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Quantum mechanics

o Hilbert space - L?(Q), where Q = R" is the classical
configuration space.

@ Observables - self-adjoint operators.

@ Evolution of states - governed by a Hamiltonian operator:

2

A= 4vx.

2m
where:
Prtb(x) = ?%w(x) — momentum operator,
%k4h(x) := x¥4(x) — position operator.
@ Momentum representation: ¢(p) — Fourier transform of 1(x).
o Probability densities: [1(x)|2 and |¢)(p)|?.
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Geometric Quantization

How much of this structure can be reconstructed from the classical
phase space? (Souriau, Tulczyjew 1965-68)
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@ In particular:  prip(x) := % dka( x) does not work in
curvilinear coordinates (x*) on the configuration space Q!
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Geometric Quantization

How much of this structure can be reconstructed from the classical
phase space? (Souriau, Tulczyjew 1965-68)

@ In particular:  prip(x) := % dka( x) does not work in
curvilinear coordinates (x*) on the configuration space Q!

@ Is the linear (affine) structure of the configuration space Q
necessary in quantum mechanics?

@ Is the Lebesque measure d"x carried by the linear structure of
Q necessary for the definition of the appropriate Hilbert space
structure:

(el) = /Q P dnx
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Classical mechanics

@ Phase space: P = T*Q = R?"; symplectic form w = dp; A dx’
@ Observables - functions on P.

@ Evolution - governed by the Hamiltonian vector field Xy,
uniquely assigned to any observable H according to:

w(Xy, ) =—dH .
o Example:
P2
H=—+V(x).
o T V()

Its Hamiltonian vector field:
1 oV

XH = g”;pjﬁx,- - Wﬁpi .
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Polarization

@ Position representation )(x) versus momentum representation
1 (p): different Lagrangian foliations of P.
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1 (p): different Lagrangian foliations of P.

@ {x = const.} for the position representation.

o {p = const.} for the momentum representation.
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Polarization

@ Position representation )(x) versus momentum representation
1 (p): different Lagrangian foliations of P.

@ {x = const.} for the position representation.

o {p = const.} for the momentum representation.

A

Qn=P/A

@ Geometrically: quantum states represented by wave functions
defined on a generalized configuration space Oy = P/A
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Galilei transformation

Classical Galilei transformation:
d=q-Vt ; pP=p-mV

(V — observer's velocity).
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Galilei transformation

Classical Galilei transformation:
d=q-Vt ; pP=p-mV

(V — observer's velocity). At t =0, we have ¢’ = g. Nevertheless,
wave function undergoes the Galilei transformation:

(x) 1= (x) - 50
where S(x) = mVx.
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Galilei transformation

Classical Galilei transformation:
d=q-Vt ; pP=p-mV

(V — observer's velocity). At t =0, we have ¢’ = g. Nevertheless,
wave function undergoes the Galilei transformation:

b(x) == P (x) - enSC)

where S(x) = mVx. Wave function describes quantum state with
respect to a reference frame.

Reference frame: Lagrangian surface transversal to foliation A.
For the observer at rest:

A={p=0}.

For the observer moving with velocity V:

N={p'=0}={p=mV}.
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Galilei transformation

Theorem: A pair of reference frames, (N, \) defines uniquely a
closed one-form on Q. It will be denoted “)\ — \".
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Galilei transformation

Theorem: A pair of reference frames, (N, \) defines uniquely a

closed one-form on Q. It will be denoted “)\ — \".
Closed form is exact (due to trivial topology): A" — A = dSy ».

i

o Resulting phase factor: ¥y = e VA - 4y
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Galilei transformation

Theorem: A pair of reference frames, (N, \) defines uniquely a
closed one-form on Q. It will be denoted “)\ — \".
Closed form is exact (due to trivial topology): A" — A = dSy ».

i

o Resulting phase factor: ¥y = e VA - 4y

@ Global phase never controlled!

A

A/

p\/‘\ A ‘r
[
Qn
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Galilei transformation

Proof: For g € Qp and k € g there is a canonical isomorphism:

Toq= T;Qn
where (P|p') := Q(p1,p) = Q(p2, p).
/\ /

K

p

P1 . . :

</ Each fiber g is an affine space.

K
> p2
Q@A
g P
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Galilei transformation

Polarization A and a transversal reference frame X imply a
symplectomorphism:

P~ T* Q/\ .
P=T"Qn

A

Qv =P/A
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Galilei transformation

Polarization A and a transversal reference frame X imply a
symplectomorphism:
P~T* Q/\ .

P=T"Qn

)\ - zero section of T Qn

Qv =P/A

Observable Sy, on P generates a group of symplectomorphisms:

(a,p) = (g.p+ t(N = N))
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Hilbert space of half-densities

There is no need for a “privileged” measure on the configuration
space @y if we treat wave functions as half-densities and not just
scalar functions:

(0l) = /Q S dnx = /Q (ovam) (V) .

d=¢vVdx , V=qvdx
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Hilbert space of half-densities

There is no need for a “privileged” measure on the configuration
space @y if we treat wave functions as half-densities and not just
scalar functions:

(0l) = /Q S dnx = /Q (ovam) (V) .

d=¢vVdx , V=qvdx

L?(Qp) — Hilbert space of square-integrable half-forms with scalar
product:

(Ow) = /Q v
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Quantization of momenta

Now, quantization of momenta does not require any linear
structure on the configuration space Qj:
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Quantization of momenta

Now, quantization of momenta does not require any linear
structure on the configuration space Qj:

If X = X"% is a vector field on Q, then X(x, p) := X'(x)p; is an
observable which generates a symplectomorphism of P which is a
canonical lift of the flow X from Qp to T*Qh.

Naive quantization rule: pyip(x) == ?ﬁw(x) must be replaced by:
~ h
XV(x) = TEXW(X)

(Lie derivative of a half-form).
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Quantization of momenta

Now, quantization of momenta does not require any linear
structure on the configuration space Qj:

If X = X"% is a vector field on Q, then X(x, p) := X'(x)p; is an
observable which generates a symplectomorphism of P which is a
canonical lift of the flow X from Qp to T*Qh.

Naive quantization rule: pyip(x) == ?ﬁw(x) must be replaced by:

XV (x) = ?EX\U(X)

(Lie derivative of a half-form).
Automatically self-adjoint if X-complete!
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Quantization schemes

@ Quantum state is described by a wave function WV with
respect to a polarization A (a “representation”) and a
reference frame \.
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implemented by a Hamiltonian vector field Xp.
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Quantization schemes

@ Quantum state is described by a wave function W with
respect to a polarization A (a “representation”) and a
reference frame \.

@ Appropriate notation would be Wy .
@ How W ) changes if we change A and \?

On the classical level any such change is infinitesimally
implemented by a Hamiltonian vector field Xp.

If we want to have a polarization-independent description of a
quantum state, we must define a quantum counterpart of this
change, i.e. a mapping from classical to quantum observables:

.F(P) S H quantization scheme If_\l c OP(H)

(self-adjoint operators!)
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Quantization schemes

@ Quantum state is described by a wave function W with
respect to a polarization A (a “representation”) and a
reference frame \.

@ Appropriate notation would be Wy .
@ How W ) changes if we change A and \?

On the classical level any such change is infinitesimally
implemented by a Hamiltonian vector field Xp.

If we want to have a polarization-independent description of a
quantum state, we must define a quantum counterpart of this
change, i.e. a mapping from classical to quantum observables:

.F(P) S H quantization scheme If_\l c OP(H)

tH

>

d

(self-adjoint operatorsl)  GFH — e~
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Quantization schemes

We already know how to “quantize” some observables:
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Quantization schemes

We already know how to “quantize” some observables:

@ Function on Qa generate Galilei transformations and,
therefore, must be quantized as multiplication operators.

@ Function linear in momenta generates a hamiltonian flow on
P, preserving polarization A and the reference frame {p = 0}.
Corresponding transport of the wave function is generated by
the Lie derivative: X = ?EX, automatically self-adjoint.
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Quantization schemes

We already know how to “quantize” some observables:
@ Function on Qa generate Galilei transformations and,
therefore, must be quantized as multiplication operators.

@ Function linear in momenta generates a hamiltonian flow on
P, preserving polarization A and the reference frame {p = 0}.
Corresponding transport of the wave function is generated by
the Lie derivative: X = ?EX, automatically self-adjoint.

@ Linearity 777

Jerzy Kijowski, Piotr Waluk Physics of a qubit from geometric quantization 13/32



Quantization schemes

The result of the “change of polarization” procedure should not
depend upon the way we change it!!!
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Quantization schemes

The result of the “change of polarization” procedure should not
depend upon the way we change it!!!

Fiber: quantum states

Base: polarizations

Path-independence requires: [H,G] — {H, G} =c- L.
Modulo “c - T" because only projective representations considered:
global phase never controlled!
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Linear Symplectic group

The above dream of many generations cannot be fulfilled!
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Linear Symplectic group

The above dream of many generations cannot be fulfilled!

No universal quantization schemel!!!

But some miracles occur.

Small miracle: If P is a linear symplectic space than algebra 72(P)
of “at most quadratic’ observables generates the linear symplectyic
group Sp(P) which is uniquely, and exactly quantized.
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Linear Symplectic group

The above dream of many generations cannot be fulfilled!

No universal quantization schemel!!!

But some miracles occur.

Small miracle: If P is a linear symplectic space than algebra 72(P)
of “at most quadratic’ observables generates the linear symplectyic
group Sp(P) which is uniquely, and exactly quantized.

Remainder: this is a projective representation of Sp(P). There is
no unitary representation, unless we pass to the universal covering:
the metaplectic group Mp(P).
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Linear Symplectic group

@ Any linear Lagrangian foliation A of P can be used to
represent quantum states.
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@ Any linear Lagrangian foliation A of P can be used to
represent quantum states.

@ There is a unique transformation between two such
representations (“Fractional Fourier transform”, equivalence of
all possible quantum dynamics).
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Linear Symplectic group

@ Any linear Lagrangian foliation A of P can be used to
represent quantum states.

@ There is a unique transformation between two such
representations (“Fractional Fourier transform”, equivalence of
all possible quantum dynamics).

Theorem 1: Observables which are linear with respect to momenta

in any of the above representations span the space F(P) of all the
observables.
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Linear Symplectic group

@ Any linear Lagrangian foliation A of P can be used to
represent quantum states.

@ There is a unique transformation between two such
representations (“Fractional Fourier transform”, equivalence of
all possible quantum dynamics).

Theorem 1: Observables which are linear with respect to momenta
in any of the above representations span the space F(P) of all the
observables.

Theorem 2: A unique quantization scheme F(P) — Op(H)
satisfying X = ?EX is the Weyl quantization.
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Phase space of a spin

@ Classical phase space of an angular momentum S is a
S2-sphere of radius s.

@ Its symplectic structure: volume form on S2.
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Volume form

w = ssinddy A dy z
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Volume form

w = ssinvdd Ady 19
¢ :=s(cos¥ + 1)

w= de A d§ ; £€][0,2s]
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Volume form

w = ssinvdd Ady 19
¢ :=s(cos¥ + 1)

w= dp A d¢& ; £€]0,2s]
—~ =~

momenta  positions
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Volume form

w = ssinvdd Ady 19
¢ :=s(cos¥ + 1)

w= dp A d¢& ; £€]0,2s]
—~ =~

momenta  positions

We extend the value of £ to the whole line R*.
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Volume form

w = ssinvdd Ady 19
¢ :=s(cos¥ + 1)

w= dp A d¢& ; £€]0,2s]
—~ =~

momenta  positions

We extend the value of £ to the whole line R*.

i) = [ e (~qee) wierae
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Periodicity - a naive approach

Because momentum ¢ periodic, position £ - quantized.

exp (— 16 2m) () = 6(e)
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Periodicity - a naive approach

Because momentum ¢ periodic, position £ - quantized.

exp (— 16 2m)(€) =0(E) = E=k-h
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Periodicity - a naive approach

Because momentum ¢ periodic, position £ - quantized.

But also & — periodic: quantum state retrieved from different
segments of the &-axis must be the same: 2s = Nh.

N independent
eigenvectors!

2s

3h T
2h 1

2T o ¥

VY
NN
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Periodicity - a naive approach

Because momentum ¢ periodic, position £ - quantized.

But also & — periodic: quantum state retrieved from different

segments of the &-axis must be the same: 2s = Nh.

Hence: also ¢ quantized

¢ N ind d
Independent

eigenvectors!

2s

3h T
2h 1
h_

2T o ¥

Y v
A
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@ Wave functions belong to a Hilbert space CV.
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@ Wave functions belong to a Hilbert space CV.
@ Harmonic analysis on the group Zy?

@ No! There is no privileged meridian!
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@ Wave functions belong to a Hilbert space CV.
@ Harmonic analysis on the group Zp?
@ No! There is no privileged meridian!

@ Rotations must be implemented on quantum level.
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Wave functions belong to a Hilbert space CV.
Harmonic analysis on the group Zpy?

No! There is no privileged meridian!

Rotations must be implemented on quantum level.

Rotation ¢’ = ¢ — «v is a Galilei transformation (p' = p— mV/):

GERIGR
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Wave functions belong to a Hilbert space CV.
Harmonic analysis on the group Zpy?

No! There is no privileged meridian!

Rotations must be implemented on quantum level.

Rotation ¢’ = ¢ — «v is a Galilei transformation (p' = p— mV/):

GERIGR

New wave function 1’ is no longer periodic!
(except for av = 2km)
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Wave functions belong to a Hilbert space CV.
Harmonic analysis on the group Zpy?
No! There is no privileged meridian!

Rotations must be implemented on quantum level.

e © ¢ ¢ ¢

Rotation ¢’ = ¢ — «v is a Galilei transformation (p' = p— mV/):

GERIGR

New wave function 1’ is no longer periodic!
(except for av = 2km)

(]

@ But quantum states retrieved from different segments of the
&-axis are the same: they differ by a constant phase factor
only!
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B(E) = P/(€) - ente

G
AL
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B(E) = P/(€) - ente
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@ The same argument applies to periodicity in the variable ¢:
only the quantum state must be periodic, wave functions may
differ by a constant phase factor!
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@ The same argument applies to periodicity in the variable ¢:
only the quantum state must be periodic, wave functions may
differ by a constant phase factor!

@ Hence: Galilei transformation ¢’ = £ — ¢ in momentum
representation:

0(e) = V() - ehe”
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@ The same argument applies to periodicity in the variable ¢:
only the quantum state must be periodic, wave functions may
differ by a constant phase factor!

@ Hence: Galilei transformation ¢’ = £ — ¢ in momentum
representation:

0(e) = V() - ehe”

@ New wave function 1/ is no longer periodic!
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The same argument applies to periodicity in the variable ¢:
only the quantum state must be periodic, wave functions may
differ by a constant phase factor!

Hence: Galilei transformation ¢’ = £ — ¢ in momentum
representation:

U(p) =P (p) - enc?
New wave function ¢’ is no longer periodic!

But quantum states retrieved from different segments of the
(-axis are the same: they differ by a constant phase factor
only!
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D(p) = P(p) - ehe?

2s

3h A
2h 1

c{™

Y N
VNN
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D(p) = P(p) - ehe?

2s

3h A
2h 1

Jerzy Kijowski, Piotr Waluk

27 4 @

Physics of a qubit from geometric quantization 23/32



Generators of the group SO(3) acting on S2:

Z =scosf ; X =ssinflcosyp ; Y =ssinfsinp
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Generators of the group SO(3) acting on S2:

§
Z =scosf ; X =ssinflcosyp ; Y =ssinfsinp /

gtrunc.

25

Hence Z =~ £. Define &trunc. € [—s, S|

DN
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Generators of the group SO(3) acting on S2:
Z =scosf ; X =ssinflcosp ; Y =ssinfsinp 7
Hence Z =~ £. Define &trunc. € [—s, S| i
s%sin?0 = s°(1 — cos?0) = s° — €2, L

A
0
gtrunc.
X = /2 = Gne. cosp = S(€) cos st

Y =y s2 — é?runc. singp = 5(6) sing /
Z = &trunc. /

5(6)

¢

—3s —s ! S 3s
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Projective vs. unitary representation

Miracle: Weyl quantization of these generators preserves the Lie
algebra structure: [X, Y] = ihZ and cyclic. This structure
integrates to the correct projective representation of SO(3).
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Projective vs. unitary representation

Miracle: Weyl quantization of these generators preserves the Lie
algebra structure: [X, Y] = ihZ and cyclic. This structure
integrates to the correct projective representation of SO(3).

_ : _ 11355

Denote N =2/ + 1. N-integer, £ = 5,1,5,2,3,--

@ For N-odd (¢ - integer) the above projective representation
can be lifted to a unitary representation of SO(3).

@ For N-even (¢ - half-integer) it can be lifted to a unitary
representation of the double covering of SO(3), i.e. SU(2).
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Weyl quantization

For a factorizable function f(x, p) = f(x)f,(p) Weyl quantization
can be expressed by simple formulas:

F(3.p)00x) = [ B3R+ 30)00x + )
(%.0)i(p) = [ dazE(@)folp— 50)5(p )

F(a) = / dyf (y)e—toy
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Weyl quantization

For a factorizable function f(x, p) = f(x)f,(p) Weyl quantization
can be expressed by simple formulas:

F(3.p)00x) = [ B3R+ 30)00x + )
(%.0)i(p) = [ dazE(@)folp— 50)5(p )

F(a) = [ ayf(yefer

The Z function quantizes easily in this scheme:

2¢(§) = &trunc. * 1/}(6)
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Weyl quantization

X and Y functions give more complex formulas:

fu) = [ dah’;(w) HO)S(E + 2ue + )

= 3 [Ster St + 1+ (e - Hywte - n)
vue) - | da%zﬁ(aﬁ(a)— 5 a(@)S(E + )0E + )
1

- 2 [ste+ Bute+n) - ste - Dyoe -y
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Introducing ¢, by N = 2¢ + 1 (= 2s/h) (This gives: s = (¢ + 3)h)
and with correct positioning of the spheres we obtain:

~ h 1 1

—i—g\/(ﬁ—i-m—%)(é—m—i-%)w,m—b

Where me {—¢,—¢+1,--- ¢ — 1,0}
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Introducing ¢, by N = 2¢ + 1 (= 2s/h) (This gives: s = (¢ + 3)h)
and with correct positioning of the spheres we obtain:

~ h 1 1

—i—g\/(ﬁ—i-m—%)(é—m—i-%)w,m—b

Where me {—¢,—¢+1,--- ¢ — 1,0}

This way we obtain the standard spin algebra.
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For any choice of z-axis and a 0-meridian quantum states quantum
can be described by wave functions in “position representation’:

+4
P(E) = > Ymd(& — mh)

Jerzy Kijowski, Piotr Waluk Physics of a qubit from geometric quantization 29/32



For any choice of z-axis and a 0-meridian quantum states quantum
can be described by wave functions in “position representation’:

+4
P(E) = > Ymd(& — mh)
m=—{

=S

Transition between two such descriptions is provided by representation of the rotation group SO(3).
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For any choice of z-axis and a 0-meridian quantum states quantum
can be described by wave functions in “position representation’:

=
=S

Transition between two such descriptions is provided by representation of the rotation group SO(3).

+4
P(E) = > Ymd(& — mh)
m=—{

In momentum representation:
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Wigner function

The state can also be represented in terms of the Wigner function:

W(p.€) == i / Do+ myile — n)ei2ndy
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Wigner function

The state can also be represented in terms of the Wigner function:

W(p.€) == i / Do+ myile — n)ei2ndy

Distributional formulation

(W(p,8),0(p,)) =M / Sl d(p—n)e” #210(p, €)dndipde

(¢, &) € Cg°(IR?) - test function
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Wigner function

The state can also be represented in terms of the Wigner function:

W(p.€) == i / Do+ myile — n)ei2ndy

Distributional formulation

(W(p,8),0(p,)) =M / Sl d(p—n)e” #210(p, €)dndipde

(¢, &) € Cg°(IR?) - test function

The Wigner function is insensitive to changes of the global phase!
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Wigner function
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Wigner function

Averaging it with respect to the action of SO(3), we obtain a
smooth function on S2.

Woo(0.6) = 4 (14 F(0.6) where [ fdo =0
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Conjecture: For a given spin £h functions f, corresponding to all
mixed states of the system, span the space of all multi-pole
functions up to 22‘-poles:

= % N=2 3 dipole functions
{=1 N=3 +5 dipole functions
{= % N =4 +7 dipole functions
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Higher multi-poles do not fit into a small sphere because of the
Heisenberg uncertainty principle.
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Conjecture: For a given spin £h functions f, corresponding to all
mixed states of the system, span the space of all multi-pole
functions up to 22‘-poles:

= % N=2 3 dipole functions
{=1 N=3 +5 dipole functions
{= % N =4 +7 dipole functions

Higher multi-poles do not fit into a small sphere because of the
Heisenberg uncertainty principle.

Wigner function provides a new tool to analyse properties of the
spin system.

Possible applications: quantum informatics.
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