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Multisymplectic geometry is the natural arena to develop Classical
Field Theories of first order.

A multisymplectic manifold is a natural extension of symplectic
manifolds: the canonical models for multisymplectic structures are
the bundles of forms on a manifold in the same vein that cotangent
bundles (1-forms) provide the canonical models for symplectic
manifolds.

One can exploit this parallelism between Classical Mechanics and
Classical Field Theories.

In fact, instead of a configuration manifold, we have now a
configuration bundle π : E −→ M such that its sections are the fields
(the manifold M represents the space-time manifold).
An important difference with the case of mechanics is that now we
are dealing with partial differential equations. In any case, the
solutions in both sides are interpreted as integral sections of
Ehresmann connections.
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The Lagrangian density depends on the space-time coordinates, the
fields and its derivatives, so it is very natural to take the manifold of
1-jets of sections of π, J1π, as the generalization of the tangent
bundle in Classical Mechanics.

Then a Lagrangian density is a fibered mapping L : J1π −→ Λm+1M
(we are assuming that dimM = m + 1). From the Lagrangian
density one can construct the Poincaré-Cartan form which gives the
evolution of the system.
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On the other hand, the spaces of 1- and 2-horizontal m + 1-forms on
E with respect to the projection π, denoted respectively by Λm+1

1 E
and Λm+1

2 E , are the arena where the Hamiltonian picture of the
theory is developed. To be more precise, the phase space is just the
quotient

Moπ = Λm+1
2 E/Λm+1

1 E

and the Hamiltonian density is a section of Λm+1
2 E −→Moπ (the

Hamiltonian function H appears when a volume form η on M is
chosen, such that H = H η. The Hamiltonian section H permits just
to pull-back the canonical multisymplectic form of Λm+1

2 E to a
multisymplectic form on Moπ.

Both descriptions are related by the Legendre transform which send
solutions of the Euler-Lagrange equations into solutions of the
Hamilton equations.
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The Hamilton-Jacobi problem for a Hamiltonian classical field theory
given by a Hamiltonian H consists in finding a family of functions
S i = S i (x i , ua) such that

∂S i

∂x i
+ H(x i , ua,

∂S i

∂ua
) = f (x i ) (1)

for some function f (x i ); (x i , ua) are bundle coordinates in E .

We shall develop a geometric Hamilton-Jacobi theory in the context
of multisymplectic manifolds.
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There is an alternative way to study Classical Field Theories, in an
infinite dimensional setting. The idea is to split the space-time
manifold M in the space an time pieces. To do this, we need to take
a Cauchy surface, that is, an m-dimensional submanifold N of M
such that (at least locally) we have M = R× N. So, the space of
embeddings from N to Moπ is known as the Cauchy space of data
for a particular choice of a Cauchy surface. This allows us to
integrate the multisymplectic form on Moπ to the Cauchy data
space and obtain a presymplectic infinite dimensional system, whose
dynamics is related to the de Donder-Hamilton equations for H.

The aim of the paper is to show how we can “integrate” a solution
of the Hamilton-Jacobi problem for H in order to get a solution for
the Hamilton-Jacobi problem for the infinite-dimensional
presymplectic system.
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A multisymplectic point of view of Classical Field Theory

We begin by briefly introducing the multisymplectic approach to Classical
Field Theory: the Lagrangian setting and its Hamiltonian counterpart.
The theory is set in a configuration fiber bundle, E → M, whose sections
represent the fields.

From a Lagrangian density defined on the first jet bundle of the fibration
π, say L : J1π → Λm+1M, we derive the Euler-Lagrange equations.

On the Hamiltonian side, we start with a Hamiltonian density
H : J1π† → Λm+1M to obtain Hamilton’s equations.
Here, J1π† is the dual jet bundle, the field theoretic analogue of the
cotangent bundle.
The relation among these two settings is given, under proper regularity,
by the Legendre transform.
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From now on, π : E → M will always denote a fiber bundle of rank n over
an (m + 1)–dimensional manifold, i.e. dimM = m + 1 and
dimE = m + 1 + n.

Fibered coordinates on E will be denoted by (x i , uα), 0 ≤ i ≤ m,
1 ≤ α ≤ n; where (x i ) are local coordinates on M.

The shorthand notation dm+1x = dx0 ∧ . . . ∧ dxm will represent the local
volume form that (x i ) defines and we will also use the notation
dmxi = i ∂

∂xi
dx0 ∧ dx1 ∧ . . . ∧ dxm for the contraction with the coordinate

vector fields.
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Many bundles will be considered over M and E , but all of them vectorial
or affine. For these bundles, we will only consider natural coordinates. In
general, indexes denoted with lower case Latin letters (resp. Greek
letters) will range between 0 and m (resp. 1 and n). The Einstein sum
convention on repeated crossed indexes is always understood.

Furthermore, we assume M to be orientable with fixed orientation,
together with a determined volume form η. Its pullback to any bundle
over M will still be denoted η, as for instance π∗η.

In addition, local coordinates on M will be chosen compatible with η,
which means such that η = dm+1x .
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Multisymplectic structures We begin reviewing the basic notions of
multisymplectic geometry and presenting some examples.

Definition

Let V denote a finite dimensional real vector space. A (k + 1)–form Ω on
V is said to be multisymplectic if it is non-degenerate, i.e., if the linear
map

[Ω : V −→ ΛkV ∗

v 7−→ [Ω(v) := ivΩ

is injective. In such a case, the pair (V ,Ω) is said to be a
multisymplectic vector space of order k + 1.

Definition

A multisymplectic structure of order k + 1 on a manifold P is a closed
(k + 1)–form Ω on P such that (TxP,Ω(x)) is multisymplectic for each
x ∈ P. The pair (P,Ω) is called a multisymplectic manifold of order
k + 1.
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Examples
The canonical example of a multisymplectic manifold is the bundle of
forms over a manifold N, that is, the manifold P = ΛkN.
Let N be a smooth manifold of dimension n, ΛkN be the bundle of
k–forms on N and ν : ΛkN → N be the canonical projection (1 ≤ k ≤ n).
The Liouville form of order k is the k–form Θ over ΛkN given by

Θ(ω)(X1, . . . ,Xk) := ω((Tων)(X1), . . . , (Tων)(Xk)),

for any ω ∈ ΛkN and any X1, . . . ,Xk ∈ Tω(ΛkN). Then, the canonical
multisymplectic (k + 1)–form is

Ω := −dΘ .

If (x i ) are local coordinates on N and (x i , pi1...ik ), with
1 ≤ i1 < . . . < ik ≤ n, are the corresponding induced coordinates on
ΛkN, then

Θ =
∑

i1<...<ik

pi1...ikdx
i1 ∧ . . . ∧ dx ik , (2)

and

Ω =
∑

i1<...<ik

−dpi1...ik ∧ dx i1 ∧ . . . ∧ dx ik . (3)

From this expression, it is immediate to check that Ω is indeed
multisymplectic.
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Let π : E → M be a fibration, that is, π is a surjective submersion.
Assume that dimM = m + 1 and dimE = m + 1 + n. Given 1 ≤ r ≤ n,
we consider the vector subbundle Λk

r E of ΛkE whose fiber at a point
u ∈ E is the set of k–forms at u that are r–horizontal with respect to π,
that is, the set

(Λk
r E )u = {ω ∈ Λk

uE : ivr . . . iv1ω = 0 ∀v1, . . . , vr ∈ Vertu(π)} ,

where Vertu(π) = ker(Tuπ) is the space of tangent vectors at u ∈ E that
are vertical with respect to π.
We denote by νr , Θr and Ωr the restriction to Λk

r E of ν, Θ and Ω
respectively. It is easy to see that (Λk

r E ,Ωr ) is a multisymplectic
manifold. The case in which r = 1, 2 and k = m + 1 are the interesting
cases for multisymplectic field theory.
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Let (x i , uα) denote adapted coordinates on E , , where 0 ≤ i ≤ m and
1 ≤ α ≤ n, then they induce coordinates (x i , uα, p, piα) on Λm+1

2 E such
that any element ω ∈ Λm+1

2 E has the form ω = pdm+1x + piαdu
α ∧ dmxi ,

where dm+1x = dx0 ∧ ... ∧ dxm and dmxi = i ∂
∂xi

dm+1x . Therefore, we

have that Θ2 and Ω2 are locally given by the expressions

Θ2 = pdm+1x + piαdu
α ∧ dmxi , (4)

and

Ω2 = −dp ∧ dm+1x − dpiα ∧ duα ∧ dmxi . (5)

In an analogous fashion, we can induce coordinates (x i , uα, p) on Λm+1
1 E ,

such that any element ω ∈ Λm+1
2 E has the form ω = pdm+1x .
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Lagrangian formalism The Lagrangian formulation of Classical Field
Theory is stated on the first jet manifold J1π of the configuration bundle
π : E → M.

This manifold is defined as the collection of tangent maps of local
sections of π:

J1π := {Txφ : φ ∈ Secx(π), x ∈ M} .

The elements of J1π are denoted j1
xφ and called the 1st-jet of φ at x .

Adapted coordinates (x i , uα) on E induce coordinates (x i , uα, uαi ) on
J1π such that uαi (j1

xφ) = ∂
∂∗ [φα]x i |x .

It is clear that J1π fibers over E and M through the canonical projections
π1,0 : J1π → E and π1 : J1π → M, respectively, and that π1 = π ◦ π1,0.

In local coordinates, these projections are given by
π1,0(x i , uα, uαi ) = (x i , uα) and π1(x i , uα, uαi ) = (x i ); notice that
π1 = π ◦ π1,0.
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Despite the conceptual similarities with the tangent bundle of a manifold,
the first jet manifold is not a vector bundle but an affine one, which is a
crucial difference.

To be precise, the first jet manifold J1π is an affine bundle over E
modeled on the vector bundle V (J1π) = π∗(T ∗M)⊗E Vert(π)

Vert(π) is just the vector bundle ker(Tπ) with the obvious projection
over E .
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The dynamics of a Lagrangian field system are governed by a Lagrangian
density, a fibered map L : J1π → Λm+1M over M.
The real valued function L : J1π → R that satisfies L = Lη is called the
Lagrangian function, where η is a volume form on M.
Both Lagrangians permit to define the so-called Poincaré-Cartan forms:

ΘL = Lη + 〈Sη, dL〉 ∈ Ωm+1(J1π) and ΩL = −dΘL ∈ Ωm+2(J1π) ,
(6)

where Sη is a (1, n) tensor field on J1π called vertical endomorphism and
whose local expression is

Sη = (duα − uαj dx
j) ∧ dm−1xi ⊗

∂

∂uαi
. (7)
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In local coordinates, the Poincaré-Cartan forms read as follows

ΘL =

(
L− uαi

∂L

∂uαi

)
dm+1x +

∂L

∂uαi
duα ∧ dmxi , (8)

ΩL =− (duα − uαj dx
j) ∧

(
∂L

∂uα
dm+1x − d

(
∂L

∂uαi

)
∧ dmxi

)
. (9)

A critical point of L is a (local) section φ of π such that

(j1φ)∗(iXΩL) = 0,

for any vector field X on J1π. A straightforward computation shows that
this implies that

(j1φ)∗
(
∂L

∂uα
− d

dx i
∂L

∂uαi

)
= 0 , 1 ≤ α ≤ n . (10)

The above equations are called Euler-Lagrange equations.
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Hamiltonian formalism
The dual formulation of the Lagrangian formalism is the Hamiltonian
one, which is set in the affine dual bundles of J1π.

The (extended) affine dual bundle J1π† is the collection of real-valued
affine maps defined on the fibers of π1,0 : J1π → E , namely

(J1π)† := Aff(J1π,R) =
{
A ∈ Aff(J1

uπ,R) : u ∈ E
}
.

The (reduced) affine dual bundle J1π◦ is the quotient of J1π† by
constant affine maps, namely

(J1π)◦ := Aff(J1π,R)/{f : E → R} .
It is again clear that J1π† and J1π◦ are fiber bundles over E but, in
contrast to J1π, they are vector bundles. Moreover, J1π† is a principal
R–bundle over J1π◦. The respective canonical projections are denoted
π†1,0 : J1π† → E , π†1 = π ◦ π†1,0, π◦1,0 : J1π◦ → E , π◦1 = π ◦ π◦1,0 and

µ : J1π† → J1π◦. The natural pairing between the elements of J1π† and
those of J1π will be denoted by the usual angular bracket,

〈 · , · 〉 : J1π† ×E J1π −→ R .

We note here that J1π◦ is isomorphic to the dual bundle of
V (J1π) = π∗(T ∗M)⊗E Vert(π).
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Besides defining the affine duals of J1π, we must also introduce the
extended and reduced multimomentum spaces

Mπ := Λm+1
2 E and M◦π := Λm+1

2 E/Λm+1
1 E .

By definition, these spaces are vector bundles over E and we denote their
canonical projections ν : Mπ → E , ν◦ : M◦π → E and µ : Mπ →M◦π
(some abuse of notation here).
Again, µ : Mπ →M◦π is a principal R–bundle.

We recall that Mπ has a canonical multisymplectic structure which we
denote Ω.

On the contrary, M◦π has not canonical multisymplectic structure, but
Ω can still be pulled back by any section of µ : Mπ →M◦π to give rise
to a multisymplectic structure on M◦π.
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An interesting and important fact is how the four bundles we have
defined so far are related. We have that

J1π† ∼=Mπ and J1π◦ ∼=M◦π , (11)

although these isomorphisms depend on the base volume form η. In fact,
the bundle isomorphism Ψ :Mπ → J1π† is characterized by the equation〈

Ψ(ω), j1
xφ
〉
η = φ∗x (ω) , ∀j1

xφ ∈ J1
ν(ω)π , ∀ω ∈Mπ .

We therefore identify Mπ with J1π† (and M◦π with J1π◦) and use this
isomorphism to pullback the duality nature of J1π† to Mπ.
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Adapted coordinates in Mπ (resp. M◦π) will be of the form
(x i , uα, p, piα) (resp. (x i , uα, piα)), such that

pdm+1x + piαdu
α ∧ dmxi ∈ Λm+1

2 E (pdm+1x ∈ Λm
1 E ) .

Under these coordinates, the canonical projections have the expression

ν(x i , uα, p, piα) = (x i , uα) , ν◦(x i , uα, piα) = (x i , uα)

and

µ(x i , uα, p, piα) = (x i , uα, piα) ;

and the above pairing takes the form〈
(x i , uα, p, piα), (x i , uα, uαi )

〉
= p + piαu

α .

We also recall the local description of the canonical multisymplectic form
Ω of Mπ,

Ω = −dp ∧ dm+1x − dpiα ∧ duα ∧ dmxi .
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Now, we focus on the principal R–bundle structure of µ : Mπ →M◦π.
This structure arises from the R–action

R×Mπ −→ Mπ

(t, ω) 7−→ t · ην(ω) + ω .

In coordinates,

(t, (x i , uα, p, piα)) 7−→ (x i , uα, t + p, piα) .

We will denote by Vµ ∈ X(Mπ) the infinitesimal generator of the action
of R on Mπ, which in coordinates is nothing else but Vµ = ∂

∂p . Since
the orbits of this action are the fiber of µ, then Vµ is also a generator of
the vertical bundle Vert(µ).
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The dynamics of a Hamiltonian field system is governed by a Hamiltonian
section, say a section h : M◦π →Mπ of µ : Mπ →M◦. In presence of
the base volume form η, the set of Hamiltonian sections Sec(µ) is in
one-to-one correspondence with the set of functions
{H̄ ∈ C∞(Mπ) : Vµ(H̄) = 1} and with the set of Hamiltonian densities,
that is, fibered maps H : Mπ → Λm+1M over M such that iVµdH = η.

Given a Hamiltonian section h : M◦π →Mπ, the corresponding
Hamiltonian density is

H(ω) = ω − h(µ(ω)) , ∀ω ∈Mπ .

Conversely, given a Hamiltonian density H : Mπ → Λm+1M, the
corresponding Hamiltonian section is characterized by the condition

imh = H−1(0) .

Obviously, H = H̄η.
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In adapted coordinates,

h(x i , uα, piα) = (x i , uα, p = −H(x i , uα, piα), piα) , (12)

H(x i , uα, p, piα) =
(
p + H(x i , uα, piα)

)
dm+1x . (13)

A critical point of H is a (local) section τ of π ◦ ν : Mπ → M that
satisfies the (extended) Hamilton-De Donder-Weyl equation

τ∗iX (Ω + dH) = 0 , (14)

for any vector field X on Mπ.

24 / 75



A critical point of h is a (local) section τ of π ◦ ν◦ : M◦π → M that
satisfies the (reduced) Hamilton-De Donder-Weyl equation

τ∗(iXΩh) = 0 , (15)

for any vector field X on M◦π and where Ωh = h∗(Ω + dH) = h∗Ω.

A straightforward computation shows that both equationsare equivalent
to the following set of local equations known as Hamilton’s equations:

∂τα

∂x i
=

∂H

∂piα
◦ τ , ∂τ iα

∂x i
= − ∂H

∂uα
◦ τ , (16)

where τα = uα ◦ τ and τ iα = piα ◦ τ .
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Ehresmann Connections

Let π : E −→ M be a fibred bundle (that is, π is a surjective
submersion). Denote by VE the vertical bundle defined by ker π which is
a vector sub-bundle of TE −→ E .

Definition

An Ehresmann connection in π : E −→ M is a distribution H on E which
is complementary to the vertical bundle, say

TE = H⊕ VE (17)

H is called the horizontal distribution.
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Given a connection H in π : E −→ M we have two complementary
projectors:

h : TE −→ H

v : TE −→ VE

h and v are called the horizontal and vertical projectors, respectively.
Obviously, we have H = Im(h) and VE = Im(v). Consequently, any
tangent vector X ∈ TeE can be decomposed in its horizontal and vertical
parts, say

X = hX + vX

In addition, given a tangent vector Y ∈ TxM, there exists a unique
tangent vector X at any point of the fiber over x , say e ∈ π−1(x) such
that X is horizontal and projects onto Y ; X is called the horizontal lift of
Y to e.
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The curvature of a connection H (or h with some abuse of notation) can
be defined as the Schouten-Nijenhuis bracket

R = −1

2
[h, h]

such that H is flat if and only if R = 0.
A connection H should not be flat in general; let us introduce the notion
of integral section.

Definition

A section γ : M −→ E is called an integrable section of H if γ(M) is an
integral submanifold of the horizontal distribution. The connection H is
integrable if and only if there are integral sections passing through any
point of E .

Therefore, we easily have the following result.

Theorem

A connection H is integrable if and only if it is flat.

Indeed, R = 0 which is just the condition for the integrability of the
distribution H.
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We introduce now Ehresmann connections in order to write the
infinitesimal counterpart of the previous equations.

Thus, an Ehresmann connection on the bundle Mπ◦ → M is given by a
distribution H in TMπ◦ which is complementary to the vertical one,
Vert(π ◦ ν◦) = ker(Tπ ◦ ν◦).

Let h be the horizontal projector of an Ehresmann connection in the
bundle π◦1 .
Proposition If the horizontal projector h of an Ehresmann connection
satisfies

ihΩh = mΩh . (18)

then any horizontal integral section σ of the connection is a solution of
Hamilton’s equations.

An equivalent proposition could be set on the Lagrangian side using the
form ΩL.
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Equivalence between both formalisms

Let L be a Lagrangian density. The (extended) Legendre transform is the
bundle morphism LegL : J1π →Mπ over E defined as follows:

LegL(j1
xφ)(X1, . . . ,Xm) := (ΘL)j1

xφ
(X̃1, . . . , X̃m), (19)

for all j1
xφ ∈ J1π and Xi ∈ Tφ(x)E , where X̃i ∈ Tj1

xφ
J1π are such that

Tπ1,0(X̃i ) = Xi .

The (reduced) Legendre transform is the composition of LegL with µ,
that is, the bundle morphism

legL := µ ◦ LegL : J1π →M◦π . (20)

In local coordinates,

LegL(x i , uα, uαi ) =

(
x i , uα, L− ∂L

∂uαi
uαi ,

∂L

∂uαi

)
, (21)

legL(x i , uα, uαi ) =

(
x i , uα,

∂L

∂uαi

)
, (22)

where L is the Lagrangian function associated to L, i.e. L = Lη.
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From the definitions, we deduce that

(LegL)∗(Θ) = ΘL, (LegL)∗(Ω) = ΩL

,
where Θ is the Liouville m–form on Mπ and Ω is the canonical
multisymplectic (m + 1)–form.

In addition, we have that the Legendre transformation legL : J1π →M◦π
is a local diffeomorphism, if and only if, the Lagrangian function L is

regular, that is, the Hessian

(
∂2L

∂uαi ∂u
β
j

)
is a regular matrix.

When legL : J1π →M◦π is a global diffeomorphism, we say that the
Lagrangian L is hyper-regular. In this case, we may define the
Hamiltonian section h : M◦π −→Mπ by

h = LegL ◦ leg−1
L , (23)

whose associated Hamiltonian density is

H(ω) =
〈
ω, leg−1

L (µ(ω))
〉
η − (L ◦ leg−1

L )(µ(ω)) , ∀ω ∈Mπ . (24)
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In coordinates,

h(x i , uα, piα) = (x i , uα, L(x i , uα, uαi )− piαu
α
i , p

i
α) , (25)

where uαi = uαi (leg−1
L (x i , uα, piα)). Accordingly,

H(x i , uα, p, piα) =
(
p + piαu

α
i − L

)
dm+1x (26)

and the Hamiltonian function is

H(x i , uα, piα) = piαu
α
i − L . (27)

Theorem

Assume L is a hyper-regular Lagrangian density. If φ is a solution of the
Euler-Lagrange equations for L, then ϕ = legL ◦j1φ is a solution of the
Hamilton’s equations for h. Conversely, if ϕ is a solution of the
Hamilton’s equations for h, then leg−1

L ◦ϕ is of the form j1φ, where φ is
a solution of the Euler-Lagrange equations for L.

From now on, we will assume that every Lagrangian to be regular.
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Hamilton-Jacobi theory for multisymplectic systems
We start recalling the standard Hamilton-Jacobi theory from Classical
Mechanics.
Let Q be the configuration manifold of a mechanical system and T ∗Q
the corresponding phase space, which is equipped with the canonical
symplectic form

ωQ = dqα ∧ dpα ,

where (qα, pα) are natural coordinates in T ∗Q. We denote
πQ : T ∗Q → Q the canonical projection.
Let H : T ∗Q −→ R be a Hamiltonian function and XH the corresponding
Hamiltonian vector field, that is, the one that satisfies

iXH
ωQ = dH .

The integral curves (qα(t), pα(t)) of XH satisfy the Hamilton’s equations:

dqα

dt
=

∂H

∂pα
and

dpα
dt

= − ∂H

∂qα
.
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The following theorem gives the relation between the Hamilton-Jacobi
equation and the solutions of Hamilton’s equations.

Theorem

Let λ be a closed 1–form on Q. The following conditions are equivalent:

1 If σ : I → Q satisfies the equation

dqα

dt
=

∂H

∂pα
◦ λ ,

then λ ◦ σ is a solution of the Hamilton’s equations;

2 d(H ◦ λ) = 0.

Remark Since λ is closed, locally we have λ = dS for a function S
depending on the local coordinates (qα). Then, the equation

d(H ◦ λ) = 0 reads locally d
(
H(qα,

∂S

∂qα
)
)

= 0. Moreover, on each

connected component, the previous equation becomes H(qα,
∂S

∂qα
) = E ,

where E is a real constant. The last formula is known as the
Hamilton-Jacobi equation.
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We can give the following interpretation. Define on Q the vector field

Xλ
H = TπQ ◦ XH ◦ λ

whose construction is illustrated by the below diagram

T ∗Q

πQ

��

XH // T (T ∗Q)

TπQ

��
Q

λ

BB

XλH // TQ

We then have the intrinsic version of the above result.

Theorem

Let λ be a closed 1–form on Q. Then the conditions below are
equivalent:

1 Xλ
H and XH are λ-related;

2 d(H ◦ λ) = 0.
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In the Classical Field framework, the role of the Hamiltonian vector field
XH is played by a solution h of the field equation, while the role of the
1–form λ above is now played by γ, a 2-semibasic (m + 1)–form,

otherwise a section of the bundle π†1,0 : J1π† → E .

We project along γ the Ehresmann connection on J1π◦1 → M to an
Ehresmann connection on E → M whose horizontal projector is

hγ(e) : TeE −→ TeE
X 7−→ hγ(e)(X ) = Tf π

◦
1,0(h(f )(Y )),

(28)

where f = (µ ◦ γ)(e) and Y is any vector of Tf J
1π† which projects onto

X by Tπ◦1,0. The Ehresmann connection given by hγ plays the role of the

projected vector field Xλ
H in mechanics.

J1π◦

π◦1

!!

Connection h on J1π◦ → M

using γ induces

��

J1π†

µ

OO

��

M

E

γ

HH
π

<<

Connection hγ on E → M
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Theorem

Assume that γ is closed and that the induced connection on E → M, hγ ,
is flat. Then the following conditions are equivalent:

1 If σ is an integral section of h then µ ◦ γ ◦ σ is a solution of the
Hamilton’s equations.

2 The (m + 1)–form h ◦ µ ◦ γ is closed.

The condition d(h ◦ µ ◦ γ) = 0 which happens to be equivalent to
(µ ◦ γ)∗Ωh = 0, corresponds to the generalization to Classical Field
Theory of the Hamilton-Jacobi equation. Therefore we will refer to a
form γ satisfying it as a solution of the Hamilton-Jacobi equation.
Remark It can be seen that if we assume that λ = dS , where S is a
1-semibasic m-form, then in local coordinates the equation

d(h ◦ µ ◦ γ) = 0 is equivalent to
∂S i

∂x i
+ H(x i , uα,

∂S i

∂uα
) = f (x i ), where

f (x i ) is a function on M. This is the usual way to write the
Hamilton-Jacobi equations for Classical Field Theory.

37 / 75



The space of Cauchy data

We shall develop the infinite-dimensional formulation of Hamilton’s
equations in order to introduce the Hamilton-Jacobi theory in infinite
dimensions. We start introducing some basic definitions.

Definition

We say that an m–dimensional, compact, oriented and embedded
submanifold Σ of the base manifold M is a Cauchy surface.

We will assume that that Σ is endowed with a volume form, ηΣ, such that∫
Σ

ηΣ = 1 .

Definition

A slicing of M is a diffeomorphism between M and R× Σ, say

χM : R× Σ→ M .

Observe that for each fixed t ∈ R, χM(t, ·) : Σ→ M defines an
embedding

(χM)t : Σ −→ M
x 7−→ (χM)t(x) = χM(t, x) .
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We denote by Σt = Im((χM)t) the image of Σ by (χM)t and by M̃ the
space of such embeddings

M̃ = {(χM)t such that t ∈ R} ,

which happens to be equivalent to R, M̃ ≡ R. Without loss of generality,
we may assume that Σ is given by one of these embeddings, i.e. there
exists t0 such that Σ = Σt0 . We will also use (χM)t to denote the
restriction of this map to its image, which happens to be a
diffeomorphism between Σ and Σt .
The aim of the slicing χM is to split M onto time plus space and,
particularly, to outline a 1–dimensional direction, which may be recovered
infinitesimally. Let ∂

∂x0 denote the vector field on R× Σ characterizing
the time translations (t, x) 7→ (t + s, x).

Definition

The vector field ξM = (χM)∗(
∂
∂x0 ) ∈ X(M) is the (infinitesimal) generator

of χM . Its dual counterpart (χ−1
M )∗(dt) ∈ Ω1(M) will still be denoted dt.
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Let π : E → M be any bundle, then the set

Ẽ = {σ : Σ→ E |σ is an embedding and π ◦ σ = (χM)t for some t ∈ R}

is called the space of χ–sections of E . Indeed, it is a line bundle

π̃ : Ẽ −→ R
σ 7−→ t s.t. π ◦ σ = (χM)t .

Consequently, a section of π : E → M induces a section of π̃ : Ẽ → R,
and conversely.

This correspondence just relates the finite (multisymplectic) picture and
the infinite (presymplectic) one for a Classical Field Theory.
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Remark We assume that these spaces of embeddings are topologized in
a way that they become infinite-dimensional smooth manifolds.
Remark Observe that we still have the previous bundle structures by
composition, for instance, from the bundle π◦1,0 : J1π◦ → E we can
construct the bundle

π̃◦1,0 J̃1π◦ −→ Ẽ

σJ1π◦ → π̃◦1,0(σJ1π◦) = π◦1,0 ◦ σJ1π◦ .

We will use this procedure and notation to construct new bundles in the
infinite dimensional setting from the ones on the finite dimensional
framework.
For example, in the same fashion we have the bundles π̃ : Ẽ → R and

π̃◦1 : J̃1π◦ → R since M̃ ≡ R.
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Now we give a short description of tangent vectors and some forms on
the manifolds of embeddings.

We give the description in the J̃1π◦ case, which is going to play the main
role in what follows, being the others analogous.
Consider a differentiable curve from an open real interval

c : (−ε, ε)→ J̃1π◦ where ε is a positive real number and such that
c(0) = σJ1π◦ .

Computing
dc

dt
(0) it is easy to see that a tangent vector, X̃ , at a point

σJ1π◦ ∈ J̃1π◦ is given by a map X̃ : Σ −→ TJ1π◦ such that the following
diagram is commutative

Σ
X̃ //

σJ1π◦ ''

TJ1π◦

τJ1π◦

��
J1π◦

42 / 75



This implies that there exists a constant k ∈ R in a way that

Tπ◦1 (X̃ (p)) = kξM(π◦1 (σJ1π◦(p))), for all p ∈ Σ,

where we recall that ξM denotes the generator introduced above, and
τJ1π◦ is the natural projection from the tangent bundle onto its base
manifold..
We show now how to construct forms on the infinite dimensional setting
from forms on the finite dimensional side.

We also give the description in the J̃1π◦ case being the others analogous.

Let α be a (k + m)–form on J1π◦, we define the k–form α̃ on J̃1π◦, such

that for a point σJ1π◦ ∈ J̃1π◦ and k tangent vectors X̃i ∈ TσJ1π◦
J̃1π◦ the

pairing is given by

α̃(σJ1π◦)(X̃1, . . . , X̃k) =

∫
Σ

σ∗J1π◦(iX̃1,...,X̃k
α) (29)
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The next lemma will be useful.

Lemma

Let α be a k + m–form, then d(α̃) = d̃α.

Remark The 2–form Ω̃h, made out of Ωh by this procedure, will play an
important role describing the solutions of Hamilton’s equations as an
infinite dimensional dynamical system.

Remark The form d̃t ∧ ηΣ is equal to (π̃◦1 )∗dt.
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Now, we introduce local coordinates on the manifolds of embeddings
using coordinates adapted to the slicing on M.

Let us work in coordinates adapted to the slicing on M, i.e.,
(x0, x1, . . . , xn) are such that locally the Σt are given by the level sets of
the function x0, moreover, we assume that in these coordinates the
generator vector field ξM is given by ∂

∂x0 , which can be always achieved
re-scaling the variable x0. Actually we can assume that the coordinate x0

is given by the function t under the identification χM : R×Σ→ M, where

t : R× Σ −→ R

(t0, p) → t(t0, p) = t0.

Thus, from now on, making some abuse of notation (we are using t to
denote t ◦ χ−1

M ) we are working with coordinates (t, x1, . . . , xn) as
described above.
We want to explain that the choice of this coordinate t is by no means
arbitrary, it suggest the existence of a time parameter and so the
generator vector field ξ a time evolution direction. This is motivated by
what happens for instance in Relativity.
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Now, choosing coordinates adapted to the fibration and to the base
coordinates (t, x i ), 1 ≤ i ≤ m (adapted to the slicing), say (t, x i , uα), a

point on Ẽ is given by specifying functions uα(·) that depend on the
coordinates on Σt , i.e. (x i ), i = 1, . . . , n.

So “coordinates” on Ẽ are given by

(t, uα(·)), t ∈ R, uα = uα(x1, . . . , xn) (30)

where the functions uα belong to the chosen functional space.

Remark Let us notice that this construction does not provide true local
coordinates, but it is a nice way to determine elements of these different
spaces of mappings.
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In the same way, choosing coordinates adapted to the slicing on M as
above and to the bundles J1π◦ → M and J1π† → M, say (t, x i , ptα, p

i
α)

and (t, x i , p, ptα, p
i
α), defined by

(x i , uα, ptα, p
i
α) → [ptαdu

α ∧ dmx − piαdu
α ∧ dt ∧ dm−1xi ] ∈Mπ◦|(x i ,uα).

and

(x i , uα, p, ptα, p
i
α)→ pdt ∧ dmx + ptαdu

α ∧ dmx

−piαduα ∧ dt ∧ dm−1xi ∈Mπ|(x i ,uα)

respectively, where [·] denotes the equivalence class in the quotient and
are using that dmx = dx1 ∧ dx2 . . . ∧ dxm and dm−1xi = i ∂

∂xi
dmx .

There is certain abuse of notation here, but there is no room for
confusion. Notice that we are using the identifications J1π† ≡Mπ and
J1π◦ ≡Mπ◦ again.
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Therefore we deduce that, the points of J̃1π◦ and J̃1π† are given by
specifying respectively functions ptα(·), piα(·), and p(·), ptα(·), piα(·) that
depend on (x i ), following the same construction that we have introduced

in the Ẽ case.

Thus, local coordinates on J̃1π◦ are given by

(t, uα(·), ptα(·), piα(·)) (31)

where uα = uα(x1, . . . , xn), ptα = ptα(x1, . . . , xn) and
piα = piα(x1, . . . , xn).

Analogously, coordinates on J̃1π† can be given by

(t, uα(·), p(·), ptα(·), piα(·)). (32)
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By the previous constructions we can consider the manifold J̃1π◦

endowed with the form Ω̃h obtained by the construction outlined above,

such that (J̃1π◦, Ω̃h) becomes a presymplectic manifold.

There is a bijective correspondence between sections of the bundle

π̃◦1 : J̃1π◦ → R and sections of the bundle π◦1 : J1π◦ → M.

Given σ a section of the bundle π◦1 consider the section of π̃◦1 given by

c(t) = σ|Σt
◦ (χM)t ∈ J̃1π◦.

Conversely given c a section of π̃◦1 using the slicing (χM)t in the obvious
way we can construct a section of π◦1 .
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The following theorem allows us to interpret Hamilton’s equations as an
infinite dimensional dynamical system.

Proposition A section σ of π◦1 satisfies Hamilton’s equations if and only
if the corresponding curve c(t) verifies

iċ(t)Ω̃h = 0

where ċ(t) denotes the time derivative of the curve.

Remark One could easily check that since c is a section of π̃◦1 , then

d̃t ∧ ηΣ(ċ(t)) = 1.
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Hamilton-Jacobi theory on the space of Cauchy data
Assume now that we have a solution γ of the Hamilton-Jacobi equation
and a connection h on the bundle π◦1 satisfying the field equations and
consider the reduced connection hγ on the bundle π constructed above.

Next, we show how to induce a solution of the Hamilton-Jacobi equation
in the infinite dimensional setting as well as the meaning of the
Hamilton-Jacobi problem in this setting.

Following the previous constructions we can induce a section of the

bundle π̃◦1,0 : J̃1π◦ → Ẽ by

γ̃ : Ẽ −→ J̃1π◦

σE → γ̃(σE ) = µ ◦ γ ◦ σE .
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On the other hand we can induce vector fields X̃ h and X̃ hγ from the
connections h and hγ by

X̃ h : J̃1π◦ −→ TJ̃1π◦

σJ1π◦ → X̃ h(σ) : Σ → TJ1π◦

p → X̃ h(σ)(p)

= Hor(ξ((χM)t(p)))(σJ1π◦(p)),

where Hor(X )(y) represents the horizontal lift of the tangent vector X to
the point y .
In the same way we can construct the vector field X̃ hγ on Ẽ using the
horizontal lift with respect to the connection hγ .

Remark Notice that the vector field X̃ hγ just described can also be
defined as the γ̃-projection of the vector field X̃ h, i.e. we have

X̃ hγ (σE ) = T π̃◦1,0(X̃ h(γ̃(σE ))), where σE ∈ Ẽ .

52 / 75



In local coordinates, assuming that

γ(t, x i , uα) = (t, x i , uα, γp(t, x i , uα), γpt
α

(t, x i , uα), γpi
α

(t, x i , uα)) (33)

and using the following notation in local coordinates

γ̃(t, σαE (·)) = (t, ·, σαE (·), γpt
α

(t, x i , σαE (·)), γpi
α

(t, x i , σαE (·)))

where σαE = uα ◦ σE for σE ∈ Ẽ , the expressions X̃ h(γ̃(σE )) and X̃ hγ (σE )
become

X̃ h(γ̃(t, σαE (·))) =
∂

∂t
+ Γ0

α(γ̃(t, σαE (·)))
∂

∂uα
+ (Γ0)0

α(γ̃(t, σαE (·)))
∂

∂ptα

+(Γ0)iα(γ̃(t, σαE (·)))
∂

∂piα
(34)

and

X̃ hγ (t, σαE (·)) =
∂

∂t
+ Γ0

α(γ̃(t, σαE (·)))
∂

∂uα
. (35)
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Notice that for each t0 ∈ R we have the bundle given by restriction

πt : Et → Σt (36)

where πt = π|Σt
and Et = E|Σt

. This bundle will play an important role.

Observe that the space of sections Γ(πt) is just the fiber π̃−1(t).

Definition

For each of these bundles we can induce the restricted connection, hγt in
the obvious way, i.e., the horizontal projector of the restricted connection
is given by the restriction of the horizontal projector of the connection hγ .
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Now wewill prove one of the main results, that is, γ̃ is a solution of the
Hamilton-Jacobi equation.

This means that γ̃∗Ω̃h = 0 and in addition for any point σE ∈ Ẽ which is
an integral manifold of the corresponding restricted connection we have
that T γ̃(σE )(X̃ hγ ) satisfies iT γ̃(σE )(X̃ hγ )Ω̃h = 0.

The following remark clarifies the above terminology
Remark In the Hamilton–Jacobi theory on classical Hamiltonian systems
(T ∗Q, ωQ ,H), a solution of the Hamilton-Jacobi problem is a (closed)
section γ : Q −→ T ∗Q of πQ : T ∗Q −→ Q (i.e. a closed 1-form on Q)
such that H ◦ γ = const. But dγ = 0 iff γ∗ωQ = 0, because the last
equation just means that γ(Q) is a lagrangian submanifold of
(T ∗Q, ωQ). This fact justifies the chosen notion of solution for the
Hamilton-Jacobi problem in the current context.
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Theorem

The section γ̃ satisfies:

1 γ̃∗Ω̃h = 0.

2 iT γ̃(σE )(X̃ hγ )Ω̃h = 0 for all σE ∈ Ẽ which is an integral submanifold of

the connection hγπ̃(σE ).

Lemma

If dγ = 0, then the following assertions are equivalent

1 d(h ◦ µ ◦ γ) = 0

2
∂H

∂uα
+
∂H

∂piβ

∂γ iβ
∂uα

+
∂H

∂p0
β

∂γ0
β

∂uα
+
∂γ iα
∂x i

+
∂γ0

α

∂t
= 0
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The space T∗Ẽ (T ∗Eτ )
In this section we are going to introduce the phase space T∗Ẽ , which in
the terminology of GIMMSY is the space denoted by “T ∗E t”.

In order to do that, we have to start with a Lagrangian density.

Recall that π : E → M denotes a fiber bundle of rank n over an
(m + 1)–dimensional manifold and J1π its first jet bundle, where we
assume a Lagrangian density is given L : J1E → Λm+1M.

The submanifold Σ is endowed with a volume form ηΣ.
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From now on, we assume that we have a slicing χM on the manifold M.
We will also assume that we have a compatible slicing, accordingly with
the following definition.

Definition

Let χM be a slicing on M, then a compatible slicing is a diffeomorphism

χE : R× E|Σ → E

such that the following diagram is commutative

R× E|Σ
χE //

��

E

��
R× Σ

χM // M

where the vertical arrows are the bundle projections.
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Definition

Consider the vector field ∂
∂t ∈ X(R× E|Σ) constructed following the

procedure introduced in the previous section to define ξM , then the
vector field ξE = (χE )∗(

∂
∂t ) is called the generator of χE . Notice that

this vector field projects onto ξM defined above.

Remark Remember that due to the slicing on M and the volume form ηΣ

on Σ we can construct the volume form on M given by dt ∧ ηΣ. We are
making some abuse of notation using dt to denote χ∗Mdt.
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Observe that a compatible slicing induces a trivialization on J1π† by
pullback (we are now thinking about J1π† as a bundle of forms). So we
have a diffeomorphism

χJ1π† : R× (J1π†)|Σ → J1π†.

Definition

The generator of χJ1π† is the vector field defined by
ξJ1π† = (χJ1π†)∗(

∂
∂t ), where ∂

∂t ∈ X(R× (J1π†)|Σ) is constructed as in
the definition of ξE and ξM .

Definition

We define the Cauchy data space, and denote it by J̃1π, as the set of
embeddings

J̃1π = {σJ1π : Σ→ J1π such that there exists, φ ∈ Γ(π)

satisfying σJ1π = (j1φ) ◦ λ, where λ = π ◦ σJ1π ∈ M̃}
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Using the extended and reduced Legendre transforms we can induce the
maps

L̃egL : J̃1π −→ J̃1π†

σJ1π → L̃egL(σJ1π) = LegL ◦ σJ1π

and

l̃egL : J̃1π −→ J̃1π◦

σJ1π → l̃egL(σJ1π) = LegL ◦ σJ1π
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We introduce now the phase space T∗Ẽ and relate it with the previously

defined space J̃1π◦.

Recall that for each t ∈ R we have the bundle given by restriction to Σt

that we described above. Remember that we used the notation

πt : Et → Σt

where Et = E|Σt
and πt = π|Σt

and in the same way we have the
analogous restrictions for all bundles involved in our constructions.

Remark The space of sections of each of these bundles is denoted in
GIMMSY by Et , i.e., Et = Γ(πt). The points of Ẽ can be identified with

points in ∪t∈REt . Let σE ∈ Ẽ and π̃(σE ) = t0, then we can consider
σE ◦ (χM)−1

t0
∈ Et0 , where (χM)−1

t0
is the inverse of the restriction to its

image of (χM)t0 as introduced previously. In that way, we have a

bijection that allows us to identify Ẽ = ∪t∈REt . We assume that the
spaces Et are infinite dimensional manifolds modeled on the
corresponding functional space.
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In the same way

(π†1)t : J1π†t → Σt ; (π◦1 )t : J1π◦t → Σt , (37)

where
J1π◦t = J1π◦|Σt

, J1π†t = J1π†|Σt
,

(π◦1 )t = (π◦1 )|Σt
, (π†1)t = (π†1)|Σt

.

63 / 75



For a fixed t, taking a curve in Et it is easy to see that the tangent
vectors of this manifold at a point σE are given by a section V of the
bundle τ tVert : Vert(πt)→ Σt (τ tVert is the natural projection), such that
σE = τVert ◦ V , that is

TσE
Et = {V ∈ Γ(τVert), such that σE = τVert ◦ V }.

So the tangent bundle is just

TEt =
⋃
σE∈Et

TσE
Et .

We proceed now to introduce the dual space of TEt . In order to do that,
we need to introduce the dual of the bundle τVert : Vert(πt)→ Σt , which
we denote by

πVert : Vert∗(πt)→ Et .

The tensor product of the bundles πVert : Vert∗(πt)→ Et and
π∗t (ΛmΣt)→ Et , which we refer to π⊗ : Vert∗(πt)⊗ π∗t (ΛmΣt)→ Et is
the space whose sections will give us the dual elements of the tangent
vectors.

64 / 75



Definition

The smooth cotangent space to Et at a point σE ∈ Et is

T ∗σE
Et = {λ : Σ→ V ∗πt ⊗ ΛnΣt such that π⊗ ◦ λ = σE}.

Definition

The smooth cotangent bundle is

T ∗Et =
⋃
σE∈Et

T ∗σE
Et .

There is a natural pairing between these two spaces. If V ∈ TσE
Et and

λ ∈ T ∗σE
Et the pairing is given locally by∫

Σt

λ(V )
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Given coordinates adapted to the bundle πt : Et → Σt , (x i , uα),
1 ≤ i ≤ m, 1 ≤ α ≤ n, local coordinates in the space TEt are given by

(uα(·), u̇α(·))→ u̇α(·) ∂

∂uα
.

Then we have the corresponding coordinates in T ∗Et

(uα(·), πα(·))→ πα(·)duα ⊗ dmx

where dmx = dx1 ∧ . . . dxm.

Again, the uα(·), u̇α(·) and πα(·) are functions that depend on the
variables (x1, . . . , xm) and that belong to the chosen functional space.
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Now, for each t ∈ R we have the maps defined by

Rt : J̃1π†t −→ T ∗Et
σJ1π† → Rt(σJ1π†) : TEt −→ R

V → Rt(σJ1π†)(V ) =

∫
Σt

φ∗(iVσJ1π†)

and the map

R◦t : J̃1π◦t −→ T ∗Et
σJ1π◦ → R◦t (σJ1π◦) : TEt −→ R

V → R◦t (σJ1π◦)(V ) =

∫
Σt

φ∗(iVσJ1π◦)

where φ = ν◦ ◦ σJ1π◦ ◦ (χM)−1
t . Notice that the contraction iVσ is well

defined since V is a vertical vector field of the bundle πt . In local
coordinates

Rt(u
α(·), p(·), ptα(·), piα(·)) = (uα(·), πα = ptα(·)).
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Definition

For each r ∈ R, the instantaneous Hamiltonian function is the function

Ht : T ∗Et −→ R

λ → Ht(λ) = −
∫

Σt
σ∗(iξ

J1π†
Θ)

where σ denotes any element in Im(l̃egL) ∩ (Rt)
−1(λ).

Notice that in coordinates, if λ = (uα(·), πα(·)), that means that there

exists a point σJ1π ∈ J̃1π that locally reads (t, uα(·), uαi (·), uα0 (·)) and
such that

∂L

∂uα0
(t, x i , uα(x i ), uαi (x i ), uα0 (x i )) = πα(x i ) for all (x i ).

Thus, ∫
Σt

λ∗(iξ
J1π†

Θ) =

∫
Σt

(−L +
∂L

∂uα0

∂uα

∂x0
)dmx0.
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Now we denote by T∗Ẽ , the bundle over M̃ ≡ R such that, for each
t ∈ R the fiber is T ∗Et . We use

πT∗Ẽ : T∗Ẽ → R

to denote the projection onto R. Notice that we have the following
equality of sets T∗Ẽ =

⋃
t∈R T ∗Et .

Local coordinates in this bundle adapted to the fibration πT∗Ẽ are

(t, uα(·), πα(·))→ πα(·)duα ⊗ dmx ∈ T ∗Et .

where we also assume that ξM is given by ∂
∂t in this coordinates.

Remark Every tangent vector X ∈ TλT∗Ẽ can be locally written as

X = k
∂

∂t
+ Xuα

∂

∂uα
+ Xπα

∂

∂πα
.
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On T ∗E t there is a form ω given in local coordinates by∫
Σt

duα ∧ dπα ⊗ dmx

we explain now that expression. Given two tangent vectors
X ,Y ∈ TλT∗Ẽ such that in adapted coordinates

X = Xt
∂

∂t
+ Xuα

∂

∂uα
+ Xπα

∂

∂πα

Y = Yt
∂

∂t
+ Yuα

∂

∂uα
+ Yπα

∂

∂πα
then

ω(X ,Y ) =

∫
Σt

(XuαYπα − XπαYuα)dmx

Remark This form is obtained gluing together the canonical symplectic
forms of the cotangent bundles T ∗Et .

Definition

We define the Hamiltonian function, H : T∗Ẽ → R satisfying that for λ
such that πT∗Ẽ (λ) = t, then H(λ) = Ht(λ).
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We construct the 2–form ω + dH ∧ dt on T∗Ẽ .

Definition

A section c(t) of the bundle T∗Ẽ is called a dynamical trajectory if

iċ(t)(ω + dH ∧ dt) = 0.

Notice that we are using that c is a curve and denoting by ċ(t) its
derivative at time t.

Let φ be a section of π and j1φ its first jet bundle. Set the section of π†1
given by σJ1π† = LegL ◦ j1φ and construct the curve c : R→ T∗Ẽ

c(t) = Rt((σJ1π†)|Σt
).

71 / 75



Proposition The section φ satisfies the Euler-Lagrange equations if and
only if c(t) is a dynamical trajectory.

The result below relates the dynamics on the manifold J1π◦ with the
dynamics on T∗Ẽ . We introduce the map R which results from gluing
the maps Rt

R : J̃1π◦ −→ T∗Ẽ

σJ1π◦ → Rt(σJ1π◦)

where t = π̃◦1 (σJ1π◦).
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Proposition We have R∗(ω + dH ∧ dt)(σJ1π◦) = Ω̃h(σJ1π◦) for all

σJ1π◦ ∈ Im(l̃egL).

With this result at hand, we can now induce a Hamilton-Jacobi theory on
the space T∗Ẽ following the same pattern as above. Assume now that we
have γ satisfying the Hamilton-Jacobi equation. We can define

γ̂ : Ẽ −→ T∗Ẽ

σE → γ̂(λ) = R ◦ µ ◦ γ ◦ σE

Remark We are assuming that R ◦ l̃egL is a bijection between J̃1π and
T∗Ẽ , so in particular for any λ ∈ T∗Ẽ there exists
σJ1π◦ ∈ R−1(λ)∩Im(legL).
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As an immediate consequence of the previous theorem we conclude the
following proposition.

Proposition Under the previous assumptions, we have:

1 γ̂∗(ω + dH ∧ dt) = 0

2 iT γ̂(σE )(X hγ )(ω + dH ∧ dt) = 0 for all σE ∈ Ẽ which is an integral
submanifold of the connection hγπ̃(σE ).

We want to finish by setting some useful identifications.

Using the vector field ξJ1π◦ the space T∗Ẽ can be identified with
R× T ∗Et for a fixed t.

Under this identification the Hamiltonian function becomes a
function on R× T ∗Et and the form ω becomes the canonical form
on the cotangent bundle ωEt .
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Happy birthday!
Feliz cumpleaños!

Wszystkiego Najlepszego!
Sto lat!
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