,k. then, as before,
we extend the solutions to U and call them Qζk .

With all these ingredients we can find the flow of Γ by performing only algebraic
operations. In fact, consider the formal direct sum

Ξ = L0
Γ,1 ⊕ L0

Γ,2 ⊕ · · · ⊕ L0
Γ,k ⊕ L∗Γ,k

that, as one can check, has dimension n.

The linear maps L0
Γ,i 3 ζi 7→ Qζi ∈ C∞(U) can be extended to Ξ so that to any

ξ ∈ Ξ we assign a Qξ ∈ C∞(U). Now consider a basis

{ξ1, . . . , ξn} ⊂ Ξ.

The associated functions Qξj , j = 1, . . . , n are independent and satisfy

ΓQξj (x) = ξj(Γ) , j = 1, 2, . . . , n,

29



where it should be noticed that as Γ ∈ LΓ,l for any l = 0, . . . , k, the right hand side
is well defined, and we see from here that in the coordinates given by the Qξj ’s the
vector field Γ has constant components and, then, it is trivially integrated

Qξj (Φt(x)) = Qξj (x) + ξj(Γ)t.

Now, with algebraic operations, one can derive the flow Φt(x). Altogether we have
performed k + 1 quadratures.
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Algebraic properties

The previous procedure works if it reaches an end point (i.e. if there is a smallest
non negative integer k such that

LΓ,k = 〈Γ〉+ [LΓ,k−1, LΓ,k−1] for k > 0 , LΓ,0 = L,

is an Abelian algebra). In that case we will say that (M,L,Γ) is Lie integrable of
order k + 1.

The content of the previous section can, thus, be summarized in the following

Theorem: If (M,L,Γ) is Lie integrable of order r, then the integral curves of Γ

can be obtained by r quadratures.

We will discuss below some necessary and sufficient conditions for the Lie integrability.
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Proposition: If (M,L,Γ) is Lie integrable then L is solvable.

Proof.- Let L(i) be the elements of the derived series, L(i+1) = [L(i), L(i)], L(0) = L,
(note that L(i) = L0,i). Then,

L(i) ⊂ LΓ,i,

and if the system is Lie integrable (i.e. LΓ,k is Abelian for some k), then we have
L(k+1) = 0 and, therefore, L is solvable.

Proposition: If L is solvable and A is an Abelian ideal of L, then (M,L,Γ) is Lie
integrable for any Γ ∈ A.

Proof.- Using that A is an ideal containing Γ, we can show that

A+ LΓ,i = A+ L(i).

We proceed again by induction; if the previous holds, then

A+ LΓ,i+1 = A+ [LΓ,i, LΓ,i] = A+ [A+ LΓ,i, A+ LΓ,i] =
= A+ [A+ L(i), A+ L(i)] = A+ L(i+1).

Now L is solvable if some L(k) = 0 and therefore LΓ,k ⊂ A, i.e. it is Abelian and
henceforth the system is Lie integrable.
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Note that the particular case in which A = 〈Γ〉 corresponds to the standard Lie
theorem.

Nilpotent algebras of vector fields also play an interesting role in the integrability of
vector fields.

Proposition: If L is nilpotent, (M,L,Γ) is Lie integrable for any Γ ∈ L.

Proof.- Let us consider now the central series L(i+1) = [L,L(i)] with L(0) = L.

L nilpotent means that there is a k such that L(k) = 0. Now, by induction, it is easy
to see that LΓ,i ⊂ 〈Γ〉+ L(i) and therefore LΓ,k = 〈Γ〉. Then, LΓ,k is Abelian and
the system is Lie integrable.

From the previous propositions, we can derive the following,

Corollary 1 Let (M,L,Γ) be Lie integrable of order r, then:

(a) If rs is the minimum positive integer such that L(rs) = 0, then r ≥ rs.

(b) If L is nilpotent rn is the smallest natural number such that L(rn) = 0, r ≤ rn.
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An interesting example

We now analyze the particular case of a recently studied superintegrable system.

The system is Hamiltonian, that is, the dynamical vector field Γ = XH is obtained
from a Hamitonian function H by making use of a sympletic structure ω0 defined in
a cotangent bundle T ∗Q.

We are now interested in considering this system just as a dynamical system (without
mentioning the existence of a sympletic structure) and focusing our attention on the
Lie structure of the symmetries.

The dynamics is given by the following vector field X1 defined in M = R2×R2 with
coordinates (x, y, px, py)

X1 = px
∂

∂x
+ py

∂

∂y
− k2

y2/3

∂

∂px
+

2

3

k2 x+ k3

y5/3

∂

∂py
,

where k2 and k3 are arbitrary constants.
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Now we denote by Xi, i = 2, 3, 4 the following vector fields

X2 =

(
6 p2

x + 3 p2
y + k2

6x

y2/3
+ k3

6

y2/3

)
∂

∂x
+ (6 pxpy + 9 k2y

1/3)
∂

∂y

− k2
6

y2/3
px

∂

∂px
+

(
4k2

x

y5/3
− 3

1

y2/3
py

)
∂

∂py
,

X3 =

(
4 p3

x + 4 pxp
2
y +

8(k2x+ k3)

y2/3
px + 12k2 y

1/3 py

)
∂

∂x

+
(
4p2
x py + 12k2 y

1/3 px
) ∂
∂y
− 4k2

1

y2/3
p2
x

∂

∂px

+

(
8

3

k2x+ k3

y5/3
p2
x − 4k2

1

y2/3
pxpy − 12 k2

2

1

y1/3

)
∂

∂py
,

and

X4 =

(
6p5
x + 12 p3

xp
2
y + 24

k3 + k2x

y2/3
p3
x + 108 k2y

1/3p2
xpy + 324 k2

2y
2/3px

)
∂

∂x

+
(

6 p4
xpy + 36 k2y

1/3p3
x

) ∂

∂y
− 6

(
k2

y2/3
p4
x − 972k3

2

)
∂

∂px

+

(
4
k3 + k2x

y5/3
p4
x − 12

k2

y2/3
− 108 k2

2

1

y1/3
p2
x

)
∂

∂py
.
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Then we have

(i) The three vector field Xi Lie commute with X1 = Γ

[X1, Xi] = 0 , i = 2, 3, 4.

(ii) The Lie brackets of the Xi between themselves are given by

[X2, X3] = 0 , [X2, X4] = 1944 k3
2 Γ , [X3, X4] = 432 k3

2 X2 .

Therefore, we have the following situation: .

First, Γ and the three vector fields X2, X3, X4 generate a four-dimensional real Lie
algebra L.

Second, the derived algebra L(1) ⊂ L is two-dimensional and it is generated by X1

and X2, i.e. L(1) is Abelian.

Finally, the second derived algebra L(2) reduces to the trivial algebra, that is, L(2) =

[L(1), L(1)] = {0}.
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Therefore the Lie algebra L is solvable with rs = 2. However, L(2) = [L,L(1)] is
not trivial but L(1) is the one-dimensional ideal ideal in L generated by X1, and this
implies that the Lie algebra is nilpotent with rn = 3.

(M,L,Γ) is Lie integrable for any Γ ∈ L, but the order of the system depends on
the choice of the dynamical field:

a) (M,L,Γ) is Lie integrable of order 2 (the minimum possible value) for Γ = Xi, i =

1, 2, 3 or any combination of them

b) (M,L,Γ) is Lie integrable of order 3 (the maximum according to the corollary for
Γ = X4 (or any combination in which the coefficient of X4 does not vanish).
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