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Contents

Graded and double graded bundles

Tulczyjew triples

Mechanics on algebroids with vakonomic constraints

Higher order Lagrangians

Lagrangian framework for graded bundles

Higher order Lagrangian mechanics on Lie algebroids

Geometric mechanics of strings (optionally)

The talk is based on some ideas of W. M. Tulczyjew and my collaboration
with A. Bruce, K. Grabowska, M. Rotkiewicz and P. Urbański:
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Grabowski-Rotkiewicz, J. Geom. Phys. 62 (2012), 21–36.
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Vector bundles as graded bundles

A vector bundle is a locally trivial fibration τ : E → M which, locally
over U ⊂ M, reads τ−1(U) ' U × Rn and admits an atlas in which
local trivializations transform linearly in fibers

U ∩ V × Rn 3 (x , y) 7→ (x ,A(x)y) ∈ U ∩ V × Rn ,

A(x) ∈ GL(n,R).
The latter property can also be expressed in the terms of the
gradation in which base coordinates x have degrees 0 and ‘linear
coordinates’ y have degree 1. Linearity in y ′s is now equivalent to the
fact that changes of coordinates respect the degrees.
Morphisms in the category of vector bundles are represented by
commutative diagram of smooth maps

E1
Φ //

τ1

��

E2

τ2

��
M1

ϕ // M2

being linear in fibres.
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Graded bundles

Canonical examples and constructions: TM, T∗M, E ⊗M F , ∧kE , etc.

A straightforward generalization is the concept of a graded bundle
τ : F → M with a local trivialization by U × Rn as before, and with
the difference that the local coordinates (y1, . . . , yn) in the fibres
have now associated positive integer weights w1, . . . ,wn, that are
preserved by changes of local trivializations:

U ∩ V × Rn 3 (x , y) 7→ (x ,A(x , y)) ∈ U ∩ V × Rn ,

One can show that in this case A(x , y) must be polynomial in fiber
coordinates, i.e. any graded bundle is a polynomial bundle.

As these polynomials need not to be linear, graded bundles do not
have, in general, vector space structure in fibers. For instance, if
(y , z) ∈ R2 are coordinates of degrees 1, 2, respectively, then the map
(y , z) 7→ (y , z + y2) is a diffeomorphism preserving the degrees, but it
is nonlinear.

If all wi ≤ r , we say that the graded bundle is of degree r .
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Graded bundles

In the above terminology, vector bundles are just graded bundles of
degree 1.

Graded bundles Fk of degree k admit, like many jet bundles, a tower
of affine fibrations by their subbundles of lower degrees

Fk
τk−→ Fk−1

τk−1

−→ · · · τ3

−→ F2
τ2

−→ F1
τ1

−→ F0 = M .

Canonical examples: TkM, with canonical coordinates (x , ẋ , ẍ ,
...
x , . . . )

of degrees, respectively, 0, 1, 2, 3, etc.

Another example. If τ : E → M is a vector bundle, then ∧rTE is
canonically a graded bundle of degree r with respect to the projection

∧rTτ : ∧rTE → ∧rTM .

Note that similar objects has been used in supergeometry by
Kosmann-Schwarzbach, Voronov, Mackenzie, Roytenberg et al. under
the name N-manifolds. However, we will work with classical, purely
even manifolds during this talk.
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Graded Bundles

With the use of coordinates (xα, ya) with degrees 0 for basic
coordinates xα, and degrees wa > 0 for the fibre coordinates ya, we
can define on the graded bundle F a globally defined weight vector
field (Euler vector field)

∇F =
∑
a

way
a∂ya .

The flow of the weight vector field extends to a smooth action
R 3 t 7→ ht of multiplicative reals on F , ht(x

µ, ya) = (xµ, twaya).
Such an action h : R× F → F , ht ◦ hs = hts , we will call a
homogeneity structure.

A function f : F → R is called homogeneous of degree (weight) k if
f (ht(x)) = tk f (x); similarly for the homogeneity of tensor fields.

Morphisms of two homogeneity structures (Fi , h
i ), i = 1, 2, are

defined as smooth maps Φ : F1 → F2 intertwining the R-actions:
Φ ◦ h1

t = h2
t ◦ Φ. Consequently, a homogeneity substructure is a

smooth submanifold S invariant with respect to h, ht(S) ⊂ S .
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Double Graded Bundles

The fundamental fact (c.f. Grabowski-Rotkiewicz) says that graded
bundles and homogeneity structures are in fact equivalent concepts.

Theorem

For any homogeneity structure h on a manifold F , there is a smooth
submanifold M = h0(F ) ⊂ F , a non-negative integer k ∈ N, and an
R-equivariant map Φk

h : F → TkF|M which identifies F with a graded

submanifold of the graded bundle TkF . In particular, there is an atlas on
F consisting of local homogeneous functions.

As two graded bundle structure on the same manifold are just two
homogeneity structures, the obvious concept of compatibility leads to the
following: A double graded bundle is a manifold equipped with two
homogeneity structures h1, h2 which are compatible in the sense that

h1
t ◦ h2

s = h2
s ◦ h1

t for all s, t ∈ R .
This covers of course the concept of a double vector bundle of Pradines
and Mackenzie, and extends to n-tuple graded bundles in the obvious way.
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Double Graded Bundles

The fundamental fact (c.f. Grabowski-Rotkiewicz) says that graded
bundles and homogeneity structures are in fact equivalent concepts.

Theorem

For any homogeneity structure h on a manifold F , there is a smooth
submanifold M = h0(F ) ⊂ F , a non-negative integer k ∈ N, and an
R-equivariant map Φk

h : F → TkF|M which identifies F with a graded

submanifold of the graded bundle TkF . In particular, there is an atlas on
F consisting of local homogeneous functions.

As two graded bundle structure on the same manifold are just two
homogeneity structures, the obvious concept of compatibility leads to the
following: A double graded bundle is a manifold equipped with two
homogeneity structures h1, h2 which are compatible in the sense that

h1
t ◦ h2

s = h2
s ◦ h1

t for all s, t ∈ R .
This covers of course the concept of a double vector bundle of Pradines
and Mackenzie, and extends to n-tuple graded bundles in the obvious way.

J.Grabowski (IMPAN) New developments in geometric mechanics Bȩdlewo, 10-16/05/2015 7 / 27



Double Graded Bundles

The fundamental fact (c.f. Grabowski-Rotkiewicz) says that graded
bundles and homogeneity structures are in fact equivalent concepts.

Theorem

For any homogeneity structure h on a manifold F , there is a smooth
submanifold M = h0(F ) ⊂ F , a non-negative integer k ∈ N, and an
R-equivariant map Φk

h : F → TkF|M which identifies F with a graded

submanifold of the graded bundle TkF . In particular, there is an atlas on
F consisting of local homogeneous functions.

As two graded bundle structure on the same manifold are just two
homogeneity structures, the obvious concept of compatibility leads to the
following: A double graded bundle is a manifold equipped with two
homogeneity structures h1, h2 which are compatible in the sense that

h1
t ◦ h2

s = h2
s ◦ h1

t for all s, t ∈ R .
This covers of course the concept of a double vector bundle of Pradines
and Mackenzie, and extends to n-tuple graded bundles in the obvious way.

J.Grabowski (IMPAN) New developments in geometric mechanics Bȩdlewo, 10-16/05/2015 7 / 27
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Double graded bundles - examples

Lifts. If τ : F → M is a graded bundle of degree k , then TF and T∗F
carry canonical double graded bundle structure: one is the obvious
vector bundle, the other is of degree k. A double graded bundle
whose one structure is linear we will call a GL-bundle. There are also
lifts of graded structures on F to TrF .

In particular, if τ : E → M is a vector bundle, then TE and T∗E are
double vector bundles. The latter is isomorphic with T∗E ∗.
As a linear Poisson structure on E ∗ yields a map T∗E ∗ → TE ∗,
a Lie algebroid structure on E can be encoded as a morphism of
double vector bundles, ε : T∗E → TE ∗ (!)

If τ : E → M is a vector bundle, then ∧kTE is canonically a
GL-bundle: ∧kTE

wwnnnn ((RRRR

E
((QQQQQ ∧kTM
uullllll

M

.
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Double graded bundles - examples

Lifts. If τ : F → M is a graded bundle of degree k , then TF and T∗F
carry canonical double graded bundle structure: one is the obvious
vector bundle, the other is of degree k. A double graded bundle
whose one structure is linear we will call a GL-bundle. There are also
lifts of graded structures on F to TrF .

In particular, if τ : E → M is a vector bundle, then TE and T∗E are
double vector bundles. The latter is isomorphic with T∗E ∗.
As a linear Poisson structure on E ∗ yields a map T∗E ∗ → TE ∗,
a Lie algebroid structure on E can be encoded as a morphism of
double vector bundles, ε : T∗E → TE ∗ (!)

If τ : E → M is a vector bundle, then ∧kTE is canonically a
GL-bundle: ∧kTE

wwnnnn ((RRRR

E
((QQQQQ ∧kTM
uullllll

M

.

J.Grabowski (IMPAN) New developments in geometric mechanics Bȩdlewo, 10-16/05/2015 8 / 27
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Double graded bundles - examples

Lifts. If τ : F → M is a graded bundle of degree k , then TF and T∗F
carry canonical double graded bundle structure: one is the obvious
vector bundle, the other is of degree k. A double graded bundle
whose one structure is linear we will call a GL-bundle. There are also
lifts of graded structures on F to TrF .

In particular, if τ : E → M is a vector bundle, then TE and T∗E are
double vector bundles. The latter is isomorphic with T∗E ∗.
As a linear Poisson structure on E ∗ yields a map T∗E ∗ → TE ∗,
a Lie algebroid structure on E can be encoded as a morphism of
double vector bundles, ε : T∗E → TE ∗ (!)

If τ : E → M is a vector bundle, then ∧kTE is canonically a
GL-bundle: ∧kTE

wwnnnn ((RRRR

E
((QQQQQ ∧kTM
uullllll

M

.

J.Grabowski (IMPAN) New developments in geometric mechanics Bȩdlewo, 10-16/05/2015 8 / 27



The Tulczyjew triple - Lagrangian side

M - positions,
TM - (kinematic)
configurations,
L : TM → R - Lagrangian
T∗M - phase space

D = α−1
M (dL(TM))) = T L(TM) , image of the Tulczyjew differential T L ,

Legendre map: λL : TM → T∗M, λL(x , ẋ) = (x ,
∂L

∂ẋ
) ,

D =

{
(x , p, ẋ , ṗ) : p =

∂L

∂ẋ
, ṗ =

∂L

∂x

}
,

whence the Euler-Lagrange equation: ∂L
∂x = d

dt

(
∂L
∂ẋ

)
.
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∂L

∂ẋ
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∂L

∂ẋ
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∂L

∂ẋ
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∂ẋ
) ,

D =

{
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The Tulczyjew triple - Hamiltonian side

H : T∗M → R

D = β−1
M (dH(T∗M))

D =

{
(x , p, ẋ , ṗ) : ṗ = −∂H

∂x
, ẋ =

∂H

∂p

}
,

whence the Hamilton equations.
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Algebroid setting

DL

T∗E ∗

""EEEEEE

��










Π̃ // TE ∗

##GGGGG

������������
T∗E

!!CCCCC

������������
εoo

E
ρ //

������������
TM

��










E

��

ρoo

E ∗ //

##GGGGGG E ∗

""EEEEE E ∗oo

""EEEEE

M // M Moo

H : E ∗ −→ R

DH ⊂ T∗E ∗

D = T L(E )

D = Π̃(dH(E ∗))

L : E −→ R

DL ⊂ T∗E
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Algebroid setting with vakonomic constraints

D� _
��

SLoo
� _

��
TE ∗

##HHHHH

��











T∗E

%%KKKKKK

��











εoo

TM

��											
E ⊃ S

�������������

ρoo

SL

hh

λL

uujjjjjjjjjjjj

E ∗

##FFFFFF E ∗oo

##FFFFFF

M Moo

where SL is the lagrangian submanifold in T∗E induced by the Lagrangian
on the constraint S , and SL : S → T∗E is the corresponding relation,

SL = {αe ∈ T∗eE : e ∈ S and 〈αe , ve〉 = dL(ve) for every ve ∈ TeS} .

The vakonomically constrained phase dynamics is just D = ε(SL) ⊂ TE ∗.
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Higher order Lagrangians

The mechanics with a higher order Lagrangian L : TkQ → R is
traditionally constructed as a vakonomic mechanics, thanks to the
canonical embedding of of the higher tangent bundle TkQ into the
tangent bundle TTk−1Q as an affine subbundle of holonomic vectors.

Thus we work with the standard Tulczyjew triple for TM, where
M = Tk−1Q, with the presence of vakonomic constraint TkQ ⊂ TTk−1Q:

TT∗Tk−1Q

yyrrrr

��9999999999 T∗TTk−1Qoo T∗TkQ�lr

ttiiiiiiii

��

T∗Tk−1Q //

��:::::::::: Tk−1Q ×Q T∗Q

��666666666

TTk−1Q
yyssss

TkQ
||yyy
_?

oo

Tk−1Q Tk−1Q
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Higher order Lagrangians

The mechanics with a higher order Lagrangian L : TkQ → R is
traditionally constructed as a vakonomic mechanics, thanks to the
canonical embedding of of the higher tangent bundle TkQ into the
tangent bundle TTk−1Q as an affine subbundle of holonomic vectors.

Thus we work with the standard Tulczyjew triple for TM, where
M = Tk−1Q, with the presence of vakonomic constraint TkQ ⊂ TTk−1Q:

TT∗Tk−1Q

yyrrrr

��9999999999 T∗TTk−1Qoo T∗TkQ�lr

ttiiiiiiii

��

T∗Tk−1Q //

��:::::::::: Tk−1Q ×Q T∗Q

��666666666

TTk−1Q
yyssss

TkQ
||yyy
_?

oo

Tk−1Q Tk−1Q

J.Grabowski (IMPAN) New developments in geometric mechanics Bȩdlewo, 10-16/05/2015 13 / 27
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Higher order Euler-Lagrange equations

The Lagrangian function L = L(q, . . . ,
(k)
q ) generates the phase dynamics

D =

 (v , p, v̇ , ṗ) : v̇i−1 = vi , ṗi + pi−1 =
∂L

∂
(i)
q

, ṗ0 =
∂L

∂q
, pk−1 =

∂L

∂
(k)
q

 .

This leads to the higher Euler-Lagrange equations in the traditional form:

(i)
q =

diq

dt i
, i = 1, . . . , k ,

0 =
∂L

∂q
− d

dt

(
∂L

∂q̇

)
+ · · ·+ (−1)k

dk

dtk

 ∂L

∂
(k)
q

 .

These equations can be viewed as a system of differential equations of
order k on TkQ or, which is the standard point of view, as ordinary
differential equation of order 2k on Q.
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Higher order Euler-Lagrange equations

The Lagrangian function L = L(q, . . . ,
(k)
q ) generates the phase dynamics

D =
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, ṗ0 =
∂L

∂q
, pk−1 =

∂L

∂
(k)
q

 .

This leads to the higher Euler-Lagrange equations in the traditional form:

(i)
q =

diq

dt i
, i = 1, . . . , k ,

0 =
∂L

∂q
− d

dt

(
∂L

∂q̇

)
+ · · ·+ (−1)k

dk

dtk

 ∂L

∂
(k)
q

 .

These equations can be viewed as a system of differential equations of
order k on TkQ or, which is the standard point of view, as ordinary
differential equation of order 2k on Q.

J.Grabowski (IMPAN) New developments in geometric mechanics Bȩdlewo, 10-16/05/2015 14 / 27
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Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on
the following generalization of the embedding TkQ ↪→ TTk−1Q.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the
category of GL-bundles which assigns, for an arbitrary graded bundle Fk of
degree k , a canonical GL-bundle D(Fk) which is linear over Fk−1, called
the linearisation of Fk , together with a graded embedding ι : Fk ↪→ D(Fk)
of Fk as an affine subbundle of the vector bundle D(Fk).

Elements of Fk ⊂ D(Fk) may be viewed as ‘holonomic vectors’ in the
linear-graded bundle D(Fk). Another geometric part we need is a (Lie)
algebroid structure on the vector bundle D(Fk)→ Fk−1, compatible with
the second graded structure (homogeneity). We will call such GL-bundles
D weighted (Lie) algebroids and view them as abstract generalizations of
the Lie algebroid TTk−1M. Such D is called a VB-algebroid if it is a
double vector bundle.
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Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on
the following generalization of the embedding TkQ ↪→ TTk−1Q.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the
category of GL-bundles which assigns, for an arbitrary graded bundle Fk of
degree k , a canonical GL-bundle D(Fk) which is linear over Fk−1, called
the linearisation of Fk , together with a graded embedding ι : Fk ↪→ D(Fk)
of Fk as an affine subbundle of the vector bundle D(Fk).

Elements of Fk ⊂ D(Fk) may be viewed as ‘holonomic vectors’ in the
linear-graded bundle D(Fk). Another geometric part we need is a (Lie)
algebroid structure on the vector bundle D(Fk)→ Fk−1, compatible with
the second graded structure (homogeneity). We will call such GL-bundles
D weighted (Lie) algebroids and view them as abstract generalizations of
the Lie algebroid TTk−1M. Such D is called a VB-algebroid if it is a
double vector bundle.

J.Grabowski (IMPAN) New developments in geometric mechanics Bȩdlewo, 10-16/05/2015 15 / 27
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Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on
the following generalization of the embedding TkQ ↪→ TTk−1Q.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the
category of GL-bundles which assigns, for an arbitrary graded bundle Fk of
degree k , a canonical GL-bundle D(Fk) which is linear over Fk−1, called
the linearisation of Fk , together with a graded embedding ι : Fk ↪→ D(Fk)
of Fk as an affine subbundle of the vector bundle D(Fk).

Elements of Fk ⊂ D(Fk) may be viewed as ‘holonomic vectors’ in the
linear-graded bundle D(Fk). Another geometric part we need is a (Lie)
algebroid structure on the vector bundle D(Fk)→ Fk−1, compatible with
the second graded structure (homogeneity). We will call such GL-bundles
D weighted (Lie) algebroids and view them as abstract generalizations of
the Lie algebroid TTk−1M. Such D is called a VB-algebroid if it is a
double vector bundle.

J.Grabowski (IMPAN) New developments in geometric mechanics Bȩdlewo, 10-16/05/2015 15 / 27



Weighted Lie algebroids out of reductions

Let G ⇒ M be a Lie groupoid and consider the subbundle TkGs ⊂ TkG
consisting of all higher order velocities tangent to source-leaves. The
bundle

Fk = Ak(G) := TkGs
∣∣∣
M
,

inherits graded bundle structure of degree k as a graded subbundle of
TkG. Of course, A = A1(G) can be identified with the Lie algebroid of G.

Theorem

The linearisation of Ak(G) is given as

D(Ak(G)) ' {(Y ,Z ) ∈ A(G)×M TAk−1(G)| ρ(Y ) = Tτ(Z )} ,

viewed as a vector bundle over Ak−1(G) with respect to the obvious
projection of part Z onto Ak−1(G), where ρ : A(G)→ TM is the standard
anchor of the Lie algebroid and τ : Ak−1(G)→ M is the obvious projection.
Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie
algebroid prolongation in the sense of Popescu and Mart́ınez.
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inherits graded bundle structure of degree k as a graded subbundle of
TkG. Of course, A = A1(G) can be identified with the Lie algebroid of G.

Theorem

The linearisation of Ak(G) is given as

D(Ak(G)) ' {(Y ,Z ) ∈ A(G)×M TAk−1(G)| ρ(Y ) = Tτ(Z )} ,

viewed as a vector bundle over Ak−1(G) with respect to the obvious
projection of part Z onto Ak−1(G), where ρ : A(G)→ TM is the standard
anchor of the Lie algebroid and τ : Ak−1(G)→ M is the obvious projection.
Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie
algebroid prolongation in the sense of Popescu and Mart́ınez.
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Lagrangian framework for graded bundles

A weighted Lie algebroid on D(Fk) gives the Tulczyjew triple
D� _
��

P(F †k )
Π̂ε̂ � ,2

���������� ��>>
TD∗(Fk)

���������� %%KKKK
T∗Fk

��								 ��;;;
ε̂�lr

Fk
ρ̂ //

���������
TFk−1

����������
Fk

ρ̂oo

���������

���������

���������

dLii

λL
vvmmmmmm

T L�io YYYYYYYYYYYYYYYYYYY

Mi(Fk)
$$JJJ
$$JJJ

dH
99

D∗(Fk)oo //

&&MMM
Mi(Fk)

$$III

Fk−1 Fk−1 Fk−1

Here, the diagram consists of relations, ε̂ : T∗Fk−−�T∗D(Fk)→ TD∗(Fk),
and Mi(Fk) is the so called Mironian of Fk . In the classical case,
Mi(TkM) = Tk−1M ×M T∗M. Forget the Hamiltonian side.

T L is the Tulczyjew differential and λL the Legendre relation.

The fact that we obtain the Euler-Lagrange equations of higher order
comes from the vakonomic constraint and the additional gradation.
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Lagrangian framework for graded bundles

A weighted Lie algebroid on D(Fk) gives the Tulczyjew triple
D� _
��

P(F †k )
Π̂ε̂ � ,2

���������� ��>>
TD∗(Fk)

���������� %%KKKK
T∗Fk

��								 ��;;;
ε̂�lr

Fk
ρ̂ //

���������
TFk−1

����������
Fk

ρ̂oo

���������

���������

���������

dLii

λL
vvmmmmmm

T L�io YYYYYYYYYYYYYYYYYYY

Mi(Fk)
$$JJJ
$$JJJ

dH
99

D∗(Fk)oo //

&&MMM
Mi(Fk)

$$III

Fk−1 Fk−1 Fk−1

Here, the diagram consists of relations, ε̂ : T∗Fk−−�T∗D(Fk)→ TD∗(Fk),
and Mi(Fk) is the so called Mironian of Fk . In the classical case,
Mi(TkM) = Tk−1M ×M T∗M. Forget the Hamiltonian side.

T L is the Tulczyjew differential and λL the Legendre relation.

The fact that we obtain the Euler-Lagrange equations of higher order
comes from the vakonomic constraint and the additional gradation.

J.Grabowski (IMPAN) New developments in geometric mechanics Bȩdlewo, 10-16/05/2015 17 / 27
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Example

Let g be a Lie algebra and put F2 = g2 = g [1]× g [2], with coordinates
(x i , z j) on g2 and coordinates (x i , y j , zk) on D(g2) = g [1]× g [1]× g [2].

The embedding ι : g2 ↪→ D(g2) takes the form ι(x , z) = (x , x , z) and the
vector bundle projection is τ(x , y , z) = x .

The Lie algebroid structure ε : T∗D(g2)→ TD∗(g2) reads

(x , y , z , α, β, γ) 7→ (x , β, γ, z , ad∗yβ, α) .

Given a Lagrangian L : g2 → R, the Tulczyjew differential relation
T L : g2 → TD∗(g2) is

T L(x , z) =

{(
x , β,

∂L

∂z
(x , z), z , ad∗xβ, α

)
: α + β =

∂L

∂x
(x , z)

}
.

Hence, for the phase dynamics,

β =
∂L

∂x
(x , z)− d

dt

(
∂L

∂z
(x , z)

)
.
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Example

Let g be a Lie algebra and put F2 = g2 = g [1]× g [2], with coordinates
(x i , z j) on g2 and coordinates (x i , y j , zk) on D(g2) = g [1]× g [1]× g [2].

The embedding ι : g2 ↪→ D(g2) takes the form ι(x , z) = (x , x , z) and the
vector bundle projection is τ(x , y , z) = x .

The Lie algebroid structure ε : T∗D(g2)→ TD∗(g2) reads

(x , y , z , α, β, γ) 7→ (x , β, γ, z , ad∗yβ, α) .

Given a Lagrangian L : g2 → R, the Tulczyjew differential relation
T L : g2 → TD∗(g2) is

T L(x , z) =

{(
x , β,

∂L

∂z
(x , z), z , ad∗xβ, α

)
: α + β =

∂L

∂x
(x , z)

}
.

Hence, for the phase dynamics,

β =
∂L

∂x
(x , z)− d

dt

(
∂L

∂z
(x , z)

)
.

J.Grabowski (IMPAN) New developments in geometric mechanics Bȩdlewo, 10-16/05/2015 18 / 27
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Example

This leads to the Euler-Lagrange equations on g2:

ẋ = z ,

d

dt

(
∂L

∂x
(x , z)− d

dt

(
∂L

∂z
(x , z)

))
= ad∗x

(
∂L

∂x
(x , z)− d

dt

(
∂L

∂z
(x , z)

))
.

These equations are second order and induce the Euler-Lagrange equations
on g which are of order 3:

d

dt

(
∂L

∂x
(x , ẋ)− d

dt

(
∂L

∂z
(x , ẋ)

))
= ad∗x

(
∂L

∂x
(x , ẋ)− d

dt

(
∂L

∂z
(x , ẋ)

))
.

For instance, the ‘free’ Lagrangian L(x , z) = 1
2

∑
i Ii (z

i )2 induces the
equations on g (ckij are structure constants, no summation convention):

Ij
...
x j =

∑
i ,k
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))
.

For instance, the ‘free’ Lagrangian L(x , z) = 1
2

∑
i Ii (z

i )2 induces the
equations on g (ckij are structure constants, no summation convention):

Ij
...
x j =

∑
i ,k

ckij Ikx
i ẋk .
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ẋ = z ,

d

dt

(
∂L

∂x
(x , z)− d

dt

(
∂L

∂z
(x , z)

))
= ad∗x

(
∂L

∂x
(x , z)− d

dt

(
∂L

∂z
(x , z)

))
.

These equations are second order and induce the Euler-Lagrange equations
on g which are of order 3:

d

dt

(
∂L

∂x
(x , ẋ)− d
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(x , ẋ)− d

dt

(
∂L

∂z
(x , ẋ)
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Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid G and a Lagrangian L : Ak → R on
Ak = Ak(G). We will refer to such systems as a k-th order Lagrangian
system on the Lie algebroid A(G). The relevant diagram here is

D ⊂TD∗(Ak(G))

��

&&LLLLLLLL
T∗D(Ak(G))

εoo

wwooooooooo
T∗Ak(G)

r�lr

��

D∗(Ak(G))

TA(G) D(Ak(G))
ρoo Ak(G)

ιoo

dL

WW

λL
�gn WWWWWWWWWWWWWWWWWWWWWW

Here, D(Ak(G)) is the corresponding Lie algebroid prolongation,
D = ε ◦ r ◦ dL(Ak(G)), and λL is the Legendre relation.

Note that we deal with reductions: in the case G is a Lie group,

Ak(G) = Tk(G)/G and D(Ak(G)) = TTk−1(G)/G .
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Higher order Lagrangian mechanics on Lie algebroids

For instance, using xA as base coordinates, and yai as fibre coordinates of

degree i = 1, . . . , k in Ak , extended by the appropriate momenta πjb of
degree j = 1, . . . , k in D∗(Ak), we get the equations for the Legendre
relation in the form (no Lie algebroid structure appears!):

kπ1
a =

∂L

∂yak
,

(k − 1)π2
b =

∂L

∂ybk−1

− 1

k

d

dt

(
∂L

∂ybk

)
,

...

πkd =
∂L

∂yd1
− 1

2!

d

dt

(
∂L

∂yd2

)
+

1

3!

d2

dt2

(
∂L

∂yd3

)
− · · ·

+(−1)k
1

(k − 1)!

dk−2

dtk−2

(
∂L

∂ydk−1

)
− (−1)k

1

k!

dk−1

dtk−1

(
∂L

∂ydk

)
,

which we recognise as the Jacobi–Ostrogradski momenta.
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Higher order Lagrangian mechanics on Lie algebroids

For instance, using xA as base coordinates, and yai as fibre coordinates of

degree i = 1, . . . , k in Ak , extended by the appropriate momenta πjb of
degree j = 1, . . . , k in D∗(Ak), we get the equations for the Legendre
relation in the form (no Lie algebroid structure appears!):

kπ1
a =

∂L

∂yak
,

(k − 1)π2
b =

∂L

∂ybk−1

− 1

k

d

dt

(
∂L

∂ybk

)
,

...

πkd =
∂L

∂yd1
− 1

2!

d

dt

(
∂L

∂yd2

)
+

1

3!

d2

dt2

(
∂L

∂yd3

)
− · · ·

+(−1)k
1

(k − 1)!

dk−2

dtk−2

(
∂L

∂ydk−1

)
− (−1)k

1

k!

dk−1

dtk−1

(
∂L

∂ydk

)
,

which we recognise as the Jacobi–Ostrogradski momenta.

J.Grabowski (IMPAN) New developments in geometric mechanics Bȩdlewo, 10-16/05/2015 21 / 27
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Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

d

dt
πka = ρAa (x)

∂L

∂xA
+ yb1 C

c
ba(x)πkc ,

where ρAa and C c
ba are structure functions of the Lie algebroid A = A(G).

The above equation can then be rewritten as

ρAa (x) ∂L
∂xA

=(
δca

d
dt − yb1 C

c
ba(x)

) (
∂L
∂y c

1
− 1

2!
d
dt

(
∂L
∂y c

2

)
· · · −(−1)k 1

k!
dk−1

dtk−1

(
∂L
∂y c

k

))
which we define to be the k-th order Euler–Lagrange equations on A(G).

The above higher order algebroid Euler-Lagrange equations are in
complete agrement with the ones obtained by Jóźwikowski & Rotkiewicz,
Colombo & de Diego, as well as Mart́ınez. We clearly recover the standard
higher Euler–Lagrange equations on TkM as a particular example.
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The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a
javelin defined on T2R3,

L(x , y , z) =
1

2

(
3∑

i=1

(y i )2 − (z i )2

)
.

We can understand G = R3 here as a commutative Lie group, and since L
is G -invariant, we get immediately the reduction to the graded bundle
R3[1]× R3[2]. The Euler-Lagrange equations on T2R3,

d

dt

(
∂L

∂y i
− 1

2

d

dt

(
∂L

∂z i

))
= 0 ,

give in this case
dy i

dt
=

1

2

d2z i

dt2
,

so the Euler-Lagrange equation on R3 reads

d2x i

dt2
=

1

2

d4x i

dt4
.

Jump to end
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The Tulczyjew triple for strings

Using the canonical multisymplectic structure on ∧2T∗M, we get the
following Tulczyjew triple for multivector bundles, consisting of double
graded bundle morphisms: D� _

��
T∗ ∧2 T∗M

��
��@@@@@ ∧2T ∧2 T∗M

α2
M //

β2
Moo

�������������
!!BBBBB T∗ ∧2 TM

�������������
��=====

∧2TM

�������������
∧2TM

��
oo // ∧2TM

�������������

dL
aa

T L�gn WWWWWWWWWWWWWWWW

∧2T∗M

!!BBBBBB ∧2T∗M //oo

""EEEEEE ∧2T∗M

��@@@@@

M M //oo M R2Soo

∧2TS

OO

.

The way of obtaining the implicit phase dynamics D, as a submanifold of
∧2T ∧2 T∗M, from a Lagrangian L : ∧2TM → R (or from a Hamiltonian
H : ∧2T∗M → R) is now standard: D = T L(∧2TM).
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The Tulczyjew triple for strings

Using the canonical multisymplectic structure on ∧2T∗M, we get the
following Tulczyjew triple for multivector bundles, consisting of double
graded bundle morphisms: D� _

��
T∗ ∧2 T∗M

��
��@@@@@ ∧2T ∧2 T∗M

α2
M //

β2
Moo

�������������
!!BBBBB T∗ ∧2 TM

�������������
��=====

∧2TM

�������������
∧2TM

��
oo // ∧2TM

�������������

dL
aa

T L�gn WWWWWWWWWWWWWWWW

∧2T∗M

!!BBBBBB ∧2T∗M //oo

""EEEEEE ∧2T∗M

��@@@@@

M M //oo M R2Soo

∧2TS

OO

.

The way of obtaining the implicit phase dynamics D, as a submanifold of
∧2T ∧2 T∗M, from a Lagrangian L : ∧2TM → R (or from a Hamiltonian
H : ∧2T∗M → R) is now standard: D = T L(∧2TM).

J.Grabowski (IMPAN) New developments in geometric mechanics Bȩdlewo, 10-16/05/2015 24 / 27
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The Euler-Lagrange equations

A surface S : (t, s) 7→ (xσ(t, s)) in M satisfies the Euler-Lagrange
equations if the image by dL of its prolongation to ∧2TM,

(t, s) 7→
(
xσ(t, s), ẋµν =

∂xµ

∂t

∂xν

∂s
− ∂xµ

∂s

∂xν

∂t

)
,

is α2
M -related to an admissible surface, i.e. the prolongation of a surface

living in the phase space ∧2T∗M to ∧2T ∧2 T∗M.
In coordinates, the Euler-Lagrange equations read

ẋµν =
∂xµ

∂t

∂xν

∂s
− ∂xµ

∂s

∂xν

∂t
,

∂L

∂xσ
=

∂xµ

∂t

∂

∂s

(
∂L

∂ẋµσ
(t, s)

)
− ∂xµ

∂s

∂

∂t

(
∂L

∂ẋµσ
(t, s)

)
.
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The Euler-Lagrange equations

A surface S : (t, s) 7→ (xσ(t, s)) in M satisfies the Euler-Lagrange
equations if the image by dL of its prolongation to ∧2TM,

(t, s) 7→
(
xσ(t, s), ẋµν =
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Plateau problem

In particular, if M = R3 = {(x1 = x , x2 = y , x3 = z)} with the Euclidean
metric, the canonically induced ‘free’ Lagrangian on ∧2TM reads

L(xµ, ẋκλ) =

√∑
κ,λ

(ẋκλ)
2
.

The Euler-Lagrange equation for surfaces being graphs
(x , y) 7→ (x , y , z(x , y)) provides the well-known equation for minimal
surfaces, found already by Lagrange :

∂

∂x

 zx√
1 + z2

x + z2
y

+
∂

∂y

 zy√
1 + z2

x + z2
y

 = 0 .

In another form:

(1 + z2
x )zyy − 2zxzyzxy + (1 + z2

y )zxx = 0 .

Starting with a Lorentz metric, we can obtain analogously the
Euler-Lagrange equations for the Nambu-Goto Lagrangian.
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