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Quantum mechanics

Hilbert space - L2(Q), where Q = R
n is the classical

configuration space.

Observables - self-adjoint operators.

Evolution of states - governed by a Hamiltonian operator:

Ĥ =
p̂2

2m
+ V (x̂),

where:
p̂kψ(x) :=

~

i
d

dxk
ψ(x) – momentum operator,

x̂kψ(x) := xkψ(x) – position operator.

Momentum representation: ψ̃(p) – Fourier transform of ψ(x).

Probability densities: |ψ(x)|2 and |ψ̃(p)|2.
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Geometric Quantization

How much of this structure can be reconstructed from the classical
phase space? (Souriau, Tulczyjew 1965-68)
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Geometric Quantization

How much of this structure can be reconstructed from the classical
phase space? (Souriau, Tulczyjew 1965-68)

In particular: p̂kψ(x) :=
~

i
d

dxk
ψ(x) does not work in

curvilinear coordinates (xk) on the configuration space Q!

Is the linear (affine) structure of the configuration space Q

necessary in quantum mechanics?

Is the Lebesque measure d
nx carried by the linear structure of

Q necessary for the definition of the appropriate Hilbert space
structure:

(ϕ|ψ) :=
∫

Q

ϕψ d
nx .
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Classical mechanics

Phase space: P = T ∗Q = R
2n; symplectic form ω = dpi ∧ dx i

Observables - functions on P.

Evolution - governed by the Hamiltonian vector field XH ,
uniquely assigned to any observable H according to:

ω(XH , ·) = −dH .

Example:

H =
p2

2m
+ V (x) .

Its Hamiltonian vector field:

XH = g ij 1

m
pj∂x i − ∂V

∂x i
∂pi

.

Jerzy Kijowski, Piotr Waluk Physics of a qubit from geometric quantization 4/32



Polarization

Position representation ψ(x) versus momentum representation
ψ̃(p): different Lagrangian foliations of P.
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Polarization

Position representation ψ(x) versus momentum representation
ψ̃(p): different Lagrangian foliations of P.

{x = const.} for the position representation.

{p = const.} for the momentum representation.
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Polarization

Position representation ψ(x) versus momentum representation
ψ̃(p): different Lagrangian foliations of P.

{x = const.} for the position representation.

{p = const.} for the momentum representation.

Λ

QΛ = P/Λ

Geometrically: quantum states represented by wave functions
defined on a generalized configuration space QΛ = P/Λ
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Galilei transformation

Classical Galilei transformation:

q′ = q − Vt ; p′ = p − mV

(V – observer’s velocity).
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Classical Galilei transformation:

q′ = q − Vt ; p′ = p − mV

(V – observer’s velocity). At t = 0, we have q′ = q. Nevertheless,
wave function undergoes the Galilei transformation:

ψ(x) := ψ′(x) · e i

~
S(x)

where S(x) = mVx .
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(V – observer’s velocity). At t = 0, we have q′ = q. Nevertheless,
wave function undergoes the Galilei transformation:

ψ(x) := ψ′(x) · e i

~
S(x)

where S(x) = mVx . Wave function describes quantum state with
respect to a reference frame.
Reference frame: Lagrangian surface transversal to foliation Λ.
For the observer at rest:

λ = {p = 0} .
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Galilei transformation

Classical Galilei transformation:

q′ = q − Vt ; p′ = p − mV

(V – observer’s velocity). At t = 0, we have q′ = q. Nevertheless,
wave function undergoes the Galilei transformation:

ψ(x) := ψ′(x) · e i

~
S(x)

where S(x) = mVx . Wave function describes quantum state with
respect to a reference frame.
Reference frame: Lagrangian surface transversal to foliation Λ.
For the observer at rest:

λ = {p = 0} .

For the observer moving with velocity V :

λ′ = {p′ = 0} = {p = mV } .
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Galilei transformation

Theorem: A pair of reference frames, (λ′, λ) defines uniquely a
closed one-form on QΛ. It will be denoted “λ′ − λ”.
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Closed form is exact (due to trivial topology): λ′ − λ = dSλ′,λ.
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Galilei transformation

Theorem: A pair of reference frames, (λ′, λ) defines uniquely a
closed one-form on QΛ. It will be denoted “λ′ − λ”.
Closed form is exact (due to trivial topology): λ′ − λ = dSλ′,λ.

Resulting phase factor: ψλ′ = e
i

~
Sλ′,λ · ψλ
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Galilei transformation

Theorem: A pair of reference frames, (λ′, λ) defines uniquely a
closed one-form on QΛ. It will be denoted “λ′ − λ”.
Closed form is exact (due to trivial topology): λ′ − λ = dSλ′,λ.

Resulting phase factor: ψλ′ = e
i

~
Sλ′,λ · ψλ

Global phase never controlled!

Λ

QΛ

λ′

λ

q
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Galilei transformation

Proof: For q ∈ QΛ and κ ∈ q there is a canonical isomorphism:

Tκq ≃ T ∗
q QΛ

where 〈P |p′〉 := Ω(p1, p
′) = Ω(p2, p

′).

Λ

QΛ

κ

κ′

q

p′

p1

p2

P

Each fiber q is an affine space.
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Galilei transformation

Polarization Λ and a transversal reference frame λ imply a
symplectomorphism:

P ≃ T ∗QΛ .

QΛ = P/Λ

P=T
∗
QΛ

- zero section of T
∗
QΛλ -
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Galilei transformation

Polarization Λ and a transversal reference frame λ imply a
symplectomorphism:

P ≃ T ∗QΛ .

QΛ = P/Λ

P=T
∗
QΛ

- zero section of T
∗
QΛλ -

Observable Sλ′,λ on P generates a group of symplectomorphisms:

(q, p) →
(
q, p + t(λ′ − λ)

)
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Hilbert space of half-densities

There is no need for a “privileged” measure on the configuration
space QΛ if we treat wave functions as half-densities and not just
scalar functions:

(φ|ψ) :=
∫

Q

φψ d
nx =

∫

Q

(

φ
√

dnx
)(

ψ
√

dnx
)

.

Φ = φ
√

dnx , Ψ = ψ
√

dnx
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Hilbert space of half-densities

There is no need for a “privileged” measure on the configuration
space QΛ if we treat wave functions as half-densities and not just
scalar functions:

(φ|ψ) :=
∫

Q

φψ d
nx =

∫

Q

(

φ
√

dnx
)(

ψ
√

dnx
)

.

Φ = φ
√

dnx , Ψ = ψ
√

dnx

L2(QΛ) – Hilbert space of square-integrable half-forms with scalar
product:

(Φ|Ψ) =

∫

Q

φΨ
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Quantization of momenta

Now, quantization of momenta does not require any linear
structure on the configuration space QΛ:
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Quantization of momenta

Now, quantization of momenta does not require any linear
structure on the configuration space QΛ:
If X = X i ∂

∂x i is a vector field on QΛ, then X (x , p) := X i (x)pi is an
observable which generates a symplectomorphism of P which is a
canonical lift of the flow X from QΛ to T ∗QΛ.
Naive quantization rule: p̂kψ(x) :=

~

i
d

dxk
ψ(x) must be replaced by:

X̂Ψ(x) :=
~

i
LXΨ(x)

(Lie derivative of a half-form).
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Quantization of momenta

Now, quantization of momenta does not require any linear
structure on the configuration space QΛ:
If X = X i ∂

∂x i is a vector field on QΛ, then X (x , p) := X i (x)pi is an
observable which generates a symplectomorphism of P which is a
canonical lift of the flow X from QΛ to T ∗QΛ.
Naive quantization rule: p̂kψ(x) :=

~

i
d

dxk
ψ(x) must be replaced by:

X̂Ψ(x) :=
~

i
LXΨ(x)

(Lie derivative of a half-form).
Automatically self-adjoint if X -complete!
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Quantization schemes

Quantum state is described by a wave function Ψ with

respect to a polarization Λ (a “representation”) and a
reference frame λ.
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reference frame λ.

Appropriate notation would be ΨΛ,λ.

How ΨΛ,λ changes if we change Λ and λ?

On the classical level any such change is infinitesimally

implemented by a Hamiltonian vector field XH .
If we want to have a polarization-independent description of a
quantum state, we must define a quantum counterpart of this
change, i.e. a mapping from classical to quantum observables:

F(P) ∋ H
quantization scheme−−−−−−−−−−−−→ Ĥ ∈ Op(H)

(self-adjoint operators!)
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Quantization schemes

Quantum state is described by a wave function Ψ with

respect to a polarization Λ (a “representation”) and a
reference frame λ.

Appropriate notation would be ΨΛ,λ.

How ΨΛ,λ changes if we change Λ and λ?

On the classical level any such change is infinitesimally

implemented by a Hamiltonian vector field XH .
If we want to have a polarization-independent description of a
quantum state, we must define a quantum counterpart of this
change, i.e. a mapping from classical to quantum observables:

F(P) ∋ H
quantization scheme−−−−−−−−−−−−→ Ĥ ∈ Op(H)

(self-adjoint operators!) GXH

t → e−
i

~
tĤ
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Quantization schemes

We already know how to “quantize” some observables:
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We already know how to “quantize” some observables:

Function on QΛ generate Galilei transformations and,
therefore, must be quantized as multiplication operators.
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Quantization schemes

We already know how to “quantize” some observables:

Function on QΛ generate Galilei transformations and,
therefore, must be quantized as multiplication operators.

Function linear in momenta generates a hamiltonian flow on
P, preserving polarization Λ and the reference frame {p = 0}.
Corresponding transport of the wave function is generated by
the Lie derivative: X̂ = ~

i
LX , automatically self-adjoint.
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Quantization schemes

We already know how to “quantize” some observables:

Function on QΛ generate Galilei transformations and,
therefore, must be quantized as multiplication operators.

Function linear in momenta generates a hamiltonian flow on
P, preserving polarization Λ and the reference frame {p = 0}.
Corresponding transport of the wave function is generated by
the Lie derivative: X̂ = ~

i
LX , automatically self-adjoint.

Linearity ???
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Quantization schemes

The result of the “change of polarization” procedure should not
depend upon the way we change it!!!

XH

−XH

XG

−XG

e
i

~
Ĥ e

i

~
Ĝ

X{H,G}

e

(

i

~
{H,G }̂

)

Base: polarizations

Fiber: quantum states
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Quantization schemes

The result of the “change of polarization” procedure should not
depend upon the way we change it!!!

XH

−XH

XG

−XG

e
i

~
Ĥ e

i

~
Ĝ

X{H,G}

e

(

i

~
{H,G }̂

)

Base: polarizations

Fiber: quantum states

Path-independence requires: [Ĥ, Ĝ ]− {H,G }̂ = c · I.
Modulo “c · I” because only projective representations considered:
global phase never controlled!
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Linear Symplectic group

The above dream of many generations cannot be fulfilled!
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Linear Symplectic group

The above dream of many generations cannot be fulfilled!
No universal quantization scheme!!!

But some miracles occur.
Small miracle: If P is a linear symplectic space than algebra F2(P)
of “at most quadratic” observables generates the linear symplectyic
group Sp(P) which is uniquely, and exactly quantized.
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Linear Symplectic group

The above dream of many generations cannot be fulfilled!
No universal quantization scheme!!!

But some miracles occur.
Small miracle: If P is a linear symplectic space than algebra F2(P)
of “at most quadratic” observables generates the linear symplectyic
group Sp(P) which is uniquely, and exactly quantized.
Remainder: this is a projective representation of Sp(P). There is
no unitary representation, unless we pass to the universal covering:
the metaplectic group Mp(P).
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Linear Symplectic group

Any linear Lagrangian foliation Λ of P can be used to
represent quantum states.
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all possible quantum dynamics).
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Linear Symplectic group

Any linear Lagrangian foliation Λ of P can be used to
represent quantum states.

There is a unique transformation between two such
representations (“Fractional Fourier transform”, equivalence of
all possible quantum dynamics).

Theorem 1: Observables which are linear with respect to momenta
in any of the above representations span the space F(P) of all the
observables.
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Linear Symplectic group

Any linear Lagrangian foliation Λ of P can be used to
represent quantum states.

There is a unique transformation between two such
representations (“Fractional Fourier transform”, equivalence of
all possible quantum dynamics).

Theorem 1: Observables which are linear with respect to momenta
in any of the above representations span the space F(P) of all the
observables.

Theorem 2: A unique quantization scheme F(P) → Op(H)
satisfying X̂ = ~

i
LX is the Weyl quantization.
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Phase space of a spin

Classical phase space of an angular momentum ~s is a
S2-sphere of radius s.

Its symplectic structure: volume form on S2.
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Volume form

ω = s sinϑdϑ ∧ dϕ

ϕ

zξ
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Volume form

ω = s sinϑdϑ ∧ dϕ

ξ := s(cosϑ+ 1)

ω = dϕ ∧ dξ ; ξ ∈ [0, 2s]
ϕ

zξ
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Volume form

ω = s sinϑdϑ ∧ dϕ

ξ := s(cosϑ+ 1)

ω = dϕ
︸︷︷︸

momenta

∧ dξ
︸︷︷︸

positions

; ξ ∈ [0, 2s]
ϕ

zξ
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Volume form

ω = s sinϑdϑ ∧ dϕ

ξ := s(cosϑ+ 1)

ω = dϕ
︸︷︷︸

momenta

∧ dξ
︸︷︷︸

positions

; ξ ∈ [0, 2s]

We extend the value of ξ to the whole line R
1.

ϕ

zξ
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Volume form

ω = s sinϑdϑ ∧ dϕ

ξ := s(cosϑ+ 1)

ω = dϕ
︸︷︷︸

momenta

∧ dξ
︸︷︷︸

positions

; ξ ∈ [0, 2s]

We extend the value of ξ to the whole line R
1.

ψ̃(ϕ) =

∫

exp

(

−
i

~
ξϕ

)

ψ(ξ)dξ

ϕ

zξ
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Periodicity - a naive approach

Because momentum ϕ periodic, position ξ - quantized.

exp
(

− i

~
ξ · 2π

)

ψ(ξ) = ψ(ξ)

ϕ

ξ

0 2π 4π

~

2~

3~

2s

N independent
eigenvectors!
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Periodicity - a naive approach

Because momentum ϕ periodic, position ξ - quantized.

exp
(

− i

~
ξ · 2π

)

ψ(ξ) = ψ(ξ) ⇒ ξ = k · ~

ϕ

ξ

0 2π 4π

~

2~

3~

2s

N independent
eigenvectors!
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Periodicity - a naive approach

Because momentum ϕ periodic, position ξ - quantized.

But also ξ – periodic: quantum state retrieved from different
segments of the ξ-axis must be the same: 2s = N~.

ϕ

ξ

0 2π 4π

~

2~

3~

2s

N independent
eigenvectors!
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Periodicity - a naive approach

Because momentum ϕ periodic, position ξ - quantized.

But also ξ – periodic: quantum state retrieved from different
segments of the ξ-axis must be the same: 2s = N~.
Hence: also ϕ quantized

ϕ

ξ

0 2π 4π

~

2~

3~

2s

N independent
eigenvectors!
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Wave functions belong to a Hilbert space C
N .

Jerzy Kijowski, Piotr Waluk Physics of a qubit from geometric quantization 20/32



Wave functions belong to a Hilbert space C
N .

Harmonic analysis on the group ZN?

Jerzy Kijowski, Piotr Waluk Physics of a qubit from geometric quantization 20/32



Wave functions belong to a Hilbert space C
N .

Harmonic analysis on the group ZN?

No! There is no privileged meridian!

Jerzy Kijowski, Piotr Waluk Physics of a qubit from geometric quantization 20/32



Wave functions belong to a Hilbert space C
N .

Harmonic analysis on the group ZN?

No! There is no privileged meridian!

Rotations must be implemented on quantum level.

Jerzy Kijowski, Piotr Waluk Physics of a qubit from geometric quantization 20/32



Wave functions belong to a Hilbert space C
N .

Harmonic analysis on the group ZN?

No! There is no privileged meridian!

Rotations must be implemented on quantum level.

Rotation ϕ′ = ϕ−α is a Galilei transformation (p′ = p−mV ):

ψ(ξ) = ψ′(ξ) · e i

~
ξα
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No! There is no privileged meridian!

Rotations must be implemented on quantum level.

Rotation ϕ′ = ϕ−α is a Galilei transformation (p′ = p−mV ):

ψ(ξ) = ψ′(ξ) · e i

~
ξα

New wave function ψ′ is no longer periodic!
(except for α = 2kπ)
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Wave functions belong to a Hilbert space C
N .

Harmonic analysis on the group ZN?

No! There is no privileged meridian!

Rotations must be implemented on quantum level.

Rotation ϕ′ = ϕ−α is a Galilei transformation (p′ = p−mV ):

ψ(ξ) = ψ′(ξ) · e i

~
ξα

New wave function ψ′ is no longer periodic!
(except for α = 2kπ)

But quantum states retrieved from different segments of the
ξ-axis are the same: they differ by a constant phase factor
only!
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ψ(ξ) = ψ′(ξ) · e i

~
ξα

ϕ

︸︷︷︸

α

ξ

0 2π 4π

~

2~

3~

2s

ξ

0 2π

~

2~

3~

2s
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ψ(ξ) = ψ′(ξ) · e i

~
ξα

ϕ

︸︷︷︸

α

ξ

0 2π 4π

~

2~

3~

2s

ξ

0 2π

~

2~

3~

2s
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The same argument applies to periodicity in the variable ϕ:
only the quantum state must be periodic, wave functions may
differ by a constant phase factor!
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The same argument applies to periodicity in the variable ϕ:
only the quantum state must be periodic, wave functions may
differ by a constant phase factor!

Hence: Galilei transformation ξ′ = ξ − c in momentum
representation:

ψ̃(ϕ) = ψ̃′(ϕ) · e i

~
cϕ
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The same argument applies to periodicity in the variable ϕ:
only the quantum state must be periodic, wave functions may
differ by a constant phase factor!

Hence: Galilei transformation ξ′ = ξ − c in momentum
representation:

ψ̃(ϕ) = ψ̃′(ϕ) · e i

~
cϕ

New wave function ψ̃′ is no longer periodic!

Jerzy Kijowski, Piotr Waluk Physics of a qubit from geometric quantization 22/32



The same argument applies to periodicity in the variable ϕ:
only the quantum state must be periodic, wave functions may
differ by a constant phase factor!

Hence: Galilei transformation ξ′ = ξ − c in momentum
representation:

ψ̃(ϕ) = ψ̃′(ϕ) · e i

~
cϕ

New wave function ψ̃′ is no longer periodic!

But quantum states retrieved from different segments of the
ϕ-axis are the same: they differ by a constant phase factor
only!
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ψ̃(ϕ) = ψ̃′(ϕ) · e i

~
cϕ
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ξ
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2s

Jerzy Kijowski, Piotr Waluk Physics of a qubit from geometric quantization 23/32



ψ̃(ϕ) = ψ̃′(ϕ) · e i

~
cϕ

ϕ

ξ

0 2π 4π{c

~

2~

3~

2s

Jerzy Kijowski, Piotr Waluk Physics of a qubit from geometric quantization 23/32



Generators of the group SO(3) acting on S
2:

Z = s cos θ ; X = s sin θ cosϕ ; Y = s sin θ sinϕ
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Generators of the group SO(3) acting on S
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Z = s cos θ ; X = s sin θ cosϕ ; Y = s sin θ sinϕ

Hence Z ≈ ξ. Define ξtrunc. ∈ [−s, s[.

ξ

ξtrunc.

s

0

−s
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Generators of the group SO(3) acting on S
2:

Z = s cos θ ; X = s sin θ cosϕ ; Y = s sin θ sinϕ

Hence Z ≈ ξ. Define ξtrunc. ∈ [−s, s[.

s2 sin2 θ = s2(1 − cos2 θ) = s2 − ξ2trunc.







X =
√

s2 − ξ2trunc. cosϕ = S(ξ) cosϕ

Y =
√

s2 − ξ2trunc. sinϕ = S(ξ) sinϕ

Z = ξtrunc.

ξ

ξtrunc.

s

0

−s

ξ

−3s −s s 3s

S(ξ)
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Projective vs. unitary representation

Miracle: Weyl quantization of these generators preserves the Lie
algebra structure: [X̂ , Ŷ ] = i~Ẑ and cyclic. This structure
integrates to the correct projective representation of SO(3).
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Projective vs. unitary representation

Miracle: Weyl quantization of these generators preserves the Lie
algebra structure: [X̂ , Ŷ ] = i~Ẑ and cyclic. This structure
integrates to the correct projective representation of SO(3).

Denote N = 2ℓ+ 1. N-integer, ℓ = 1
2
, 1, 3

2
, 2, 5

2
, · · ·

For N-odd (ℓ - integer) the above projective representation
can be lifted to a unitary representation of SO(3).

For N-even (ℓ - half-integer) it can be lifted to a unitary
representation of the double covering of SO(3), i.e. SU(2).
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Weyl quantization

For a factorizable function f (x , p) = fx(x)fp(p) Weyl quantization
can be expressed by simple formulas:

f (x̂ , p̂)ψ(x) =

∫

dβ
1

h
f̃p(β)fx(x +

1

2
β)ψ(x + β)

f (x̂ , p̂)ψ̃(p) =

∫

dα
1

h
f̃x(α)fp(p − 1

2
α)ψ̃(p − α)

f̃ (α) :=

∫

dyf (y)e−
i

~
αy
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Weyl quantization

For a factorizable function f (x , p) = fx(x)fp(p) Weyl quantization
can be expressed by simple formulas:

f (x̂ , p̂)ψ(x) =

∫

dβ
1

h
f̃p(β)fx(x +

1

2
β)ψ(x + β)

f (x̂ , p̂)ψ̃(p) =

∫

dα
1

h
f̃x(α)fp(p − 1

2
α)ψ̃(p − α)

f̃ (α) :=

∫

dyf (y)e−
i

~
αy

The Z function quantizes easily in this scheme:

Ẑψ(ξ) = ξtrunc. · ψ(ξ)
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Weyl quantization

X and Y functions give more complex formulas:

X̂ψ(ξ) =

∫

dα
1

h

h

2
(δ~(α) + δ−~(α))S(ξ +

α

2
)ψ(ξ + α)

=
1

2

[

S(ξ +
~

2
)ψ(ξ + ~) + S(ξ − ~

2
))ψ(ξ − ~)

]

Ŷψ(ξ) =

∫

dα
1

h

h

2i
(δ~(α)− δ−~(α))S(ξ +

α

2
)ψ(ξ + α)

=
1

2i

[

S(ξ +
~

2
)ψ(ξ + ~)− S(ξ − ~

2
)ψ(ξ − ~)

]
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Introducing ℓ, by N = 2ℓ+ 1 (= 2s/~) (This gives: s = (ℓ+ 1
2
)~)

and with correct positioning of the spheres we obtain:

X̂ |ℓ,m〉 = ~

2

√

(ℓ+ m +
1

2
)(ℓ− m − 1

2
) |ℓ,m + 1〉

+
~

2

√

(ℓ+ m − 1

2
)(ℓ− m +

1

2
) |ℓ,m − 1〉

Where m ∈ {−ℓ,−ℓ+ 1, · · · , ℓ− 1, ℓ}.
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Introducing ℓ, by N = 2ℓ+ 1 (= 2s/~) (This gives: s = (ℓ+ 1
2
)~)

and with correct positioning of the spheres we obtain:

X̂ |ℓ,m〉 = ~

2

√

(ℓ+ m +
1

2
)(ℓ− m − 1

2
) |ℓ,m + 1〉

+
~

2

√

(ℓ+ m − 1

2
)(ℓ− m +

1

2
) |ℓ,m − 1〉

Where m ∈ {−ℓ,−ℓ+ 1, · · · , ℓ− 1, ℓ}.

This way we obtain the standard spin algebra.
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For any choice of z-axis and a 0-meridian quantum states quantum
can be described by wave functions in “position representation”:

ψ(ξ) =

+ℓ∑

m=−ℓ

ψmδ(ξ − m~)
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Transition between two such descriptions is provided by representation of the rotation group SO(3).
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For any choice of z-axis and a 0-meridian quantum states quantum
can be described by wave functions in “position representation”:

ψ(ξ) =

+ℓ∑

m=−ℓ

ψmδ(ξ − m~)

Transition between two such descriptions is provided by representation of the rotation group SO(3).

In momentum representation:

ψ̃(ϕ) =

N−1∑

k=0

ψ̃kδ(ϕ − 2πk

N
)
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Wigner function

The state can also be represented in terms of the Wigner function:

W (ϕ, ξ) := M̂

∫

ψ̃(ϕ+ η)ψ̃(ϕ− η)e−
i

~
2ξη

dη
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Wigner function

The state can also be represented in terms of the Wigner function:

W (ϕ, ξ) := M̂

∫

ψ̃(ϕ+ η)ψ̃(ϕ− η)e−
i

~
2ξη

dη

Distributional formulation

〈W (ϕ, ξ),Φ(ϕ, ξ)〉 = M̂

∫

ψ̃(ϕ+η)ψ̃(ϕ−η)e− i

~
2ξηΦ(ϕ, ξ)dηdϕdξ

Φ(ϕ, ξ) ∈ C∞
0 (R2) - test function
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Wigner function

The state can also be represented in terms of the Wigner function:

W (ϕ, ξ) := M̂

∫

ψ̃(ϕ+ η)ψ̃(ϕ− η)e−
i

~
2ξη

dη

Distributional formulation

〈W (ϕ, ξ),Φ(ϕ, ξ)〉 = M̂

∫

ψ̃(ϕ+η)ψ̃(ϕ−η)e− i

~
2ξηΦ(ϕ, ξ)dηdϕdξ

Φ(ϕ, ξ) ∈ C∞
0 (R2) - test function

The Wigner function is insensitive to changes of the global phase!
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Wigner function

N = 2
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Wigner function

N = 2

Averaging it with respect to the action of SO(3), we obtain a
smooth function on S

2.

Wav .(ϕ, ξ) =
1

4π
(1 + f (ϕ, ξ)) where

∫

S2

f dσ = 0
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Conjecture: For a given spin ℓ~ functions f, corresponding to all
mixed states of the system, span the space of all multi-pole
functions up to 22ℓ-poles:

ℓ = 1
2

N = 2 3 dipole functions

ℓ = 1 N = 3 +5 dipole functions

ℓ = 3
2

N = 4 +7 dipole functions
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N = 4 +7 dipole functions

Higher multi-poles do not fit into a small sphere because of the
Heisenberg uncertainty principle.
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Conjecture: For a given spin ℓ~ functions f, corresponding to all
mixed states of the system, span the space of all multi-pole
functions up to 22ℓ-poles:

ℓ = 1
2

N = 2 3 dipole functions

ℓ = 1 N = 3 +5 dipole functions

ℓ = 3
2

N = 4 +7 dipole functions

Higher multi-poles do not fit into a small sphere because of the
Heisenberg uncertainty principle.

Wigner function provides a new tool to analyse properties of the
spin system.

Possible applications: quantum informatics.
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