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Two quotations from Dirac

The Method of Classical Analogy

“... The value of classical analogy in the developments
of quantum mechanics depends on the fact that classical
mechanics provides a valid description of dynamical sys-
tems...”
“... Classical mechanics must therefore be a limiting case
of quantum mechanics...”



Two quotations from Dirac

The Hamiltonian form of field dynamics

“..In classical dynamics, one has usually supposed that,
when one has solved the equation of motion, one has done
everything worth doing...”

Talking about the family of solutions of Hamilton equations which fill
a Lagrangian submanifold transversal to the fibers of the cotangent
bundle, Dirac says:

“... The family does not have any importance from the
point of view of Newtonian mechanics; but it is a family
which corresponds to one state of motion in the quantum
theory, so presumable the family has some deep signifi-
cance in nature, not yet properly understood...”



General settings

• q̇ =
∂H

∂p
, ṗ = −∂H

∂q
Hamilton equations

• H

(
q,
∂S

∂q

)
= E =

∂S

∂t
Hamilton-Jacobi

• H(~q,−i~~∇) = i~
∂

∂t
Schrödinger



Linear versus non-linear

Lie-Scheffers ideology: superposition rules

Γ = aj(t)Xj , [Xj ,Xk ] = c ljkXl

H, R(H), U(H)

TU(H) ≡ [U(H)]C, Tu(H) 
 T ∗u(H) 
 T ∗u∗(H)

Tu(H) is a C*-algebra

GNS-construction: from Tu(H) to H.
With any C*-algebra on any manifold M, we construct
Hilbert spaces.



Second order dynamics on U(H)

Quantum systems on R(H)

d

dt

(
|ψ〉〈ψ|
〈ψ|ψ〉

)
=

A

i~
|ψ〉〈ψ|
〈ψ|ψ〉

− 1

i~
|ψ〉〈ψ|
〈ψ|ψ〉

A

R(H) homogeneous space of U(H)

TR(H) homogeneous space of TU(H) ' GL(H)

Quantum systems on R(H) ≡
complete solution of H.J. associated with

L =
1

2
tr(ρψ(U−1U̇)2) =

1

2

〈ψ|(U−1U̇)2|ψ〉
〈ψ|ψ〉



Dirac interaction picture

On the group

L =
1

2
tr(U−1U̇)2 −→ E.L. equations

d

dt
(U−1U̇) = 0

Family of generalized solutions of the H.J. on the group

θL = tr(U−1U̇)(U−1dU)

ωL = tr d
[
(U−1U̇) ∧ (U−1dU)

]
, d(U−1U) = 0

U−1U̇ = iA, iX (U−1dU) = iA, A Hermitian

X ∗(θL) = i tr(AU−1dU)



Unfolding nonlinear classical dynamics

Quantization: A procedure to associate linear equations with
non-linear ones.

More specifically: Write the equations of motion as a Lie-Scheffers
system.

i~
d

dt

(
z1

z2

)
=

(
H11 H12

H21 H22

)(
z1

z2

)
, ξ =

z1

z2
⇒

⇒ i~
d

dt
ξ = H12 + (H11 − H22)ξ − H21ξ

2

From an equation on the group we obtain a linear equation on a
vector space for any representation of the group.



More on Schrödinger equation and Hamilton-
Jacobi equation

i~
∂

∂t
ψ = − ~2

2m
∆ψ + Vψ, ψ = Ae

iS/~

We obtain

∂A

∂t
= − 1

2m
(A∆S + 2 gradA · gradS)

∂S

∂t
= −

[
(gradS)2

2m
+ V (~r)− ~2

2m

∆A

A

]

Setting ~u =
1

m
gradS , A2 = ψ∗ψ = ρ, − ~2

2m

∆A

A
= −

(
~
2

)2
1

m

∆ρ

ρ

∂ρ

∂t
+ div(ρ~u) = 0∫

R3

ρ d3x = 1

Hamilton-Jacobi⇐ ~2

2m

∆A

A
= 0



Field theoretical aspect

•L =

∫
V

ρ

(
∂S

∂t
+

1

2m
∇S · ∇S + V

)
d3x dt, δS |∂V = 0, δρ|∂V = 0

•L =

∫
V

ρ

(
∂S

∂t
+

1

2m
∇S · ∇S +

(
~
2

)2
1

2m

1

ρ2
∇ρ · ∇ρ+ V

)
d3x dt

Fixed end-point variation with respect to S leads to the continuity equation

∂ρ

∂t
+∇

(
ρ

1

m
∇S
)

= 0

Fixed end-point variation with respect to ρ leads respectively to

• ∂S
∂t

+
1

2m
∇S · ∇S + V = 0

• ∂S
∂t

+
1

2m
∇S · ∇S + V +

(
~
2

)2(
1

2m

1

ρ2
∇ρ · ∇ρ− 2

ρ
∇2ρ

)
= 0



The fate of the continuity equation

∂ρ

∂t
+ div(ρ~u) = 0

Geometric interpretation:

dS : Q × Λ→ T ∗Q

dS∗(θ0) =
∂2S

∂λj∂qk
dλj ∧ dqk

A symplectic structure.

Liouville theorem on Q × Λ× R gives the continuity equations.



Generalized Coherent States

Embedding “classical manifolds” into R(H).

M a manifold with a volume form Ω.

m 7→ |ψ(m)〉 ∈ H ⇒7→ |ψ(m)〉〈ψ(m)|
〈ψ(m)|ψ(m)〉

Pull-back of Hermitian tensor fields

〈dψ(m)|dψ(m)〉 →Riemannian + skew-symmetric

(2,0) tensors on M

Fisher-Rao quantum information metric.

Tranformations T : |ψ(m)〉 → |ψ(m′)〉 defines

φT : M → M, m 7→ m′



Generalized Coherent States

Examples: Quantizers and Dequantizers

W : m 7→W (m) ∈ u(H) |0〉 ∈ H a fiducial state
|ψ(m)〉 = W (m)|0〉

OP(H)→ F(M)

A 7→ tr(AW (m)) = fA(m), (fA ∗ fB)(m) = tr(AB W (m))

Remark: When M is a group and W a representation, the
∗-product becomes the convolution product on the group
algebra.



If D : M → u(H) is another association such that

trD(m)W (m′) = δ(m,m′),

we define a “quantizer” map

A =

∫
M
fA(m)D(m)dµΩ

M = T ∗Rn (q, p) 7→ D(q, p) Weyl system, projective unitary
representation

(fA ∗ fB)(q, p) Moyal product

Locality versus non-locality of the product.



“Quantum Hamilton-Jacobi”

Replace Q × Λ with operators

p̂ =
∂

∂q̂
S(q̂, λ̂, t), P̂ = − ∂

∂λ̂
S(q̂, λ̂, t)

H

(
q̂,
∂S

∂q̂
, t

)
+
∂

∂t
S(q̂, λ̂, t) = 0

“Well ordering”

S(q̂, λ̂, t) =
∑
α

fα(q̂, t)gα(λ̂, t)

Main ingredient

〈q|S(q̂, λ̂, t)|λ〉 = S(q, λ, t)〈q|λ〉

⇒ 1

2m

[(
∂

∂q
S ′(q, λ, t)

)2

− i~
∂2

∂q2
S(q, λ, t)

]
+ V (q) +

∂

∂t
S(q, λ, t) = 0

ψ(q, λ, t) = e
i
~S(q,λ,t)



Summarizing

Nonlinear equations −→ linear equations
(classical) (quantum)

Lie Scheffers: Γ = ajXj

g−1ġ = ajXj

U−1(g)U̇(g) = ajAj , U(g) ∈ u(H)


