Physics of a qubit from geometric quantization

Jerzy Kijowski, Piotr Waluk

Geometry of Jets and Fields Bedlewo, May 11.

Quantum mechanics

- Hilbert space $L^2(Q)$, where $Q = \mathbb{R}^n$ is the classical configuration space.
- Observables self-adjoint operators.
- Evolution of states governed by a Hamiltonian operator:

$$\hat{H}=\frac{\hat{p}^2}{2m}+V(\hat{x}),$$

where:

$$\hat{p}_k \psi(x) := \frac{\hbar}{i} \frac{d}{dx^k} \psi(x)$$
 – momentum operator,
 $\hat{x}^k \psi(x) := x^k \psi(x)$ – position operator.

- Momentum representation: $\tilde{\psi}(p)$ Fourier transform of $\psi(x)$.
- Probability densities: $|\psi(x)|^2$ and $|\tilde{\psi}(p)|^2$.

→ 3 → 4 3

• In particular: $\hat{p}_k \psi(x) := \frac{\hbar}{i} \frac{d}{dx^k} \psi(x)$ does not work in curvilinear coordinates (x^k) on the configuration space Q!

- In particular: $\hat{p}_k \psi(x) := \frac{\hbar}{i} \frac{d}{dx^k} \psi(x)$ does not work in curvilinear coordinates (x^k) on the configuration space Q!
- Is the linear (affine) structure of the configuration space Q necessary in quantum mechanics?

- In particular: $\hat{p}_k \psi(x) := \frac{\hbar}{i} \frac{d}{dx^k} \psi(x)$ does not work in curvilinear coordinates (x^k) on the configuration space Q!
- Is the linear (affine) structure of the configuration space Q necessary in quantum mechanics?
- Is the Lebesque measure dⁿx carried by the linear structure of Q necessary for the definition of the appropriate Hilbert space structure:

$$(arphi|\psi) := \int_Q \overline{arphi} \psi \, \mathrm{d}^n x \; .$$

Classical mechanics

- Phase space: $\mathcal{P} = \mathcal{T}^* Q = \mathbb{R}^{2n}$; symplectic form $\omega = \mathrm{d} p_i \wedge \mathrm{d} x^i$
- Observables functions on \mathcal{P} .
- Evolution governed by the Hamiltonian vector field X_H, uniquely assigned to any observable H according to:

$$\omega(X_H,\cdot) = -\mathrm{d}H$$
.

• Example:

$$H=\frac{p^2}{2m}+V(x)\;.$$

Its Hamiltonian vector field:

$$X_{H} = g^{ij} \frac{1}{m} p_{j} \partial_{x^{i}} - \frac{\partial V}{\partial x^{i}} \partial_{p_{i}} .$$

• Position representation $\psi(x)$ versus momentum representation $\tilde{\psi}(p)$: different Lagrangian foliations of \mathcal{P} .

• • = • • = •

- Position representation $\psi(x)$ versus momentum representation $\tilde{\psi}(p)$: different Lagrangian foliations of \mathcal{P} .
- $\{x = const.\}$ for the position representation.
- {*p* = *const*.} for the momentum representation.

(*) *) *) *)

- Position representation $\psi(x)$ versus momentum representation $\tilde{\psi}(p)$: different Lagrangian foliations of \mathcal{P} .
- $\{x = const.\}$ for the position representation.
- $\{p = const.\}$ for the momentum representation.

∃ → ∢

- Position representation $\psi(x)$ versus momentum representation $\tilde{\psi}(p)$: different Lagrangian foliations of \mathcal{P} .
- $\{x = const.\}$ for the position representation.
- $\{p = const.\}$ for the momentum representation.

• Geometrically: quantum states represented by wave functions defined on a generalized configuration space $Q_{\Lambda} = P/\Lambda$

Classical Galilei transformation:

$$q'=q-Vt$$
 ; $p'=p-mV$

(V – observer's velocity).

э

Classical Galilei transformation:

$$q' = q - Vt$$
 ; $p' = p - mV$

(V – observer's velocity). At t = 0, we have q' = q. Nevertheless, wave function undergoes the Galilei transformation:

$$\psi(\mathbf{x}) := \psi'(\mathbf{x}) \cdot e^{\frac{i}{\hbar}S(\mathbf{x})}$$

where S(x) = mVx.

Classical Galilei transformation:

$$q'=q-Vt$$
 ; $p'=p-mV$

(V – observer's velocity). At t = 0, we have q' = q. Nevertheless, wave function undergoes the Galilei transformation:

$$\psi(\mathbf{x}) := \psi'(\mathbf{x}) \cdot e^{\frac{i}{\hbar}S(\mathbf{x})}$$

where S(x) = mVx. Wave function describes quantum state with respect to a *reference frame*.

Classical Galilei transformation:

$$q'=q-Vt$$
 ; $p'=p-mV$

(V – observer's velocity). At t = 0, we have q' = q. Nevertheless, wave function undergoes the Galilei transformation:

$$\psi(\mathbf{x}) := \psi'(\mathbf{x}) \cdot e^{\frac{i}{\hbar}S(\mathbf{x})}$$

where S(x) = mVx. Wave function describes quantum state with respect to a *reference frame*.

Reference frame: Lagrangian surface transversal to foliation Λ . For the observer at rest:

$$\lambda = \{p = 0\} .$$

Classical Galilei transformation:

$$q'=q-Vt$$
 ; $p'=p-mV$

(V – observer's velocity). At t = 0, we have q' = q. Nevertheless, wave function undergoes the Galilei transformation:

$$\psi(\mathbf{x}) := \psi'(\mathbf{x}) \cdot e^{\frac{i}{\hbar}S(\mathbf{x})}$$

where S(x) = mVx. Wave function describes quantum state with respect to a *reference frame*.

Reference frame: Lagrangian surface transversal to foliation Λ . For the observer at rest:

$$\lambda = \{p = 0\} .$$

For the observer moving with velocity V:

$$\lambda' = \{p' = 0\} = \{p = mV\}$$
.

Theorem: A pair of reference frames, (λ', λ) defines uniquely a closed one-form on Q_{Λ} . It will be denoted " $\lambda' - \lambda$ ".

Theorem: A pair of reference frames, (λ', λ) defines uniquely a closed one-form on Q_{Λ} . It will be denoted " $\lambda' - \lambda$ ". Closed form is exact (due to trivial topology): $\lambda' - \lambda = dS_{\lambda',\lambda}$.

Theorem: A pair of reference frames, (λ', λ) defines uniquely a closed one-form on Q_{Λ} . It will be denoted " $\lambda' - \lambda$ ". Closed form is exact (due to trivial topology): $\lambda' - \lambda = dS_{\lambda',\lambda}$.

• Resulting phase factor: $\psi_{\lambda'} = e^{\frac{i}{\hbar}S_{\lambda',\lambda}} \cdot \psi_{\lambda}$

Theorem: A pair of reference frames, (λ', λ) defines uniquely a closed one-form on Q_{Λ} . It will be denoted " $\lambda' - \lambda$ ". Closed form is exact (due to trivial topology): $\lambda' - \lambda = dS_{\lambda',\lambda}$.

- Resulting phase factor: $\psi_{\lambda'} = e^{\frac{i}{\hbar}S_{\lambda',\lambda}} \cdot \psi_{\lambda}$
- Global phase never controlled!

Proof: For $q \in Q_{\Lambda}$ and $\kappa \in q$ there is a canonical isomorphism:

 $T_{\kappa}q\simeq T_{q}^{*}Q_{\Lambda}$

where $\langle P | p' \rangle := \Omega(p_1, p') = \Omega(p_2, p').$

Each fiber q is an affine space.

Polarization Λ and a transversal reference frame λ imply a symplectomorphism:

$$\mathcal{P}\simeq T^* \mathcal{Q}_{\Lambda}$$
 .

Polarization A and a transversal reference frame λ imply a symplectomorphism:

$$\mathcal{P}\simeq T^* \mathcal{Q}_{\Lambda}$$
 .

Observable $S_{\lambda',\lambda}$ on \mathcal{P} generates a group of symplectomorphisms:

$$(q,p)
ightarrow \left(q,p+t(\lambda'-\lambda)
ight)$$

∃ ▶ ∢

There is no need for a "privileged" measure on the configuration space Q_{Λ} if we treat wave functions as half-densities and not just scalar functions:

$$\begin{aligned} (\phi|\psi) &:= \int_{Q} \overline{\phi} \,\psi \,\mathrm{d}^{n} x = \int_{Q} \overline{\left(\phi \sqrt{\mathrm{d}^{n} x}\right)} \left(\psi \sqrt{\mathrm{d}^{n} x}\right) \\ \Phi &= \phi \sqrt{\mathrm{d}^{n} x} \quad , \quad \Psi = \psi \sqrt{\mathrm{d}^{n} x} \end{aligned}$$

There is no need for a "privileged" measure on the configuration space Q_{Λ} if we treat wave functions as half-densities and not just scalar functions:

$$\begin{aligned} (\phi|\psi) &:= \int_{Q} \overline{\phi} \,\psi \,\mathrm{d}^{n} x = \int_{Q} \overline{\left(\phi \sqrt{\mathrm{d}^{n} x}\right)} \left(\psi \sqrt{\mathrm{d}^{n} x}\right) \\ \Phi &= \phi \sqrt{\mathrm{d}^{n} x} \quad , \quad \Psi = \psi \sqrt{\mathrm{d}^{n} x} \end{aligned}$$

 $L^2(Q_{\Lambda})$ – Hilbert space of square-integrable half-forms with scalar product:

$$(\Phi|\Psi)=\int_Q\overline{\phi}\Psi$$

∃ → (∃ →

Now, quantization of momenta does not require any linear structure on the configuration space Q_{Λ} :

.∃ ▶ . ∢

Now, quantization of momenta does not require any linear structure on the configuration space Q_{Λ} : If $X = X^i \frac{\partial}{\partial x^i}$ is a vector field on Q_{Λ} , then $\mathcal{X}(x, p) := X^i(x)p_i$ is an observable which generates a symplectomorphism of \mathcal{P} which is a canonical lift of the flow X from Q_{Λ} to T^*Q_{Λ} . Naive quantization rule: $\hat{p}_k \psi(x) := \frac{\hbar}{i} \frac{d}{dx^k} \psi(x)$ must be replaced by:

$$\hat{\mathcal{X}}\Psi(x) := \frac{\hbar}{i}\mathcal{L}_X\Psi(x)$$

(Lie derivative of a half-form).

Now, quantization of momenta does not require any linear structure on the configuration space Q_{Λ} : If $X = X^i \frac{\partial}{\partial x^i}$ is a vector field on Q_{Λ} , then $\mathcal{X}(x, p) := X^i(x)p_i$ is an observable which generates a symplectomorphism of \mathcal{P} which is a canonical lift of the flow X from Q_{Λ} to T^*Q_{Λ} . Naive quantization rule: $\hat{p}_k \psi(x) := \frac{\hbar}{i} \frac{d}{dx^k} \psi(x)$ must be replaced by:

$$\hat{\mathcal{X}}\Psi(x) := \frac{\hbar}{i}\mathcal{L}_X\Psi(x)$$

(Lie derivative of a half-form). Automatically self-adjoint if X-complete! Quantum state is described by a wave function Ψ with respect to a polarization Λ (a "representation") and a reference frame λ.

→ 3 → 4 3

Quantization schemes

- Quantum state is described by a wave function Ψ with respect to a polarization Λ (a "representation") and a reference frame λ.
- Appropriate notation would be $\Psi_{\Lambda,\lambda}$.

Image: Image:

Quantization schemes

- Quantum state is described by a wave function Ψ with respect to a polarization Λ (a "representation") and a reference frame λ.
- Appropriate notation would be $\Psi_{\Lambda,\lambda}$.
- How $\Psi_{\Lambda,\lambda}$ changes if we change Λ and λ ?

< ∃ > < ∃

Quantization schemes

- Quantum state is described by a wave function Ψ with respect to a polarization Λ (a "representation") and a reference frame λ.
- Appropriate notation would be $\Psi_{\Lambda,\lambda}$.
- How $\Psi_{\Lambda,\lambda}$ changes if we change Λ and λ ?

On the classical level any such change is **infinitesimally** implemented by a Hamiltonian vector field X_H .

- Quantum state is described by a wave function Ψ with respect to a polarization Λ (a "representation") and a reference frame λ.
- Appropriate notation would be $\Psi_{\Lambda,\lambda}$.
- How $\Psi_{\Lambda,\lambda}$ changes if we change Λ and λ ?

On the classical level any such change is **infinitesimally** implemented by a Hamiltonian vector field X_{H} .

If we want to have a polarization-independent description of a quantum state, we must define a quantum counterpart of this change, i.e. a mapping from classical to quantum observables:

$$\mathcal{F}(\mathcal{P})
i H \xrightarrow{\text{quantization scheme}} \hat{H} \in \operatorname{Op}(\mathcal{H})$$

(self-adjoint operators!)

- Quantum state is described by a wave function Ψ with respect to a polarization Λ (a "representation") and a reference frame λ.
- Appropriate notation would be $\Psi_{\Lambda,\lambda}$.
- How $\Psi_{\Lambda,\lambda}$ changes if we change Λ and λ ?

On the classical level any such change is **infinitesimally** implemented by a Hamiltonian vector field X_{H} .

If we want to have a polarization-independent description of a quantum state, we must define a quantum counterpart of this change, i.e. a mapping from classical to quantum observables:

$$\mathcal{F}(\mathcal{P})
i H \xrightarrow{\text{quantization scheme}} \hat{H} \in \operatorname{Op}(\mathcal{H})$$

(self-adjoint operators!) $\mathcal{G}_t^{\chi_{H}}
ightarrow e^{-rac{i}{\hbar}t\hat{H}}$

We already know how to "quantize" some observables:

→ 3 → < 3</p>

We already know how to "quantize" some observables:

• Function on Q_{Λ} generate Galilei transformations and, therefore, must be quantized as multiplication operators.
We already know how to "quantize" some observables:

- Function on Q_{Λ} generate Galilei transformations and, therefore, must be quantized as multiplication operators.
- Function linear in momenta generates a hamiltonian flow on \mathcal{P} , preserving polarization Λ and the reference frame $\{p = 0\}$. Corresponding transport of the wave function is generated by the Lie derivative: $\hat{\mathcal{X}} = \frac{\hbar}{i} \mathcal{L}_X$, automatically self-adjoint.

We already know how to "quantize" some observables:

- Function on Q_{Λ} generate Galilei transformations and, therefore, must be quantized as multiplication operators.
- Function linear in momenta generates a hamiltonian flow on \mathcal{P} , preserving polarization Λ and the reference frame $\{p = 0\}$. Corresponding transport of the wave function is generated by the Lie derivative: $\hat{\mathcal{X}} = \frac{\hbar}{i} \mathcal{L}_X$, automatically self-adjoint.
- Linearity ???

Quantization schemes

The result of the "change of polarization" procedure should not depend upon the way we change it!!!

Quantization schemes

The result of the "change of polarization" procedure should not depend upon the way we change it!!!

Quantization schemes

The result of the "change of polarization" procedure should not depend upon the way we change it!!!

global phase never controlled!

The above dream of many generations cannot be fulfilled!

.∃ ▶ . ∢

The above dream of many generations cannot be fulfilled! No universal quantization scheme!!!

.∃ ▶ . ∢

The above dream of many generations cannot be fulfilled! **No universal quantization scheme!!!** But some miracles occur.

The above dream of many generations cannot be fulfilled! No universal quantization scheme!!!

But some miracles occur.

<u>Small miracle:</u> If \mathcal{P} is a **linear** symplectic space than algebra $\mathcal{F}^2(\mathcal{P})$ of "at most quadratic" observables generates the linear symplectyic group $Sp(\mathcal{P})$ which is uniquely, and **exactly** quantized.

The above dream of many generations cannot be fulfilled! No universal quantization scheme!!!

But some miracles occur.

<u>Small miracle:</u> If \mathcal{P} is a **linear** symplectic space than algebra $\mathcal{F}^2(\mathcal{P})$ of "at most quadratic" observables generates the linear symplectyic group $Sp(\mathcal{P})$ which is uniquely, and **exactly** quantized. Remainder: this is a **projective** representation of $Sp(\mathcal{P})$. There is

no *unitary* representation, unless we pass to the universal covering: the **metaplectic** group $Mp(\mathcal{P})$.

• Any linear Lagrangian foliation Λ of *P* can be used to represent quantum states.

Image: Image:

- Any linear Lagrangian foliation Λ of *P* can be used to represent quantum states.
- There is a unique transformation between two such representations ("Fractional Fourier transform", equivalence of all possible quantum dynamics).

- Any linear Lagrangian foliation Λ of *P* can be used to represent quantum states.
- There is a unique transformation between two such representations ("Fractional Fourier transform", equivalence of all possible quantum dynamics).

Theorem 1: Observables which are linear with respect to momenta in any of the above representations span the space $\mathcal{F}(\mathcal{P})$ of all the observables.

- A IE N - A IE N

- Any linear Lagrangian foliation Λ of *P* can be used to represent quantum states.
- There is a unique transformation between two such representations ("Fractional Fourier transform", equivalence of all possible quantum dynamics).

Theorem 1: Observables which are linear with respect to momenta in any of the above representations span the space $\mathcal{F}(\mathcal{P})$ of all the observables.

Theorem 2: A unique quantization scheme $\mathcal{F}(\mathcal{P}) \to Op(\mathcal{H})$ satisfying $\hat{\mathcal{X}} = \frac{\hbar}{i} \mathcal{L}_X$ is the Weyl quantization.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Classical phase space of an angular momentum \vec{s} is a S^2 -sphere of radius s.
- Its symplectic structure: volume form on S^2 .

 $\omega = s \sin \vartheta \mathrm{d}\vartheta \wedge \mathrm{d}\varphi$

★ 翻 ▶ | ★ 理 ▶ | ★ 理 ▶

æ

$$egin{aligned} & \omega = s \sin artheta \mathrm{d}artheta \wedge \mathrm{d}arphi \ & \xi := s(\cos artheta + 1) \ & \omega = -\mathrm{d}arphi \quad \wedge -\mathrm{d}\xi \quad ; \quad \xi \in [0, 2s] \end{aligned}$$

(日) (四) (王) (王)

æ

• • = • • = •

э

$$egin{aligned} &\omega = s \sin artheta \mathrm{d} artheta \wedge \mathrm{d} arphi \ &\xi := s(\cos artheta + 1) \ &\omega = \underbrace{\mathrm{d} arphi}_{\mathrm{momenta}} \wedge \underbrace{\mathrm{d} \xi}_{\mathrm{positions}} \ ; \ \ \xi \in [0, 2s] \end{aligned}$$

We extend the value of ξ to the whole line \mathbb{R}^1 .

• • = • • =

$$\begin{split} \omega &= s \sin \vartheta \mathrm{d}\vartheta \wedge \mathrm{d}\varphi \\ \xi &:= s(\cos \vartheta + 1) \\ \omega &= \underbrace{\mathrm{d}\varphi}_{\mathrm{momenta}} \wedge \underbrace{\mathrm{d}\xi}_{\mathrm{positions}}; \quad \xi \in [0, 2s] \end{split}$$

We extend the value of ξ to the whole line \mathbb{R}^1 .

$$ilde{\psi}(arphi) = \int \exp\left(-rac{i}{\hbar}\xiarphi
ight)\psi(\xi)\mathrm{d}\xi$$

→ 3→ < 3</p>

Because momentum φ periodic, position ξ - quantized.

$$\exp\left(-\frac{i}{\hbar}\xi\cdot 2\pi\right)\psi(\xi)=\psi(\xi)$$

Because momentum φ periodic, position ξ - quantized.

$$\exp\Big(-rac{i}{\hbar}\xi\cdot 2\pi\Big)\psi(\xi)=\psi(\xi)\ \Rightarrow\ \xi=k\cdot\hbar$$

Because momentum φ periodic, position ξ - quantized.

But also ξ – periodic: quantum state retrieved from different segments of the ξ -axis must be the same: $2s = N\hbar$.

Because momentum φ periodic, position ξ - quantized.

But also ξ – periodic: quantum state retrieved from different segments of the ξ -axis must be the same: $2s = N\hbar$. Hence: also φ quantized

• Wave functions belong to a Hilbert space \mathbb{C}^N .

• • = • • =

- Wave functions belong to a Hilbert space \mathbb{C}^N .
- Harmonic analysis on the group \mathbb{Z}_N ?

• = • •

- Wave functions belong to a Hilbert space \mathbb{C}^N .
- Harmonic analysis on the group \mathbb{Z}_N ?
- No! There is no privileged meridian!

3.0

- Wave functions belong to a Hilbert space \mathbb{C}^N .
- Harmonic analysis on the group \mathbb{Z}_N ?
- No! There is no privileged meridian!
- Rotations must be implemented on quantum level.

- Wave functions belong to a Hilbert space \mathbb{C}^N .
- Harmonic analysis on the group \mathbb{Z}_N ?
- No! There is no privileged meridian!
- Rotations must be implemented on quantum level.
- Rotation $\varphi' = \varphi \alpha$ is a Galilei transformation (p' = p mV):

$$\psi(\xi) = \psi'(\xi) \cdot e^{\frac{i}{\hbar}\xi\alpha}$$

- Wave functions belong to a Hilbert space \mathbb{C}^N .
- Harmonic analysis on the group \mathbb{Z}_N ?
- No! There is no privileged meridian!
- Rotations must be implemented on quantum level.
- Rotation $\varphi' = \varphi \alpha$ is a Galilei transformation (p' = p mV):

$$\psi(\xi) = \psi'(\xi) \cdot e^{rac{i}{\hbar}\xilpha}$$

 New wave function ψ' is no longer periodic! (except for α = 2kπ)

- Wave functions belong to a Hilbert space \mathbb{C}^N .
- Harmonic analysis on the group \mathbb{Z}_N ?
- No! There is no privileged meridian!
- Rotations must be implemented on quantum level.
- Rotation $\varphi' = \varphi \alpha$ is a Galilei transformation (p' = p mV):

$$\psi(\xi) = \psi'(\xi) \cdot e^{rac{i}{\hbar}\xilpha}$$

- New wave function ψ' is no longer periodic! (except for $\alpha = 2k\pi$)
- But quantum states retrieved from different segments of the ξ-axis are the same: they differ by a constant phase factor only!

b) a (B) b) a (B) b

$$\psi(\xi) = \psi'(\xi) \cdot e^{\frac{i}{\hbar}\xi\alpha}$$

(日) (四) (三) (三) (三)

æ

$$\psi(\xi) = \psi'(\xi) \cdot e^{\frac{i}{\hbar}\xi\alpha}$$

(日) (四) (三) (三) (三)

æ

 The same argument applies to periodicity in the variable φ: only the quantum state must be periodic, wave functions may differ by a constant phase factor!

- The same argument applies to periodicity in the variable φ: only the quantum state must be periodic, wave functions may differ by a constant phase factor!
- Hence: Galilei transformation $\xi' = \xi c$ in momentum representation:

$$ilde{\psi}(arphi) = ilde{\psi}'(arphi) \cdot e^{rac{i}{\hbar}carphi}$$

- The same argument applies to periodicity in the variable φ: only the quantum state must be periodic, wave functions may differ by a constant phase factor!
- Hence: Galilei transformation $\xi' = \xi c$ in momentum representation:

$$\tilde{\psi}(\varphi) = \tilde{\psi}'(\varphi) \cdot e^{\frac{i}{\hbar}c\varphi}$$

 \bullet New wave function $\tilde\psi'$ is no longer periodic!
- The same argument applies to periodicity in the variable φ: only the quantum state must be periodic, wave functions may differ by a constant phase factor!
- Hence: Galilei transformation $\xi' = \xi c$ in momentum representation:

$$ilde{\psi}(arphi) = ilde{\psi}'(arphi) \cdot e^{rac{i}{\hbar}carphi}$$

- \bullet New wave function $\tilde\psi'$ is no longer periodic!
- But quantum states retrieved from different segments of the φ -axis are the same: they differ by a constant phase factor only!

b) a (B) b) a (B) b

$$\tilde{\psi}(\varphi) = \tilde{\psi}'(\varphi) \cdot e^{\frac{i}{\hbar}c\varphi}$$

(日) (四) (王) (王)

æ

$$\tilde{\psi}(\varphi) = \tilde{\psi}'(\varphi) \cdot e^{\frac{i}{\hbar}c\varphi}$$

(日) (四) (王) (王)

æ

Generators of the group SO(3) acting on \mathbb{S}^2 :

$$Z = s \cos \theta$$
; $X = s \sin \theta \cos \varphi$; $Y = s \sin \theta \sin \varphi$

A = A A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Generators of the group SO(3) acting on \mathbb{S}^2 :

$$Z = s \cos \theta$$
; $X = s \sin \theta \cos \varphi$; $Y = s \sin \theta \sin \varphi$

Hence $Z \approx \xi$. Define $\xi_{trunc.} \in [-s, s[$.

Generators of the group SO(3) acting on \mathbb{S}^2 :

$$Z = s \cos \theta$$
; $X = s \sin \theta \cos \varphi$; $Y = s \sin \theta \sin \varphi$

Hence $Z \approx \xi$. Define $\xi_{trunc.} \in [-s, s[$.

$$s^2\sin^2\theta = s^2(1-\cos^2\theta) = s^2 - \xi_{trunc.}^2$$

$$\begin{cases} X = \sqrt{s^2 - \xi_{trunc.}^2} \cos \varphi = S(\xi) \cos \varphi \\ Y = \sqrt{s^2 - \xi_{trunc.}^2} \sin \varphi = S(\xi) \sin \varphi \\ Z = \xi_{trunc.} \end{cases}$$

<u>Miracle</u>: Weyl quantization of these generators preserves the Lie algebra structure: $[\hat{X}, \hat{Y}] = i\hbar\hat{Z}$ and cyclic. This structure integrates to the correct projective representation of SO(3).

<u>Miracle</u>: Weyl quantization of these generators preserves the Lie algebra structure: $[\hat{X}, \hat{Y}] = i\hbar\hat{Z}$ and cyclic. This structure integrates to the correct projective representation of SO(3).

Denote $N = 2\ell + 1$. *N*-integer, $\ell = \frac{1}{2}, 1, \frac{3}{2}, 2, \frac{5}{2}, \cdots$

- For *N*-odd (ℓ integer) the above projective representation can be lifted to a unitary representation of *SO*(3).
- For *N*-even (ℓ half-integer) it can be lifted to a unitary representation of the double covering of SO(3), i.e. SU(2).

伺 と く ヨ と く ヨ と

Weyl quantization

For a factorizable function $f(x, p) = f_x(x)f_p(p)$ Weyl quantization can be expressed by simple formulas:

$$f(\hat{x}, \hat{p})\psi(x) = \int d\beta \frac{1}{h} \tilde{f}_{p}(\beta) f_{x}(x + \frac{1}{2}\beta)\psi(x + \beta)$$
$$f(\hat{x}, \hat{p})\tilde{\psi}(p) = \int d\alpha \frac{1}{h} \tilde{f}_{x}(\alpha) f_{p}(p - \frac{1}{2}\alpha)\tilde{\psi}(p - \alpha)$$
$$\tilde{f}(\alpha) := \int dy f(y) e^{-\frac{i}{\hbar}\alpha y}$$

→ ∃ → < ∃</p>

Weyl quantization

For a factorizable function $f(x, p) = f_x(x)f_p(p)$ Weyl quantization can be expressed by simple formulas:

$$f(\hat{x}, \hat{p})\psi(x) = \int d\beta \frac{1}{h} \tilde{f}_{p}(\beta) f_{x}(x + \frac{1}{2}\beta)\psi(x + \beta)$$
$$f(\hat{x}, \hat{p})\tilde{\psi}(p) = \int d\alpha \frac{1}{h} \tilde{f}_{x}(\alpha) f_{p}(p - \frac{1}{2}\alpha)\tilde{\psi}(p - \alpha)$$
$$\tilde{f}(\alpha) := \int dy f(y) e^{-\frac{i}{h}\alpha y}$$

The Z function quantizes easily in this scheme:

$$\hat{Z}\psi(\xi) = \xi_{trunc.} \cdot \psi(\xi)$$

E ▶ 4

X and Y functions give more complex formulas:

$$\begin{split} \hat{X}\psi(\xi) &= \int \mathrm{d}\alpha \frac{1}{h} \frac{h}{2} (\delta_{\hbar}(\alpha) + \delta_{-\hbar}(\alpha)) S(\xi + \frac{\alpha}{2}) \psi(\xi + \alpha) \\ &= \frac{1}{2} \left[S(\xi + \frac{\hbar}{2}) \psi(\xi + \hbar) + S(\xi - \frac{\hbar}{2})) \psi(\xi - \hbar) \right] \\ \hat{Y}\psi(\xi) &= \int \mathrm{d}\alpha \frac{1}{h} \frac{h}{2i} (\delta_{\hbar}(\alpha) - \delta_{-\hbar}(\alpha)) S(\xi + \frac{\alpha}{2}) \psi(\xi + \alpha) \\ &= \frac{1}{2i} \left[S(\xi + \frac{\hbar}{2}) \psi(\xi + \hbar) - S(\xi - \frac{\hbar}{2}) \psi(\xi - \hbar) \right] \end{split}$$

• • = • • =

Introducing ℓ , by $N = 2\ell + 1$ (= $2s/\hbar$) (This gives: $s = (\ell + \frac{1}{2})\hbar$) and with correct positioning of the spheres we obtain:

$$\hat{X} | \ell, m
angle = rac{\hbar}{2} \sqrt{(\ell + m + rac{1}{2})(\ell - m - rac{1}{2})} | \ell, m + 1
angle + rac{\hbar}{2} \sqrt{(\ell + m - rac{1}{2})(\ell - m + rac{1}{2})} | \ell, m - 1
angle$$

Where $m \in \{-\ell, -\ell + 1, \cdots, \ell - 1, \ell\}.$

4 3 5 4 3

Introducing ℓ , by $N = 2\ell + 1$ (= $2s/\hbar$) (This gives: $s = (\ell + \frac{1}{2})\hbar$) and with correct positioning of the spheres we obtain:

$$\hat{X} | \ell, m
angle = rac{\hbar}{2} \sqrt{(\ell + m + rac{1}{2})(\ell - m - rac{1}{2})} | \ell, m + 1
angle + rac{\hbar}{2} \sqrt{(\ell + m - rac{1}{2})(\ell - m + rac{1}{2})} | \ell, m - 1
angle$$

Where $m \in \{-\ell, -\ell + 1, \cdots, \ell - 1, \ell\}.$

This way we obtain the standard spin algebra.

For any choice of *z*-axis and a 0-meridian quantum states quantum can be described by wave functions in "position representation":

$$\psi(\xi) = \sum_{m=-\ell}^{+\ell} \psi_m \delta(\xi - m\hbar)$$

For any choice of *z*-axis and a 0-meridian quantum states quantum can be described by wave functions in "position representation":

$$\psi(\xi) = \sum_{m=-\ell}^{+\ell} \psi_m \delta(\xi - m\hbar)$$

Transition between two such descriptions is provided by representation of the rotation group SO(3).

∃ ▶ ∢

For any choice of *z*-axis and a 0-meridian quantum states quantum can be described by wave functions in "position representation":

$$\psi(\xi) = \sum_{m=-\ell}^{+\ell} \psi_m \delta(\xi - m\hbar)$$

Transition between two such descriptions is provided by representation of the rotation group SO(3).

In momentum representation:

$$ilde{\psi}(arphi) = \sum_{k=0}^{N-1} ilde{\psi}_k \delta(arphi - rac{2\pi k}{N})$$

The state can also be represented in terms of the Wigner function:

$$W(arphi,\xi):=\hat{M}\int\overline{ec{\psi}}(arphi+\eta)\widetilde{\psi}(arphi-\eta)e^{-rac{i}{\hbar}2\xi\eta}\mathrm{d}\eta$$

A = A A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The state can also be represented in terms of the Wigner function:

$$W(arphi,\xi) := \hat{M} \int \overline{\psi}(arphi+\eta) \widetilde{\psi}(arphi-\eta) e^{-rac{i}{\hbar}2\xi\eta} \mathrm{d}\eta$$

Distributional formulation

$$\langle W(\varphi,\xi),\Phi(\varphi,\xi)
angle=\hat{M}\int\overline{\psi}(\varphi+\eta)\widetilde{\psi}(\varphi-\eta)e^{-rac{i}{\hbar}2\xi\eta}\Phi(\varphi,\xi)\mathrm{d}\eta\mathrm{d}\varphi\mathrm{d}\xi$$

 $\Phi(arphi,\xi)\in\mathcal{C}_0^\infty(\mathbb{R}^2)$ - test function

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The state can also be represented in terms of the Wigner function:

$$W(arphi,\xi) := \hat{M} \int \overline{ ilde{\psi}}(arphi+\eta) \widetilde{\psi}(arphi-\eta) \mathrm{e}^{-rac{i}{\hbar}2\xi\eta} \mathrm{d}\eta$$

Distributional formulation

$$\langle W(\varphi,\xi),\Phi(\varphi,\xi)\rangle = \hat{M}\int \overline{\tilde{\psi}}(\varphi+\eta)\tilde{\psi}(\varphi-\eta)e^{-\frac{i}{\hbar}2\xi\eta}\Phi(\varphi,\xi)\mathrm{d}\eta\mathrm{d}\varphi\mathrm{d}\xi$$

 $\Phi(arphi,\xi)\in\mathcal{C}_0^\infty(\mathbb{R}^2)$ - test function

The Wigner function is insensitive to changes of the global phase!

・ 同 ト ・ ヨ ト ・ ヨ ト

Wigner function

æ

▲御▶ ▲ 臣▶ ▲ 臣

Wigner function

Averaging it with respect to the action of SO(3), we obtain a smooth function on \mathbb{S}^2 .

$$W_{\mathsf{av}.}(arphi,\xi) = rac{1}{4\pi} \left(1 + f(arphi,\xi)
ight) \quad ext{where} \quad \int_{\mathbb{S}^2} f \mathrm{d}\sigma = 0$$

∃ → ∢

 $\ell = \frac{1}{2}$ N = 2 3 dipole functions $\ell = 1$ N = 3 +5 dipole functions

$$\ell = \frac{3}{2} \qquad \qquad N = 4$$

+7 dipole functions

$\ell = \frac{1}{2}$	<i>N</i> = 2	3 dipole functions
$\ell = 1$	<i>N</i> = 3	+5 dipole functions
$\ell = \frac{3}{2}$	<i>N</i> = 4	+7 dipole functions

Higher multi-poles do not fit into a small sphere because of the Heisenberg uncertainty principle.

$\ell = \frac{1}{2}$	<i>N</i> = 2	3 dipole functions
$\ell = 1$	<i>N</i> = 3	+5 dipole functions
$\ell = \frac{3}{2}$	<i>N</i> = 4	+7 dipole functions

Higher multi-poles do not fit into a small sphere because of the Heisenberg uncertainty principle.

Wigner function provides a new tool to analyse properties of the spin system.

$\ell = \frac{1}{2}$	<i>N</i> = 2	3 dipole functions
$\ell = 1$	<i>N</i> = 3	+5 dipole functions
$\ell = \frac{3}{2}$	<i>N</i> = 4	+7 dipole functions

Higher multi-poles do not fit into a small sphere because of the Heisenberg uncertainty principle.

Wigner function provides a new tool to analyse properties of the spin system.

Possible applications: quantum informatics.