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Mechanics on Lie algebroids

(Weinstein 1996, Martínez 2001, ...)

Lie algebroid E → M.

L ∈ C∞(E) or H ∈ C∞(E∗)

��� E = TM → M Standard classical Mechanics

��� E = D ⊂ TM → M (integrable) System with holonomic constraints

��� E = TQ/G → M = Q/G System with symmetry

��� E = g→ {e} System on Lie algebras

��� E = M × g→ M System on a semidirect products (ej. heavy top)
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Symplectic and variational

The theory is symplectic:

iΓωL = dEL

with ωL = −dθL, θL = S(dL) and EL = d∆L− L.

Here d is the differential on the Lie algebroid τEE : T EE → E.

It is also a variational theory:

- Admissible curves or E-paths

- Variations are E-homotopies

- Infinitesimal variations are

δx i = ρiασ
α

δyα = σ̇α + Cαβγy
βσγ
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Time dependent systems

(Martínez, Mestdag and Sarlet 2002)

With suitable modifications one can describe time-dependent systems.

Cartan form

ΘL = S(dL) + Ldt.

Dynamical equation

iΓ dΘL = 0 and 〈Γ, dt〉 = 1.

Field theory in 1-d space-time

Affgebroids

Martinez, Mestdag and Sarlet 2002

Grabowska, Grabowski and Urbanski 2003
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Example: standard case

TM

��

Tπ // TN

��
M

π
// N

m ∈ M and n = π(m)

0 −→ Verm −→ TmM −→ TnN −→ 0

Set of splittings: Jmπ = {φ : TnN → TmM | Tπ ◦ φ = idTnN }.

Lagrangian: L : Jπ → R
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Example: principal bundle

TQ/G

��

[Tπ] // TM

��
Q/G = M

id
// M

m ∈ M
0 −→ Adm −→ (TQ/G)m −→ TmM −→ 0

Set of splittings: Cm(π).

Lagrangian: L : C(π)→ R
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General case

Consider

E

��

π // F

��
M

π
// N

with π = (π, π) epimorphism.

Consider the subbundle K = ker(π)→ M.

For m ∈ M and n = π(m) we have

0 −→ Km −→ Em −→ Fn −→ 0

and we can consider the set of splittings of this sequence.
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We define the sets

Lmπ = {w : Fn → Em | w is linear }

Jmπ = {φ ∈ Lmπ | π ◦ φ = idFn }

Vmπ = {ψ ∈ Lmπ | π ◦ ψ = 0 } .

Projections

π̃10 : Lπ → M vector bundle

π10 : Jπ → M affine subbundle

π10 : Vπ → M vector subbundle
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Local expressions

Take {ea, eα} adapted basis of Sec(E), i.e. {π(ea) = ēa} is a basis of Sec(F )

and {eα} basis of Sec(K). Also take adapted coordinates (x i , uA) to the bundle

π : M → N.

An element of Lπ is of the form

w = (yba eb + y
α
a eα)⊗ ea

Thus we have coordinates (x i , uA, y ba , y
α
a ) on Lπ.

An element of Jπ is of the form

φ = (ea + y
α
a eα)⊗ ea

Thus we have coordinates (x i , uA, yαa ) on Jπ.
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Anchor

We will assume that F and E are Lie algebroids and π is a morphism of Lie

algebroids.

ρ(ēa) = ρ
i
a

∂

∂x i

ρ(ea) = ρ
i
a

∂

∂x i
+ ρAa

∂

∂uA

ρ(eα) = ρ
A
α

∂

∂uA

Total derivative with respect to a section η ∈ Sec(F )

d̂f ⊗ η = f́|aηa.

where

f́|a = ρ
i
a

∂f

∂x i
+ (ρAa + ρ

A
αy
α
a )

∂f

∂uA
.
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Bracket

Since π is a morphism
[ēa, ēb] = C

a
bc ēa

[ea, eb] = C
γ
abeγ + C

a
bcea

[ea, eβ] = C
γ
aβeγ

[eα, eβ] = C
γ
αβeγ

Affine structure functions:

Zαaγ =
̂(deγeα)⊗ ēa = Cαaγ + Cαβγyβa

Zαac =
̂(dec eα)⊗ ēa = Cαac + Cαβcyβa

Zbaγ =
̂(deγeb)⊗ ēa = 0

Zbac =
̂(dec eb)⊗ ēa = Cbac
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Variational Calculus

Only for F = TN.

Let ω be a fixed volume form on N.

Variational problem: Given a function L ∈ C∞(Jπ) find those morphisms Φ: F →
E of Lie algebroids which are sections of π and are critical points of the action

functional

S(Φ) =

∫
N

L(Φ)ω
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Variations

A homotopy is a morphism of Lie algebroids ,

T I × F

��

Ψ // E

��
I × N

ϕ
// M

where I = [0, 1], such that π ◦Ψ = pr2, satisfying some boundary conditions.

For every s ∈ I = [0, 1] define the maps

��� ϕs : N → M by ϕs(n) = ϕ(s, n).

��� φs : N → Jπ, section of π1 : Jπ → N along ϕs by

φs(n)(a) = Ψ(0s , a) for all n ∈ N and all a ∈ Fn.

��� σs : N → E, section of E → N along ϕs by

σs(n) = Ψ
( ∂
∂s

∣∣∣
s
, 0n

)
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In this way

Ψ(λ
∂

∂s

∣∣∣
s
, an) = φs(an) + λσs(n).

� Interpretation:

��� φs is a 1-parameter family of jets, and we say that φ0 is homotopic to φ1

��� σs is the section that controls the variation φs

� Boundary conditions:

��� σs with compact support.

� Variational vector field:

d

ds
φs(n)

∣∣∣
s=0
= ρAασ

α ∂

∂uA
+
(
σα,a + Z

α
aγσ

γ
) ∂

∂yαa
.
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Two consequences

� Variations are of the form

δuA = ρAασ
α

δyαa = σ
α
,a + Z

α
aβσ

β.

where σα have compact support.

� φs is a morphism of Lie algebroids for every s ∈ [0, 1].
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Variational problem

Only for F = TN.

Let ω be a fixed volume form on N.

Variational problem: Given a function L ∈ C∞(Jπ) find those sections Φ: F → E

of π which are a morphism of Lie algebroids and are critical points of the action

S(Φ) =

∫
N

L(Φ)ω
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Euler-Lagrange equations

Infinitesimal admissible variations are

δuA = ρAασ
α

δyαa = σ
α
,a + Z

α
aβσ

β.

Integrating by parts we get the Euler-Lagrange equations

d

dxa

(
∂L

∂yαa

)
=
∂L

∂yγa
Zγaα +

∂L

∂uA
ρAα,

uA,a = ρ
A
a + ρ

A
αy
α
a(

yαa,b + C
α
bγy

γ
a

)
−
(
yαb,a + C

α
aγy

γ
b

)
+ Cαβγy

β
b y
γ
a + y

α
c C
c
ab + C

α
ab = 0.
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Prolongation

Given a Lie algebroid τ : E → M and a submersion µ : P → M we can construct

the E-tangent to P (the prolongation of P with respect to E). It is the vector

bundle τEP : T EP → P where the fibre over p ∈ P is

T Ep P = { (b, v) ∈ Em × TpP | Tµ(v) = ρ(b) }

where m = µ(p).

Redundant notation: (p, b, v) for the element (b, v) ∈ T Ep P .

The bundle T EP can be endowed with a structure of Lie algebroid. The anchor

ρ1 : T EP → TP is just the projection onto the third factor ρ1(p, b, v) = v . The

bracket is given in terms of projectable sections (σ,X), (η, Y )

[(σ,X), (η, Y )] = ([σ, η], [X, Y ]).
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Local basis

Local coordinates (x i , uA) on P and a local basis {eα} of sections of E, define a

local basis {Xα,VA} of sections of T EP by

Xα(p) =
(
p, eα(π(p)), ρ

i
α

∂

∂x i

∣∣∣
p

)
and VA(p) =

(
p, 0,

∂

∂uA

∣∣∣
p

)
.

The Lie brackets of the elements of the basis are

[Xα,Xβ] = C
γ
αβ Xγ , [Xα,VB] = 0 and [VA,VB] = 0,

and the exterior differential is determined by

dx i = ρiαX
α, duA = VA,

dXγ = −
1

2
CγαβX

α ∧ Xβ, dVA = 0,

where {Xα,VA} is the dual basis corresponding to {Xα,VA}.
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Prolongation of maps

If Ψ: P → P ′ is a bundle map over ϕ : M → M ′ and Φ: E → E′ is a morphism over

the same map ϕ then we can define a morphism T ΦΨ: T EP → T E′P ′ by means

of

T ΦΨ(p, b, v) = (Ψ(p),Φ(b), TpΨ(v)).

In particular, for P = E we have the E-tangent to E

T Ea E = { (b, v) ∈ Em × TaE | Tτ(v) = ρ(b) } .
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Repeated jets

� E-tangent to Jπ.

Consider τEJπ : T EJπ → Jπ

T EJπ =
{
(φ, a, V ) ∈ Jπ × E × TJπ

∣∣ Tφπ10(V ) = ρ(a)}
and the projection π1 = π ◦ π10 = (π ◦ π10, π ◦ π10)

T EJπ

��

π1 // F

��
Jπ

π1
// N
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A repeated jet ψ ∈ Jπ1 at the point φ ∈ Jπ is a map ψ : Fn → T Eφ Jπ such that

π1 ◦ ψ = idFn .

Explicitely ψ is of the form Ψ = (φ, ζ, V ) with

��� φ, ζ ∈ Jπ and V ∈ TφJπ,

��� π10(φ) = π10(ζ),

��� V : Fn → TφJπ satisfying

Tπ10 ◦ V = ρ ◦ ζ.

Locally

ψ = (Xa +Ψ
α
aXα +Ψ

α
abV

b
α)⊗ ēa.
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Contact forms

An element (φ, a, V ) ∈ T EJπ is horizontal if a = φ(π(a));

Z = ab(Xb + y
β
b Xβ) + V

β
b V

b
β.

An element µ ∈ T ∗EJπ is vertical if it vanishes on horizontal elements.

A contact 1-form is a section of T ∗EJπ which is vertical at every point. They are

spanned by

θα = Xα − yαa Xa.
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The module generated by contact 1-forms is the contact module Mc

Mc = 〈θα〉.

The differential ideal generated by contact 1-forms is the contact ideal Ic .

Ic = 〈θα, dθα〉
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Second order jets

� A jet ψ ∈ Jφπ1 is semiholonomic if ψ?θ = 0 for every θ in Mc .

The jet ψ = (φ, ζ, V ) is semiholonomic ifand only if φ = ζ.

� A jet ψ ∈ Jφπ1 is holonomic if ψ?θ = 0 for every θ in Ic .

The jet ψ = (φ, ζ, V ) is semiholonomic if and only if φ = ζ and Mγab = 0, where

Mγab = y
γ
ab − y

γ
ba + C

γ
bαy

α
a − C

γ
aβy

β
b − C

γ
αβy

α
a y
β
b + y

γ
c C
c
ab + C

γ
ab.
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Jet prolongation of sections

A bundle map Φ = (Φ,Φ) section of π is equivalent to a bundle map Φ̌ = (Φ̌,Φ)

from N to Jπ section of π1
Φ̌(n) = Φ

∣∣∣
Fn
.

The jet prolongation of Φ is the section Φ(1) ≡ T ΦΦ̌ of π1.

In coordinates

Φ(1) = (Xa +Φ
α
aXα + Φ́

α
b|aV

b
α)⊗ ēa.
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Theorem: Let Ψ ∈ Sec(π1) be such that the associated map Ψ̌ is a semiholonomic

section and let Φ̌ be the section of π1 to which it projects. Then

1. The bundle map Ψ is admissible if and only if Φ is admissible and Ψ = Φ(1).

2. The bundle map Ψ is a morphism of Lie algebroids if and only if Ψ = Φ̌(1) and

Φ is a morphism of Lie algebroids.

Corollary: Let Φ an admissible map and a section of π. Then Φ is a morphism if

and only if Φ(1) is holonomic.
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Lagrangian formalism

L ∈ C∞(Jπ) Lagrangian, ω ∈
∧r
F ’volume’ form.

� Canonical form.

For every φ ∈ Jmπ

hφ(a) = φ(π(a)) and vφ(a) = a − φ(π(a))

They define the map ϑ : π10∗E → π10
∗E by

ϑ(φ, a) = vφ(a).
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� Vertical lifting.

As in any affine bundle

ψVφf =
d

dt
f (φ+ tψ)

∣∣∣
t=0
, ψ ∈ Vmπ, φ ∈ Jmπ.

Thus we have a map ξV : π10∗(Lπ)→ T EJπ

ξV (φ,ϕ) = (φ, (v φ ◦ ϕ)Vφ).
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� Vertical endomorphism.

Every ν ∈ Sec(E∗) defines Sν : T EJπ → T EJπ

Sν(φ, a, V ) = ξ
V (φ, a ⊗ ν) = (φ, 0, vφ(a)⊗ ν).

In coordinates

S = θα ⊗ ea ⊗ Vaα.

Finally

Sω = θ
α ∧ ωa ⊗ Vaα.
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� Cartan forms.

ΘL = Sω(dL) + Lω

ΩL = −dΘL

In coordinates

ΘL =
∂L

∂yαa
θα ∧ ωa + Lω
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� Euler-Lagrange equations.

A solution of the field equations is a morphism Φ ∈ Sec(π) such that

Φ(1)?(iXΩL) = 0

for all π1-vertical section X ∈ Sec(T EJπ).

More generally one can consider the De Donder equations

Ψ?(iXΩL) = 0.

If L is regular then Ψ = Φ(1).
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In coordinates we get the Euler-Lagrange partial differential equations

úA|a = ρ
A
a + ρ

A
αy
α
a

yγ
a|b − y

γ
b|a + C

γ
bαy

α
a − C

γ
aβy

β
b − C

γ
αβy

α
a y
β
b + y

γ
c C
c
ab + C

γ
ab = 0(

∂L

∂yαa

)′
|a
+
∂L

∂yαa
Cbba −

∂L

∂yγa
Zγaα −

∂L

∂uA
ρAα = 0,
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Standard case

In the standard case, we consider a bundle π : M → N, the standard Lie algebroids

F = TN and E = TM and the tangent map π = Tπ : TM → TN. Then we have

that Jπ = J1π.

If we take a (non-coordinate) basis of vector fields, our equations provide an ex-

pression of the standard Euler-Lagrange and Hamiltonian field equations written in

pseudo-coordinates.

In particular, one can take an Ehresmann connection on the bundle π : M → N and

use an adapted local basis

ēi =
∂

∂x i
and


ei =

∂

∂x i
+ ΓAi

∂

∂uA

eA =
∂

∂uA
.
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We have the brackets

[ei , ej ] = −RAij eA, [ei , eB] = Γ
A
iBeA and [eA, eB] = 0,

where we have written ΓBiA = ∂Γ
B
i /∂u

A and where RAij is the curvature tensor of the

nonlinear connection we have chosen. The components of the anchor are ρij = δ
i
j ,

ρAi = Γ
A
i and ρAB = δ

A
B so that the Euler-Lagrange equations are

∂uA

∂x i
= ΓAi + y

A
i

∂yAi
∂x j
−
∂yAj
∂x i
+ ΓAjBy

B
i − ΓAiByBj = RAij

d

dx i

(
∂L

∂yAi

)
− ΓBiA

∂L

∂yBi
=

∂L

∂uA
.
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Time-dependent Mechanics

Consider a Lie algebroid τEM : E → M and the standard Lie algebroid τR : TR→ R.

We consider the Lie subalgebroid K = ker(π) and define

A =

{
a ∈ E

∣∣∣∣ π(a) = ∂

∂t

}
.

Then A is an affine subbundle modeled on K and the ‘bidual’ of A is (A†)∗ = E.

Moreover, the Lie algebroid structure on E defines by restriction a Lie algebroid

structure on the affine bundle A (i.e. an affgebroid).

Conversely, let A be an affine bundle with a Lie algebroid structure. Then the vector

bundle E ≡ (A†)∗ has an induced Lie algebroid structure. If ρ̃ is the anchor of this

bundle then the map π defined by π(z) = Tπ(ρ̃(z)) is a morphism. Moreover we

have that A =
{
a ∈ E

∣∣ π(a) = ∂
∂t

}
as above.

We have a canonical identification of A with Jπ.
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The morphism condition is just the admissibility condition so that the Euler-

Lagrange equations are

duA

dt
= ρA0 + ρ

A
αy
α

d

dt

(
∂L

∂yα

)
=
∂L

∂yγ
(Cγ0α + C

γ
βαy

β) +
∂L

∂uA
ρAα,

where we have written x0 ≡ t and yα0 ≡ yα.
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Example: The autonomous case

We have two Lie algebroids τFN : F → N and τGQ : G → Q over different bases and

we set M = N ×Q and E = F × G, where the projections are both the projection

over the first factor π(n, q) = n and π(a, k) = a. The anchor is the sum of the

anchors and the bracket is determined by the brackets of sections of F and G (a

section of F commutes with a section of G). We therefore have that

ραa = 0, Cαab = 0 and Cαaβ = 0.

A jet at a point (n, q) is of the form φ(a) = (a, ζ(a)), for some map ζ : Fn → Gq.

We can identify Jπ with the set of linear maps from a fibre of F to a fibre of G.

This is further justified by the fact that a map Φ: F → G is a morphism of Lie

algebroids if and only if the section (id,Φ): F → F × G of π is a morphism of Lie

algebroids.
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The affine functions Zγaα reduce to Zγaα = Cγβαy
β
a and thus the Euler-Lagrange

equations are (
∂L

∂yαa

)′
|a
+ Cbba

(
∂L

∂yαa

)
=
∂L

∂yγa
Cγβαy

β
a +

∂L

∂uA
ρAα.

In the more particular and common case where F = TN we can take a coordi-

nate basis, so that we also have Ccab = 0. Therefore the Euler-Lagrange partial

differential equations are

∂uA

∂xa
= ρAαy

α
a

d

dxa

(
∂L

∂yαa

)
=
∂L

∂yγa
Cγβαy

β
a +

∂L

∂uA
ρAα,

∂yαa
∂xb
−
∂yαb
∂xa
+ Cαβγy

β
b y
γ
a = 0,
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� Autonomous Classical Mechanics

When moreover F = TR → R then we recover Weinstein’s equations for a La-

grangian system on a Lie algebroid

duA

dt
= ρAαy

α

d

dt

(
∂L

∂yα

)
=
∂L

∂yγ
Cγβαy

β +
∂L

∂uA
ρAα,

where, as before, we have written x0 ≡ t and yα0 ≡ yα.
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Example: Chern-Simons

Let g be a Lie algebra with an ad-invariant metric k .

{εα} basis of g and Cαβγ the structure constants

The symbols Cαβγ = kαµC
µ
βγ are skewsymmetric.

Let N be a 3-dimensional manifold and consider the Lie algebroid E = TN×g→ N

τ(vn, ξ) = n ρ(vn, ξ) = vn [(X, ξ), (Y, ζ)] = ([X, Y ], [ξ, ζ]).

A basis for sections of E is given by eα(n) = (n, εα).

As before F = TN → N, and π(vn, ξ) = vn and π = idN .

A section Φ of π is of the form Φ(v) = (v , Aα(v)εα) for some 1-forms Aα on N.

In other words Φ?eα = Aα = yαa dx
a.
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The Lagrangian density for Chern-Simons theory is

Ldx1 ∧ dx2 ∧ dx3 =
1

3!
Cαβγ A

α ∧ Aβ ∧ Aγ .

in other words L = Cαβγyα1 y
β
2 y
γ
3 .

No admissibility conditions (no coordinates uA).

Morphism conditions ýαi |j − ý
α
j |i + C

α
βγy

β
j y
γ
i = 0, can be written

dAα +
1

2
CαβγA

β ∧ Aγ = 0.

The Euler-Lagrange equations reduce to

d

dxa
∂L

∂yαa
−
∂L

∂yγa
Cγβαy

β
a = Cαβγ

[
(yβ2|1 − y

β
1|2 + C

β
µνy

µ
1 y
ν
2 )y

γ
3+

+ (yβ1|3 − y
β
3|1 + C

β
µνy

µ
3 y
ν
1 )y

γ
2+

+ (yβ3|2 − y
β
2|3 + C

β
µνy

µ
2 y
ν
3 )y

γ
1

]
= 0,

which vanish identically in view of the morphism condition.
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The conventional Lagrangian density for the Chern-Simons theory is

L′ω = kαβ

(
Aα ∧ dAβ +

1

3
CβµνA

α ∧ Aµ ∧ Aν
)
,

and the difference between L′ and L is a multiple of the morphism condition

L′ω − Lω = kαµAµ
[
dAα +

1

2
CαβγA

β ∧ Aγ
]
.

Therefore both Lagrangians coincide on the set M(π) of morphisms, which is the

set where the action is defined.
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Example: Poisson Sigma model

As an example of autonomous theory, we consider a 2-dimensional manifold N and it

tangent bundle F = TN. On the other hand, consider a Poisson manifold (Q,Λ).

Then the cotangent bundle G = T ∗Q has a Lie algebroid structure, where the

anchor is ρ(σ) = Λ(σ, · ) and the bracket is [σ, η] = dTQ
ρ(σ)η − d

TQ
ρ(η)σ − d

TQΛ(σ, η),

where dTQ is the ordinary exterior differential on Q.

The Lagrangian density for the Poisson Sigma model is L(φ) = − 12φ
?Λ. In coordi-

nates (x1, x2) on N and (uA) in Q we have that Λ = 1
2Λ
JK ∂
∂uJ
∧ ∂
∂uK

. A jet at the

point (n, q) is a map φ : TnN → T ∗qQ, locally given by φ = yKiduK ⊗ dx i . Thus we

have local coordinates (x i , uK , yKi) on Jπ. The local expression of the Lagrangian

density is

L = −
1

2
ΛJKAJ ∧ AK = −

1

2
ΛJKyJ1yK2 dx

1 ∧ dx2.

where we have written AK = Φ?(∂/∂uK) = yKidx i .
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A long but straightforward calculation shows that for the Euler-Lagrange equation

d

dxa

(
∂L

∂yαa

)
=
∂L

∂yγa
Cγβαy

β
a +

∂L

∂uA
ρAα

the right hand side vanishes while the left hand side reduces to

1

2
ΛLJ

(
yL2|1 − yL1|2 +

∂ΛMK

∂uL
yM1yK2

)
= 0.

In view of the morphism condition, we see that this equation vanishes. Thus the

field equations are just

∂uJ

∂xa
+ ΛJKyKa = 0

∂yJa
∂xb

−
∂yJb
∂xa

+
∂ΛKL

∂uJ
yKbyLa = 0,

or in other words

dφJ + ΛJKAK = 0

dAJ +
1

2
ΛKL,J AK ∧ AL = 0.
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The conventional Lagrangian density for the Poisson Sigma model (Strobl) is L′ =

tr(Φ∧TΦ)+ 12Φ
?Λ, which in coordinates reads L′ = AJ ∧dφJ+ 12Λ

JKAJ ∧AK . The

difference between L′ and L is a multiple of the admissibility condition dφJ+ΛJKAK ;

L′ − L = AJ ∧ (dφJ + ΛJKAK).

Therefore both Lagrangians coincide on admissible maps, and hence on morphisms,

so that the actions defined by them are equal.
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In more generality, one can consider a presymplectic Lie algebroid, that is, a Lie

algebroid with a closed 2-form Ω, and the Lagrangian density L = − 12Φ
?Ω. The

Euler-Lagrange equations vanish as a consequence of the morphism condition and

the closure of Ω so that we again get a topological theory. In this way one can

generalize the theory for Poisson structures to a theory for Dirac structures.
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Hamiltonian formalism

Consider the affine dual of Jπ considered as the bundle π10† : J†π → M with fibre

over m

J†π = {λ ∈ (E∗m)∧r | ik1 ik2λ = 0 for all k1, k2 ∈ Km }

We have a canonical form Θ in T EJ†π, given by

Θλ = (π
†
10)
?λ.

Explicitly

Θλ(Z1, Z2, . . . , Zr ) = λ(a1, a2, . . . , ar ),

for Zi = (λ, ai , Vi).
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The differential of Θ is a multisymplectic form

Ω = −dΘ.

For a section h of the projection J†π → V∗π we consider the Liouville-Cartan forms

Θh = (T h)?Θ and Ωh = (T h)?Ω

We set the Hamilton equations

Λ?(iXΩh) = 0,

for a morphism Λ.
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In coordinates we get the Hamiltonian field pdes

úA|a = ρ
A
a + ρ

A
α

∂H

∂µaα(
∂H

∂µaα

)′
|b
−
(
∂H

∂µbα

)′
|a
+ Cαβγ

∂H

∂µbβ

∂H

∂µaγ
+ Cαbγ

∂H

∂µaγ
− Cαaγ

∂H

∂µbγ
= Cαab

µ́cα|cx
i + µbαC

c
bc = −ρAα

∂H

∂uA
+ µcγ

(
Cγcα + C

γ
βα

∂H

∂µcβ

)
.
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Legendre transformation

There is a Legendre transformation F̂L : Jπ → J†π defined by affine approximation

of the Lagrangian as in the standard case. We have similar results:

��� ΘL = (T F̂L)
?Θ

��� ΩL = (T F̂L)
?Ω

��� For hyperregular Lagrangian L: if Φ is a solution of the Euler-Lagrange equa-

tions then Λ = T FL ◦ Φ(1) is a solution of the Hamiltonian field equations.

Conversely if Λ is a solution of the Hamiltonian field equations, then there

exists a solution Φ of the Euler-Lagrange equations such that Λ = T FL ◦Φ(1).

For singular systems there is a ’unified Lagrangian-Hamiltonian formalism’.

And of course, we cannot forget ... Tulczyjew triples.
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Congratulations Janusz!
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The End
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