Jets and Fields on Lie Algebroids

.

•••

Geometry of Jets and Fields

Eduardo Martínez University of Zaragoza emf@unizar.es

Bedlewo (Poland), 10-15 May 2005

Mechanics on Lie algebroids

(Weinstein 1996, Martínez 2001, ...) Lie algebroid $E \rightarrow M$. $L \in C^{\infty}(E)$ or $H \in C^{\infty}(E^*)$

 $\Box E = TM \rightarrow M$ Standard classical Mechanics

 \square $E = \mathcal{D} \subset TM \rightarrow M$ (integrable) System with holonomic constraints

 \Box $E = TQ/G \rightarrow M = Q/G$ System with symmetry

 $\Box \ E = \mathfrak{g} \rightarrow \{e\}$ System on Lie algebras

 \square $E = M \times \mathfrak{g} \rightarrow M$ System on a semidirect products (ej. heavy top)

Symplectic and variational

The theory is symplectic:

$$i_{\Gamma}\omega_L = dE_L$$

with $\omega_L = -d\theta_L$, $\theta_L = S(dL)$ and $E_L = d_{\Delta}L - L$.

Here *d* is the differential on the Lie algebroid $\tau_E^E : \mathcal{T}^E E \to E$.

It is also a variational theory:

- Admissible curves or *E*-paths
- Variations are *E*-homotopies
- Infinitesimal variations are

$$\delta x^{i} = \rho_{\alpha}^{i} \sigma^{\alpha}$$
$$\delta y^{\alpha} = \dot{\sigma}^{\alpha} + C_{\beta\gamma}^{\alpha} y^{\beta} \sigma^{\gamma}$$

Time dependent systems

(Martínez, Mestdag and Sarlet 2002)

With suitable modifications one can describe time-dependent systems.

Cartan form

$$\Theta_L = S(dL) + Ldt.$$

Dynamical equation

$$i_{\Gamma} d\Theta_L = 0$$
 and $\langle \Gamma, dt \rangle = 1$.

Field theory in 1-d space-time

Affgebroids

Martinez, Mestdag and Sarlet 2002

Grabowska, Grabowski and Urbanski 2003

Example: standard case

 $m \in M$ and $n = \pi(m)$

$$0 \longrightarrow \operatorname{Ver}_m \longrightarrow T_m M \longrightarrow T_n N \longrightarrow 0$$

Set of splittings: $J_m \pi = \{ \phi \colon T_n N \to T_m M \mid T \pi \circ \phi = \operatorname{id}_{T_n N} \}.$

Lagrangian: $L: J\pi \to \mathbb{R}$

Example: principal bundle

$$\begin{array}{c} TQ/G \xrightarrow{[T\pi]} TM \\ \downarrow \\ Q/G = M \xrightarrow{id} M \end{array}$$

 $m \in M$

$$0 \longrightarrow \operatorname{Ad}_m \longrightarrow (TQ/G)_m \longrightarrow T_m M \longrightarrow 0$$

Set of splittings: $C_m(\pi)$.

Lagrangian: $L: C(\pi) \to \mathbb{R}$

General case

Consider

with $\pi = (\overline{\pi}, \underline{\pi})$ epimorphism.

Consider the subbundle $K = \ker(\pi) \to M$.

For $m \in M$ and $n = \underline{\pi}(m)$ we have

$$0 \longrightarrow K_m \longrightarrow E_m \longrightarrow F_n \longrightarrow 0$$

and we can consider the set of splittings of this sequence.

We define the sets

$$\mathcal{L}_m \pi = \{ w : F_n \to E_m \mid w \text{ is linear } \}$$
$$\mathcal{J}_m \pi = \{ \phi \in \mathcal{L}_m \pi \mid \overline{\pi} \circ \phi = \operatorname{id}_{F_n} \}$$
$$\mathcal{V}_m \pi = \{ \psi \in \mathcal{L}_m \pi \mid \overline{\pi} \circ \psi = 0 \}.$$

Projections

$$\begin{array}{ll} \underline{\tilde{\pi}_{10}} \colon \mathcal{L}\pi \to M & \text{vector bundle} \\ \underline{\pi_{10}} \colon \mathcal{J}\pi \to M & \text{affine subbundle} \\ \underline{\pi_{10}} \colon \mathcal{V}\pi \to M & \text{vector subbundle} \end{array}$$

Local expressions

Take $\{e_a, e_\alpha\}$ adapted basis of Sec(*E*), i.e. $\{\overline{\pi}(e_a) = \overline{e}_a\}$ is a basis of Sec(*F*) and $\{e_\alpha\}$ basis of Sec(*K*). Also take adapted coordinates (x^i, u^A) to the bundle $\pi: M \to N$.

An element of $\mathcal{L}\pi$ is of the form

$$w = (y_a^b e_b + y_a^\alpha e_\alpha) \otimes e^a$$

Thus we have coordinates $(x^i, u^A, y^b_a, y^\alpha_a)$ on $\mathcal{L}\pi$.

An element of $\mathcal{J}\pi$ is of the form

$$\phi = (e_a + y^{\alpha}_a e_{\alpha}) \otimes e^a$$

Thus we have coordinates (x^i, u^A, y^{α}_a) on $\mathcal{J}\pi$.

Anchor

We will assume that F and E are Lie algebroids and π is a morphism of Lie algebroids.

$$\begin{split} \rho(\bar{e}_{a}) &= \rho_{a}^{i} \frac{\partial}{\partial x^{i}} \\ \rho(e_{a}) &= \rho_{a}^{i} \frac{\partial}{\partial x^{i}} + \rho_{a}^{A} \frac{\partial}{\partial u^{A}} \\ \rho(e_{\alpha}) &= \rho_{\alpha}^{A} \frac{\partial}{\partial u^{A}} \end{split}$$

Total derivative with respect to a section $\eta \in Sec(F)$

$$\widehat{df\otimes\eta}=\acute{f}_{|a}\eta^{a}.$$

where

$$f_{|a} = \rho_a^i \frac{\partial f}{\partial x^i} + (\rho_a^A + \rho_\alpha^A y_a^\alpha) \frac{\partial f}{\partial u^A}.$$

Bracket

Since π is a morphism

$$\begin{split} & [\bar{e}_{a}, \bar{e}_{b}] = C_{bc}^{a} \bar{e}_{a} \\ & [e_{a}, e_{b}] = C_{ab}^{\gamma} e_{\gamma} + C_{bc}^{a} e_{a} \\ & [e_{a}, e_{\beta}] = C_{a\beta}^{\gamma} e_{\gamma} \\ & [e_{\alpha}, e_{\beta}] = C_{\alpha\beta}^{\gamma} e_{\gamma} \end{split}$$

Affine structure functions:

$$Z^{\alpha}_{a\gamma} = (\widehat{d_{e_{\gamma}}e^{\alpha})} \otimes \overline{e}_{a} = C^{\alpha}_{a\gamma} + C^{\alpha}_{\beta\gamma}y^{\beta}_{a}$$
$$Z^{\alpha}_{ac} = (\widehat{d_{e_{c}}e^{\alpha})} \otimes \overline{e}_{a} = C^{\alpha}_{ac} + C^{\alpha}_{\beta c}y^{\beta}_{a}$$
$$Z^{b}_{a\gamma} = (\widehat{d_{e_{\gamma}}e^{b}}) \otimes \overline{e}_{a} = 0$$
$$Z^{b}_{ac} = (\widehat{d_{e_{c}}e^{b}}) \otimes \overline{e}_{a} = C^{b}_{ac}$$

Variational Calculus

Only for F = TN.

Let ω be a fixed volume form on N.

Variational problem: Given a function $L \in C^{\infty}(\mathcal{J}\pi)$ find those morphisms $\Phi: F \to E$ of Lie algebroids which are sections of π and are critical points of the action functional

$$\mathcal{S}(\Phi) = \int_N L(\Phi)\,\omega$$

Variations

A homotopy is a morphism of Lie algebroids ,

$$\begin{array}{ccc} TI \times F \xrightarrow{\Psi} E \\ \downarrow & \downarrow \\ I \times N \xrightarrow{\varphi} M \end{array}$$

where I = [0, 1], such that $\overline{\pi} \circ \Psi = \text{pr}_2$, satisfying some boundary conditions.

For every $s \in I = [0, 1]$ define the maps

$$\Box \ \varphi_s \colon N \to M \text{ by } \varphi_s(n) = \varphi(s, n).$$

$$\Box \ \phi_s \colon N \to \mathcal{J}\pi, \text{ section of } \pi_1 : \mathcal{J}\pi \to N \text{ along } \varphi_s \text{ by}$$

$$\phi_s(n)(a) = \Psi(0_s, a) \quad \text{ for all } n \in N \text{ and all } a \in F_n.$$

$$\Box \ \sigma_s \colon N \to E, \text{ section of } E \to N \text{ along } \varphi_s \text{ by}$$

$$\sigma_s(n) = \Psi\left(\frac{\partial}{\partial s}\Big|_s, 0_n\right)$$

In this way

$$\Psi(\lambda \frac{\partial}{\partial s}\Big|_{s}, a_{n}) = \phi_{s}(a_{n}) + \lambda \sigma_{s}(n).$$

Interpretation:

 $\Box \ \phi_s \text{ is a 1-parameter family of jets, and we say that \phi_0 is homotopic to \phi_1$ $\Box \ \sigma_s \text{ is the section that controls the variation } \phi_s$

Boundary conditions:

 $\Box \sigma_s$ with compact support.

Variational vector field:

$$\frac{d}{ds}\phi_{s}(n)\Big|_{s=0} = \rho^{A}_{\alpha}\sigma^{\alpha}\frac{\partial}{\partial u^{A}} + \left(\sigma^{\alpha}_{,a} + Z^{\alpha}_{a\gamma}\sigma^{\gamma}\right)\frac{\partial}{\partial y^{\alpha}_{a}}$$

Variations are of the form

$$\begin{split} \delta u^{A} &= \rho^{A}_{\alpha} \sigma^{\alpha} \\ \delta y^{\alpha}_{a} &= \sigma^{\alpha}_{,a} + Z^{\alpha}_{a\beta} \sigma^{\beta}. \end{split}$$

where σ^{α} have compact support.

• ϕ_s is a morphism of Lie algebroids for every $s \in [0, 1]$.

Variational problem

Only for F = TN.

Let ω be a fixed volume form on N.

Variational problem: Given a function $L \in C^{\infty}(\mathcal{J}\pi)$ find those sections $\Phi: F \to E$ of π which are a morphism of Lie algebroids and are critical points of the action

$$\mathcal{S}(\Phi) = \int_N L(\Phi)\,\omega$$

Euler-Lagrange equations

Infinitesimal admissible variations are

$$\begin{split} \delta u^{A} &= \rho^{A}_{\alpha} \sigma^{\alpha} \\ \delta y^{\alpha}_{a} &= \sigma^{\alpha}_{,a} + Z^{\alpha}_{a\beta} \sigma^{\beta} \end{split}$$

Integrating by parts we get the Euler-Lagrange equations

$$\frac{d}{dx^{a}} \left(\frac{\partial L}{\partial y^{\alpha}_{a}} \right) = \frac{\partial L}{\partial y^{\gamma}_{a}} Z^{\gamma}_{a\alpha} + \frac{\partial L}{\partial u^{A}} \rho^{A}_{\alpha},$$
$$u^{A}_{,a} = \rho^{A}_{a} + \rho^{A}_{\alpha} y^{\alpha}_{a}$$
$$\left(y^{\alpha}_{a,b} + C^{\alpha}_{b\gamma} y^{\gamma}_{a} \right) - \left(y^{\alpha}_{b,a} + C^{\alpha}_{a\gamma} y^{\gamma}_{b} \right) + C^{\alpha}_{\beta\gamma} y^{\beta}_{b} y^{\gamma}_{a} + y^{\alpha}_{c} C^{c}_{ab} + C^{\alpha}_{ab} = 0.$$

Prolongation

Given a Lie algebroid $\tau: E \to M$ and a submersion $\mu: P \to M$ we can construct the *E*-tangent to *P* (the prolongation of *P* with respect to *E*). It is the vector bundle $\tau_P^E: \mathcal{T}^E P \to P$ where the fibre over $p \in P$ is

$$\mathcal{T}_p^{\mathcal{E}}P = \{ (b, v) \in E_m \times T_pP \mid T\mu(v) = \rho(b) \}$$

where $m = \mu(p)$.

Redundant notation: (p, b, v) for the element $(b, v) \in \mathcal{T}_p^E P$.

The bundle $\mathcal{T}^E P$ can be endowed with a structure of Lie algebroid. The anchor $\rho^1 : \mathcal{T}^E P \to TP$ is just the projection onto the third factor $\rho^1(p, b, v) = v$. The bracket is given in terms of projectable sections $(\sigma, X), (\eta, Y)$

$$[(\sigma, X), (\eta, Y)] = ([\sigma, \eta], [X, Y]).$$

Local basis

Local coordinates (x^i, u^A) on P and a local basis $\{e_\alpha\}$ of sections of E, define a local basis $\{\mathcal{X}_\alpha, \mathcal{V}_A\}$ of sections of $\mathcal{T}^E P$ by

$$\mathfrak{X}_{\alpha}(p) = \left(p, e_{\alpha}(\pi(p)), \rho_{\alpha}^{i} \frac{\partial}{\partial x^{i}}\Big|_{p}\right) \quad \text{and} \quad \mathfrak{V}_{A}(p) = \left(p, 0, \frac{\partial}{\partial u^{A}}\Big|_{p}\right).$$

The Lie brackets of the elements of the basis are

$$[\mathfrak{X}_{\alpha},\mathfrak{X}_{\beta}] = C^{\gamma}_{\alpha\beta}\mathfrak{X}_{\gamma}, \qquad [\mathfrak{X}_{\alpha},\mathfrak{V}_{B}] = 0 \qquad \text{and} \qquad [\mathfrak{V}_{A},\mathfrak{V}_{B}] = 0,$$

and the exterior differential is determined by

$$\begin{split} dx^{i} &= \rho_{\alpha}^{i} \mathcal{X}^{\alpha}, \qquad \qquad du^{A} = \mathcal{V}^{A} \\ d\mathcal{X}^{\gamma} &= -\frac{1}{2} C_{\alpha\beta}^{\gamma} \mathcal{X}^{\alpha} \wedge \mathcal{X}^{\beta}, \qquad \qquad d\mathcal{V}^{A} = 0, \end{split}$$

where $\{\mathcal{X}^{\alpha}, \mathcal{V}^{A}\}$ is the dual basis corresponding to $\{\mathcal{X}_{\alpha}, \mathcal{V}_{A}\}$.

Prolongation of maps

If $\Psi: P \to P'$ is a bundle map over $\varphi: M \to M'$ and $\Phi: E \to E'$ is a morphism over the same map φ then we can define a morphism $\mathcal{T}^{\Phi}\Psi: \mathcal{T}^{E}P \to \mathcal{T}^{E'}P'$ by means of

$$\mathcal{T}^{\Phi}\Psi(p, b, v) = (\Psi(p), \Phi(b), \mathcal{T}_{p}\Psi(v)).$$

In particular, for P = E we have the *E*-tangent to *E*

$$\mathcal{T}_a^E E = \{ (b, v) \in E_m \times T_a E \mid T\tau(v) = \rho(b) \}.$$

Repeated jets

E-tangent to $\mathcal{J}\pi$.

Consider $\tau_{\Im\pi}^E \colon \mathcal{T}^E \Im \pi \to \Im \pi$

$$\mathcal{T}^{E}\mathfrak{J}\pi = \left\{ \left(\phi, a, V\right) \in \mathfrak{J}\pi \times E \times T\mathfrak{J}\pi \mid T_{\phi}\underline{\pi_{10}}(V) = \rho(a) \right\}$$

and the projection $\pi_1 = \pi \circ \pi_{10} = (\overline{\pi} \circ \overline{\pi_{10}}, \underline{\pi} \circ \underline{\pi_{10}})$

A repeated jet $\psi \in \Im \pi_1$ at the point $\phi \in \Im \pi$ is a map $\psi \colon F_n \to \mathcal{T}_{\phi}^E \Im \pi$ such that $\overline{\pi_1} \circ \psi = \mathrm{id}_{F_n}$.

Explicitely ψ is of the form $\Psi = (\phi, \zeta, V)$ with

 $\Box \quad \phi, \zeta \in \mathcal{J}\pi \text{ and } V \in T_{\phi}\mathcal{J}\pi,$ $\Box \quad \underline{\pi_{10}}(\phi) = \underline{\pi_{10}}(\zeta),$ $\Box \quad V \colon F_n \to T_{\phi}\mathcal{J}\pi \text{ satisfying}$

 $T\underline{\pi_{10}} \circ V = \rho \circ \zeta.$

Locally

$$\psi = (\mathfrak{X}_a + \Psi^{\alpha}_a \mathfrak{X}_{\alpha} + \Psi^{\alpha}_{ab} \mathfrak{V}^b_{\alpha}) \otimes \bar{e}^a.$$

Contact forms

An element $(\phi, a, V) \in \mathcal{T}^{\mathcal{E}} \mathcal{J} \pi$ is horizontal if $a = \phi(\pi(a))$;

$$Z = a^b (\mathcal{X}_b + y_b^\beta \mathcal{X}_\beta) + V_b^\beta \mathcal{V}_\beta^b.$$

An element $\mu \in \mathcal{T}^{*E} \mathcal{J} \pi$ is vertical if it vanishes on horizontal elements.

A **contact 1-form** is a section of $\mathcal{T}^{*E} \mathcal{J} \pi$ which is vertical at every point. They are spanned by

$$\theta^{\alpha} = \mathfrak{X}^{\alpha} - y^{\alpha}_{a} \mathfrak{X}^{a}.$$

The module generated by contact 1-forms is the **contact module** \mathcal{M}^{c}

 $\mathcal{M}^{c} = \langle \theta^{\alpha} \rangle.$

The differential ideal generated by contact 1-forms is the **contact ideal** \mathcal{I}^c .

 $\mathfrak{I}^{c} = \langle \theta^{\alpha}, d\theta^{\alpha} \rangle$

Second order jets

A jet $\psi \in \mathcal{J}_{\phi}\pi_1$ is **semiholonomic** if $\psi^*\theta = 0$ for every θ in \mathcal{M}^c .

The jet $\psi = (\phi, \zeta, V)$ is semiholonomic if and only if $\phi = \zeta$.

A jet $\psi \in \mathcal{J}_{\phi}\pi_1$ is **holonomic** if $\psi^*\theta = 0$ for every θ in \mathcal{I}^c .

The jet $\psi = (\phi, \zeta, V)$ is semiholonomic if and only if $\phi = \zeta$ and $\mathcal{M}_{ab}^{\gamma} = 0$, where

$$\mathcal{M}_{ab}^{\gamma} = y_{ab}^{\gamma} - y_{ba}^{\gamma} + C_{b\alpha}^{\gamma} y_{a}^{\alpha} - C_{a\beta}^{\gamma} y_{b}^{\beta} - C_{\alpha\beta}^{\gamma} y_{a}^{\alpha} y_{b}^{\beta} + y_{c}^{\gamma} C_{ab}^{c} + C_{ab}^{\gamma}$$

Jet prolongation of sections

A bundle map $\Phi = (\overline{\Phi}, \underline{\Phi})$ section of π is equivalent to a bundle map $\check{\Phi} = (\check{\overline{\Phi}}, \underline{\Phi})$ from N to $\Im \pi$ section of π_1

$$\check{\overline{\Phi}}(n) = \overline{\Phi}\Big|_{F_n}$$

The jet prolongation of Φ is the section $\Phi^{_{(1)}} \equiv \mathcal{T}^{\Phi}\check{\Phi}$ of π_1 .

In coordinates

$$\Phi^{(1)} = (\mathfrak{X}_a + \Phi^{\alpha}_a \mathfrak{X}_{\alpha} + \acute{\Phi}^{\alpha}_{b|a} \mathfrak{V}^b_{\alpha}) \otimes \bar{e}^a.$$

Theorem: Let $\Psi \in \text{Sec}(\pi_1)$ be such that the associated map $\check{\Psi}$ is a semiholonomic section and let $\check{\Phi}$ be the section of π_1 to which it projects. Then

- 1. The bundle map Ψ is admissible if and only if Φ is admissible and $\Psi = \Phi^{(1)}$.
- 2. The bundle map Ψ is a morphism of Lie algebroids if and only if $\Psi = \check{\Phi}^{(1)}$ and Φ is a morphism of Lie algebroids.

Corollary: Let Φ an admissible map and a section of π . Then Φ is a morphism if and only if $\Phi^{(1)}$ is holonomic.

Lagrangian formalism

 $L \in C^{\infty}(\mathcal{J}\pi)$ Lagrangian, $\omega \in \bigwedge^r F$ 'volume' form.

Canonical form.

For every $\phi \in \mathcal{J}_m \pi$

$$h_{\phi}(a) = \phi(\overline{\pi}(a))$$
 and $v_{\phi}(a) = a - \phi(\overline{\pi}(a))$

They define the map $\vartheta \colon \underline{\pi_{10}}^* E \to \underline{\pi_{10}}^* E$ by

 $\vartheta(\phi, a) = v_{\phi}(a).$

Vertical lifting.

As in any affine bundle

$$\psi_{\phi}^{\vee}f = rac{d}{dt}f(\phi + t\psi)\Big|_{t=0}, \qquad \psi \in \mathcal{V}_m\pi, \quad \phi \in \mathcal{J}_m\pi.$$

Thus we have a map $\xi^{\vee} \colon \underline{\pi_{10}}^*(\mathcal{L}\pi) \to \mathcal{T}^E \mathcal{J}\pi$

$$\xi^{\vee}(\phi,\varphi) = (\phi, (v_{\phi}\circ\varphi)^{\vee}_{\phi}).$$

Vertical endomorphism.

Every $\nu \in \text{Sec}(E^*)$ defines $S_{\nu} \colon \mathcal{T}^E \mathfrak{J} \pi \to \mathcal{T}^E \mathfrak{J} \pi$

$$S_{\nu}(\phi, a, V) = \xi^{\nu}(\phi, a \otimes \nu) = (\phi, 0, v_{\phi}(a) \otimes \nu).$$

In coordinates

$$S = \theta^{\alpha} \otimes \overline{e}_a \otimes \mathcal{V}^a_{\alpha}.$$

Finally

$$S_{\omega} = \theta^{\alpha} \wedge \omega_a \otimes \mathcal{V}_{\alpha}^a.$$

Cartan forms.

$$\Theta_L = S_\omega(dL) + L\omega$$
$$\Omega_L = -d\Theta_L$$

In coordinates

$$\Theta_L = \frac{\partial L}{\partial y^{\alpha}_a} \theta^{\alpha} \wedge \omega_a + L\omega$$

Euler-Lagrange equations.

A solution of the field equations is a morphism $\Phi \in Sec(\pi)$ such that

```
\Phi^{(1)\star}(i_X\Omega_L)=0
```

for all π_1 -vertical section $X \in \text{Sec}(\mathcal{T}^E \mathcal{J} \pi)$.

More generally one can consider the **De Donder** equations

 $\Psi^{\star}(i_X\Omega_L)=0.$

If *L* is regular then $\Psi = \Phi^{(1)}$.

In coordinates we get the Euler-Lagrange partial differential equations

$$\begin{split} & \dot{u}_{|a}^{A} = \rho_{a}^{A} + \rho_{\alpha}^{A} y_{a}^{\alpha} \\ & y_{a|b}^{\gamma} - y_{b|a}^{\gamma} + C_{b\alpha}^{\gamma} y_{a}^{\alpha} - C_{a\beta}^{\gamma} y_{b}^{\beta} - C_{\alpha\beta}^{\gamma} y_{a}^{\alpha} y_{b}^{\beta} + y_{c}^{\gamma} C_{ab}^{c} + C_{ab}^{\gamma} = 0 \\ & \left(\frac{\partial L}{\partial y_{a}^{\alpha}}\right)_{|a}^{\prime} + \frac{\partial L}{\partial y_{a}^{\alpha}} C_{ba}^{b} - \frac{\partial L}{\partial y_{a}^{\gamma}} Z_{a\alpha}^{\gamma} - \frac{\partial L}{\partial u^{A}} \rho_{\alpha}^{A} = 0, \end{split}$$

Standard case

In the standard case, we consider a bundle $\underline{\pi} \colon M \to N$, the standard Lie algebroids F = TN and E = TM and the tangent map $\overline{\pi} = T\underline{\pi} \colon TM \to TN$. Then we have that $\Im \pi = J^1 \underline{\pi}$.

If we take a (non-coordinate) basis of vector fields, our equations provide an expression of the standard Euler-Lagrange and Hamiltonian field equations written in pseudo-coordinates.

In particular, one can take an Ehresmann connection on the bundle $\underline{\pi} \colon M \to N$ and use an adapted local basis

$$\bar{e}_i = \frac{\partial}{\partial x^i} \quad \text{and} \quad \begin{cases} e_i = \frac{\partial}{\partial x^i} + \Gamma_i^A \frac{\partial}{\partial u^A} \\ e_A = \frac{\partial}{\partial u^A}. \end{cases}$$

We have the brackets

$$[e_i, e_j] = -R^A_{ij}e_A, \qquad [e_i, e_B] = \Gamma^A_{iB}e_A \qquad \text{and} \qquad [e_A, e_B] = 0,$$

where we have written $\Gamma^B_{iA} = \partial \Gamma^B_i / \partial u^A$ and where R^A_{ij} is the curvature tensor of the nonlinear connection we have chosen. The components of the anchor are $\rho^i_j = \delta^i_j$, $\rho^A_i = \Gamma^A_i$ and $\rho^A_B = \delta^A_B$ so that the Euler-Lagrange equations are

$$\begin{aligned} \frac{\partial u^{A}}{\partial x^{i}} &= \Gamma_{i}^{A} + y_{i}^{A} \\ \frac{\partial y_{i}^{A}}{\partial x^{i}} - \frac{\partial y_{j}^{A}}{\partial x^{i}} + \Gamma_{jB}^{A} y_{i}^{B} - \Gamma_{iB}^{A} y_{j}^{B} = R_{ij}^{A} \\ \frac{d}{dx^{i}} \left(\frac{\partial L}{\partial y_{i}^{A}}\right) - \Gamma_{iA}^{B} \frac{\partial L}{\partial y_{i}^{B}} = \frac{\partial L}{\partial u^{A}}. \end{aligned}$$

Time-dependent Mechanics

Consider a Lie algebroid $\tau_M^E \colon E \to M$ and the standard Lie algebroid $\tau_{\mathbb{R}} \colon T\mathbb{R} \to \mathbb{R}$. We consider the Lie subalgebroid $K = \ker(\pi)$ and define

$$A = \left\{ a \in E \mid \overline{\pi}(a) = \frac{\partial}{\partial t} \right\}.$$

Then A is an affine subbundle modeled on K and the 'bidual' of A is $(A^{\dagger})^* = E$. Moreover, the Lie algebroid structure on E defines by restriction a Lie algebroid structure on the affine bundle A (i.e. an affgebroid).

Conversely, let A be an affine bundle with a Lie algebroid structure. Then the vector bundle $E \equiv (A^{\dagger})^*$ has an induced Lie algebroid structure. If $\tilde{\rho}$ is the anchor of this bundle then the map $\overline{\pi}$ defined by $\overline{\pi}(z) = T\pi(\tilde{\rho}(z))$ is a morphism. Moreover we have that $A = \{ a \in E \mid \overline{\pi}(a) = \frac{\partial}{\partial t} \}$ as above.

We have a canonical identification of A with $\Im \pi$.

The morphism condition is just the admissibility condition so that the Euler-Lagrange equations are

$$\begin{aligned} \frac{du^{A}}{dt} &= \rho_{0}^{A} + \rho_{\alpha}^{A} y^{\alpha} \\ \frac{d}{dt} \left(\frac{\partial L}{\partial y^{\alpha}} \right) &= \frac{\partial L}{\partial y^{\gamma}} (C_{0\alpha}^{\gamma} + C_{\beta\alpha}^{\gamma} y^{\beta}) + \frac{\partial L}{\partial u^{A}} \rho_{\alpha}^{A}, \end{aligned}$$

where we have written $x^0 \equiv t$ and $y_0^{\alpha} \equiv y^{\alpha}$.

Example: The autonomous case

We have two Lie algebroids $\tau_N^F \colon F \to N$ and $\tau_Q^G \colon G \to Q$ over different bases and we set $M = N \times Q$ and $E = F \times G$, where the projections are both the projection over the first factor $\underline{\pi}(n, q) = n$ and $\overline{\pi}(a, k) = a$. The anchor is the sum of the anchors and the bracket is determined by the brackets of sections of F and G (a section of F commutes with a section of G). We therefore have that

$$ho^{lpha}_a=0, \qquad C^{lpha}_{ab}=0 \qquad ext{and} \qquad C^{lpha}_{aeta}=0.$$

A jet at a point (n, q) is of the form $\phi(a) = (a, \zeta(a))$, for some map $\zeta \colon F_n \to G_q$. We can identify $\Im \pi$ with the set of linear maps from a fibre of F to a fibre of G.

This is further justified by the fact that a map $\Phi: F \to G$ is a morphism of Lie algebroids if and only if the section (id, Φ): $F \to F \times G$ of π is a morphism of Lie algebroids.

The affine functions $Z^{\gamma}_{a\alpha}$ reduce to $Z^{\gamma}_{a\alpha} = C^{\gamma}_{\beta\alpha}y^{\beta}_{a}$ and thus the Euler-Lagrange equations are

$$\left(\frac{\partial L}{\partial y^{\alpha}_{a}}\right)'_{|a} + C^{b}_{ba}\left(\frac{\partial L}{\partial y^{\alpha}_{a}}\right) = \frac{\partial L}{\partial y^{\gamma}_{a}}C^{\gamma}_{\beta\alpha}y^{\beta}_{a} + \frac{\partial L}{\partial u^{A}}\rho^{A}_{\alpha}.$$

In the more particular and common case where F = TN we can take a coordinate basis, so that we also have $C_{ab}^c = 0$. Therefore the Euler-Lagrange partial differential equations are

$$\begin{split} &\frac{\partial u^{A}}{\partial x^{a}} = \rho^{A}_{\alpha} y^{\alpha}_{a} \\ &\frac{d}{dx^{a}} \left(\frac{\partial L}{\partial y^{\alpha}_{a}} \right) = \frac{\partial L}{\partial y^{\gamma}_{a}} C^{\gamma}_{\beta\alpha} y^{\beta}_{a} + \frac{\partial L}{\partial u^{A}} \rho^{A}_{\alpha} \\ &\frac{\partial y^{\alpha}_{a}}{\partial x^{b}} - \frac{\partial y^{\alpha}_{b}}{\partial x^{a}} + C^{\alpha}_{\beta\gamma} y^{\beta}_{b} y^{\gamma}_{a} = 0, \end{split}$$

Autonomous Classical Mechanics

When moreover $F = T\mathbb{R} \to \mathbb{R}$ then we recover Weinstein's equations for a Lagrangian system on a Lie algebroid

$$\begin{aligned} \frac{du^{A}}{dt} &= \rho^{A}_{\alpha} y^{\alpha} \\ \frac{d}{dt} \left(\frac{\partial L}{\partial y^{\alpha}} \right) &= \frac{\partial L}{\partial y^{\gamma}} C^{\gamma}_{\beta \alpha} y^{\beta} + \frac{\partial L}{\partial u^{A}} \rho^{A}_{\alpha} \end{aligned}$$

where, as before, we have written $x^0 \equiv t$ and $y_0^{\alpha} \equiv y^{\alpha}$.

Example: Chern-Simons

Let \mathfrak{g} be a Lie algebra with an ad-invariant metric k.

 $\{\epsilon_{\alpha}\}$ basis of \mathfrak{g} and $C^{\alpha}_{\beta\gamma}$ the structure constants

The symbols $C_{\alpha\beta\gamma} = k_{\alpha\mu}C^{\mu}_{\beta\gamma}$ are skewsymmetric.

Let N be a 3-dimensional manifold and consider the Lie algebroid $E = TN \times \mathfrak{g} \rightarrow N$

$$\tau(v_n,\xi) = n$$
 $\rho(v_n,\xi) = v_n$ $[(X,\xi),(Y,\zeta)] = ([X,Y],[\xi,\zeta]).$

A basis for sections of *E* is given by $e_{\alpha}(n) = (n, \epsilon_{\alpha})$.

As before $F = TN \rightarrow N$, and $\overline{\pi}(v_n, \xi) = v_n$ and $\underline{\pi} = id_N$.

A section Φ of π is of the form $\Phi(v) = (v, A^{\alpha}(v)\epsilon_{\alpha})$ for some 1-forms A^{α} on N. In other words $\Phi^* e^{\alpha} = A^{\alpha} = y^{\alpha}_a dx^a$. The Lagrangian density for Chern-Simons theory is

$$L dx^1 \wedge dx^2 \wedge dx^3 = \frac{1}{3!} C_{\alpha\beta\gamma} A^{\alpha} \wedge A^{\beta} \wedge A^{\gamma}.$$

in other words $L = C_{\alpha\beta\gamma} y_1^{\alpha} y_2^{\beta} y_3^{\gamma}$.

No admissibility conditions (no coordinates u^A).

Morphism conditions $\dot{y}_{i|j}^{\alpha} - \dot{y}_{j|i}^{\alpha} + C^{\alpha}_{\beta\gamma} y_{j}^{\beta} y_{i}^{\gamma} = 0$, can be written

$$dA^{\alpha} + \frac{1}{2}C^{\alpha}_{\beta\gamma}A^{\beta} \wedge A^{\gamma} = 0.$$

The Euler-Lagrange equations reduce to

$$\begin{aligned} \frac{d}{dx^a} \frac{\partial L}{\partial y^{\alpha}_a} &- \frac{\partial L}{\partial y^{\gamma}_a} C^{\gamma}_{\beta\alpha} y^{\beta}_a = C_{\alpha\beta\gamma} \Big[\left(y^{\beta}_{2|1} - y^{\beta}_{1|2} + C^{\beta}_{\mu\nu} y^{\mu}_1 y^{\nu}_2 \right) y^{\gamma}_3 + \\ &+ \left(y^{\beta}_{1|3} - y^{\beta}_{3|1} + C^{\beta}_{\mu\nu} y^{\mu}_3 y^{\nu}_1 \right) y^{\gamma}_2 + \\ &+ \left(y^{\beta}_{3|2} - y^{\beta}_{2|3} + C^{\beta}_{\mu\nu} y^{\mu}_2 y^{\nu}_3 \right) y^{\gamma}_1 \quad \Big] = 0, \end{aligned}$$

which vanish identically in view of the morphism condition.

The conventional Lagrangian density for the Chern-Simons theory is

$$L'\omega = k_{\alpha\beta} \left(A^{\alpha} \wedge dA^{\beta} + \frac{1}{3} C^{\beta}_{\mu\nu} A^{\alpha} \wedge A^{\mu} \wedge A^{\nu} \right),$$

and the difference between L' and L is a multiple of the morphism condition

$$L'\omega - L\omega = k_{\alpha\mu}A^{\mu}\left[dA^{\alpha} + \frac{1}{2}C^{\alpha}_{\beta\gamma}A^{\beta}\wedge A^{\gamma}
ight].$$

Therefore both Lagrangians coincide on the set $\mathcal{M}(\pi)$ of morphisms, which is the set where the action is defined.

Example: Poisson Sigma model

As an example of autonomous theory, we consider a 2-dimensional manifold N and it tangent bundle F = TN. On the other hand, consider a Poisson manifold (Q, Λ) . Then the cotangent bundle $G = T^*Q$ has a Lie algebroid structure, where the anchor is $\rho(\sigma) = \Lambda(\sigma, \cdot)$ and the bracket is $[\sigma, \eta] = d_{\rho(\sigma)}^{TQ} \eta - d_{\rho(\eta)}^{TQ} \sigma - d^{TQ} \Lambda(\sigma, \eta)$, where d^{TQ} is the ordinary exterior differential on Q.

The Lagrangian density for the Poisson Sigma model is $\mathcal{L}(\phi) = -\frac{1}{2}\phi^*\Lambda$. In coordinates (x^1, x^2) on N and (u^A) in Q we have that $\Lambda = \frac{1}{2}\Lambda^{JK}\frac{\partial}{\partial u^J}\wedge \frac{\partial}{\partial u^K}$. A jet at the point (n, q) is a map $\phi: T_n N \to T_q^*Q$, locally given by $\phi = y_{Ki}du^K \otimes dx^i$. Thus we have local coordinates (x^i, u^K, y_{Ki}) on $\mathcal{J}\pi$. The local expression of the Lagrangian density is

$$\mathcal{L} = -\frac{1}{2}\Lambda^{JK}A_J \wedge A_K = -\frac{1}{2}\Lambda^{JK}y_{J1}y_{K2}\,dx^1 \wedge dx^2.$$

where we have written $A_{\mathcal{K}} = \Phi^*(\partial/\partial u^{\mathcal{K}}) = y_{\mathcal{K}i} dx^i$.

A long but straightforward calculation shows that for the Euler-Lagrange equation

$$\frac{d}{dx^a} \left(\frac{\partial L}{\partial y^{\alpha}_a} \right) = \frac{\partial L}{\partial y^{\gamma}_a} C^{\gamma}_{\beta \alpha} y^{\beta}_a + \frac{\partial L}{\partial u^A} \rho^A_{\alpha}$$

the right hand side vanishes while the left hand side reduces to

$$\frac{1}{2}\Lambda^{LJ}\left(y_{L2|1}-y_{L1|2}+\frac{\partial\Lambda^{MK}}{\partial u^{L}}y_{M1}y_{K2}\right)=0.$$

In view of the morphism condition, we see that this equation vanishes. Thus the field equations are just

$$\begin{aligned} \frac{\partial u^J}{\partial x^a} + \Lambda^{JK} y_{Ka} &= 0\\ \frac{\partial y_{Ja}}{\partial x^b} - \frac{\partial y_{Jb}}{\partial x^a} + \frac{\partial \Lambda^{KL}}{\partial u^J} y_{Kb} y_{La} &= 0, \end{aligned}$$

or in other words

$$d\phi^{J} + \Lambda^{JK} A_{K} = 0$$

$$dA_{J} + \frac{1}{2} \Lambda^{KL}_{,J} A_{K} \wedge A_{L} = 0.$$

The conventional Lagrangian density for the Poisson Sigma model (Strobl) is $\mathcal{L}' = \text{tr}(\overline{\Phi} \wedge T\underline{\Phi}) + \frac{1}{2}\Phi^*\Lambda$, which in coordinates reads $\mathcal{L}' = A_J \wedge d\phi^J + \frac{1}{2}\Lambda^{JK}A_J \wedge A_K$. The difference between \mathcal{L}' and \mathcal{L} is a multiple of the admissibility condition $d\phi^J + \Lambda^{JK}A_K$;

$$\mathcal{L}' - \mathcal{L} = A_J \wedge (d\phi^J + \Lambda^{JK} A_K).$$

Therefore both Lagrangians coincide on admissible maps, and hence on morphisms, so that the actions defined by them are equal.

In more generality, one can consider a presymplectic Lie algebroid, that is, a Lie algebroid with a closed 2-form Ω , and the Lagrangian density $L = -\frac{1}{2}\Phi^*\Omega$. The Euler-Lagrange equations vanish as a consequence of the morphism condition and the closure of Ω so that we again get a topological theory. In this way one can generalize the theory for Poisson structures to a theory for Dirac structures.

Hamiltonian formalism

Consider the affine dual of $\mathcal{J}\pi$ considered as the bundle $\underline{\pi_{10}}^{\dagger} : \mathcal{J}^{\dagger}\pi \to M$ with fibre over m

$$\mathcal{J}^{\dagger}\pi = \{ \lambda \in (E_m^*)^{\wedge r} \mid i_{k_1}i_{k_2}\lambda = 0 \text{ for all } k_1, k_2 \in K_m \}$$

We have a canonical form Θ in $\mathcal{T}^{\mathcal{E}}\mathcal{J}^{\dagger}\pi$, given by

$$\Theta_{\lambda} = (\pi_{10}^{\dagger})^{\star} \lambda.$$

Explicitly

$$\Theta_{\lambda}(Z_1, Z_2, \ldots, Z_r) = \lambda(a_1, a_2, \ldots, a_r),$$

for $Z_i = (\lambda, a_i, V_i)$.

The differential of Θ is a multisymplectic form

$$\Omega = -d\Theta.$$

For a section h of the projection $\mathcal{J}^\dagger\pi o \mathcal{V}^*\!\pi$ we consider the Liouville-Cartan forms

$$\Theta_h = (\mathcal{T}h)^* \Theta$$
 and $\Omega_h = (\mathcal{T}h)^* \Omega$

We set the Hamilton equations

$$\Lambda^{\star}(i_X\Omega_h)=0,$$

for a morphism Λ .

In coordinates we get the Hamiltonian field pdes

$$\begin{split} \dot{u}_{|a}^{A} &= \rho_{a}^{A} + \rho_{\alpha}^{A} \frac{\partial H}{\partial \mu_{\alpha}^{a}} \\ \left(\frac{\partial H}{\partial \mu_{\alpha}^{a}} \right)_{|b}^{\prime} - \left(\frac{\partial H}{\partial \mu_{\alpha}^{b}} \right)_{|a}^{\prime} + C_{\beta\gamma}^{\alpha} \frac{\partial H}{\partial \mu_{\beta}^{b}} \frac{\partial H}{\partial \mu_{\gamma}^{a}} + C_{b\gamma}^{\alpha} \frac{\partial H}{\partial \mu_{\gamma}^{a}} - C_{a\gamma}^{\alpha} \frac{\partial H}{\partial \mu_{\gamma}^{b}} = C_{ab}^{\alpha} \\ \dot{\mu}_{\alpha|c}^{c} x^{i} + \mu_{\alpha}^{b} C_{bc}^{c} = -\rho_{\alpha}^{A} \frac{\partial H}{\partial u^{A}} + \mu_{\gamma}^{c} \left(C_{c\alpha}^{\gamma} + C_{\beta\alpha}^{\gamma} \frac{\partial H}{\partial \mu_{\beta}^{c}} \right). \end{split}$$

Legendre transformation

There is a Legendre transformation $\widehat{\mathcal{F}}_{\mathcal{L}}: \mathcal{J}\pi \to \mathcal{J}^{\dagger}\pi$ defined by affine approximation of the Lagrangian as in the standard case. We have similar results:

- $\Box \ \Theta_L = (\mathcal{T}\widehat{\mathcal{F}}_{\mathcal{L}})^* \Theta$ $\Box \ \Omega_L = (\mathcal{T}\widehat{\mathcal{F}}_{\mathcal{L}})^* \Omega$
- □ For hyperregular Lagrangian *L*: if Φ is a solution of the Euler-Lagrange equations then $\Lambda = \mathcal{TF}_{\mathcal{L}} \circ \Phi^{(1)}$ is a solution of the Hamiltonian field equations. Conversely if Λ is a solution of the Hamiltonian field equations, then there exists a solution Φ of the Euler-Lagrange equations such that $\Lambda = \mathcal{TF}_{\mathcal{L}} \circ \Phi^{(1)}$.

For singular systems there is a 'unified Lagrangian-Hamiltonian formalism'.

And of course, we cannot forget ... Tulczyjew triples.

Congratulations Janusz!

The End