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Mechanics on Lie algebroids

(Weinstein 1996, Martinez 2001, ...)
Lie algebroid E — M.
LeCx(E)or He C=(E*)

O E =TM — M Standard classical Mechanics
O E=DCTM — M (integrable) System with holonomic constraints
O E=TQ/G— M=Q/G System with symmetry

O E =g — {e} System on Lie algebras
O E =M x g— M System on a semidirect products (ej. heavy top)



Symplectic and variational

The theory is

/er = dEL

with w;, = —do,, 6, = S(dL) and E; =dpal — L.
Here d is the differential on the Lie algebroid 7£: TEE — E.

It is also a theory:

- Admissible curves or E-paths
- Variations are E-homotopies

- Infinitesimal variations are

ox' = p,o®

oy =%+ C‘gﬁyyﬁaﬁy



Time dependent systems

(Martinez, Mestdag and Sarlet 2002)
With suitable modifications one can describe time-dependent systems.

Cartan form
O, =S(dL) + Ldt.

Dynamical equation

/r d@L =0 and (F, dt) =1.

Field theory in 1-d space—time‘

Affgebroids
Martinez, Mestdag and Sarlet 2002
Grabowska, Grabowski and Urbanski 2003



Example: standard case

™ "~ TN

|

m € M and n=m(m)

00— Verp, T M—>T,N—0

Set of splittings: Jpym={¢: T,N—>TyyM | Tmop=idrn}.

Lagrangian: L: Jm — R



Example: principal bundle

7Q/6 I T

|

0—Ady — (TQ/G)yy — TyM — 0

Set of splittings: Cp, (7).

Lagrangian: L: C(m) = R



General case

Consider

with m = (7, w) epimorphism.
Consider the subbundle K = ker(m) — M.
For m € M and n= w(m) we have
0— Ky —En—F —0

and we can consider the set of splittings of this sequence.



We define the sets
Lpm={w: F,— Ep | wis linear}

Inm={¢peLpym | Todp=Iidg, }
Vor={¢Yelym |Top=0}.

Projections

To: Lm— M vector bundle
Tio: JT® — M affine subbundle

T VT — M vector subbundle



Local expressions

Take {e,, e} adapted basis of Sec(E), i.e. {m(e;) = &,} is a basis of Sec(F)
and {ey} basis of Sec(K). Also take adapted coordinates (x', u”) to the bundle
T M—= N.

An element of L is of the form

w = (yle, +y¥es) ® €
Thus we have coordinates (x', uA, y2, y2) on L.
An element of Jm is of the form

d=(es+yle,) ®é’

Thus we have coordinates (x', u4, y&) on gm.



We will assume that F and E are Lie algebroids and 7 is a morphism of Lie

algebroids.
(@) =
p(&) = pag 7

, )
— A A
p(ea) = p, o T PagA

0
_ A
plea) = Payg 2
Total derivative with respect to a section 1 € Sec(F)
@ = fllana-

where

, of of
fla :paa R +(pa +paya)_



Bracket

Since 7 is a morphism
— 1 =
[ea, eb] - Cbcea

les &) = Cloey + Cheen
lea, €s] = Clsey
[€ar €8] = C;Beq,

Affine structure functions:
7%, = (de,e®) @ &8, = C, + C3,¥P
Z?c = (decea) ® éa = C?c + Cgcys?
Zb, = (de,e?) ® 8 =0

ch = (deeb) @& = Cgc
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Variational Calculus

Only for F=TN.
Let w be a fixed volume form on N.

Variational problem: Given a function L € C*(J) find those morphisms ®: F —
E of Lie algebroids which are sections of 7 and are critical points of the action

functional

8(d) = /N L(®)w
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Variations

A homotopy is a morphism of Lie algebroids ,

TIxFY - F

L

I x N — M
where | = [0, 1], such that T o W = pr,, satisfying some boundary conditions.

For every s € | = [0, 1] define the maps
0 @s: N = M by os(n) = (s, n).
O ¢s: N — g, section of w1 : Jm — N along s by
¢s(n)(a) = W(0s, a) forallne N and all a € F,.

O os: N — E, section of E — N along ¢ by

o1 =v(2) o)
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In this way
0
W()\fs , an) = ¢s(an) + AUS(”)'

Interpretation:

[0 ¢s is a 1-parameter family of jets, and we say that ¢ is homotopic to ¢,

[0 o5 is the section that controls the variation ¢s
Boundary conditions:
O o with compact support.

Variational vector field:
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Two consequences

Variations are of the form

Sut = pla®

oys =0+ Z;"ﬁoﬁ.
where o have compact support.

¢s is a morphism of Lie algebroids for every s € [0, 1].
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Variational problem

Only for F=TN.
Let w be a fixed volume form on N.

Variational problem: Given a function L € C=(gm) find those sections ®: F — E
of  which are a morphism of Lie algebroids and are critical points of the action

S(d) = /N L(®)w
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Euler-Lagrange equations

Infinitesimal admissible variations are
Sut = pla®
oy = 0%+ Zj‘ﬁoﬁ.

Integrating by parts we get the Euler-Lagrange equations

d (oL\ oL . oL ,
— ) = =20+ =P
dxa \ Oy2 dys 7 ouA

uy =00+ 0Gys

(2 + CoyY) — (Vs + C2y)) + CEyEyd + yeCS, + € = 0.
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Prolongation

Given a Lie algebroid 7: E — M and a submersion pu: P — M we can construct
the E-tangent to P (the prolongation of P with respect to E). It is the vector
bundle 75 : TEP — P where the fibre over p € P is

Ty P={(b.v) € EnxToP | Tu(v) = p(b) }
where m = u(p).
Redundant notation: (p, b, v) for the element (b, v) € TEP.

The bundle 7EP can be endowed with a structure of Lie algebroid. The anchor
pt: TEP — TP is just the projection onto the third factor p*(p, b, v) = v. The
bracket is given in terms of projectable sections (o, X), (1,Y)

[(0, X). (n.Y)] = (lo.n]. [X. Y]).

17



Local basis

Local coordinates (x/, u*) on P and a local basis {e,} of sections of E, define a
local basis {X4, Va} of sections of TEP by

p) and Va(p) = (p, 0, 8;;‘,)'

Xa(p) = (p. ea(ﬂ(p)),p&%

The Lie brackets of the elements of the basis are
[Xa, Xp] = Co5 Xy, [Xo,VB] =0 and [Va,Vg] =0,
and the exterior differential is determined by
dx' = pL, X%, du = VA,
dX" = —%cgﬁxa AXP, dvA =0,

where {X%, VA} is the dual basis corresponding to {X4, Va}.
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Prolongation of maps

If W: P — P"is abundle map over p: M — M’ and ®: E — E’ is a morphism over
the same map ¢ then we can define a morphism 7®W: TEP — TE P’ by means

of
TW(p, b, v) = (W(p), d(b), ToW(v)).

In particular, for P = E we have the E-tangent to E

TEE={(b,v) € Epx T,E | TT(v) = p(b)}.
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Repeated jets

E-tangent to J.
Consider ’Té:_,,ri TEIn = I
TEIm={(¢.a,V) €dn x Ex TIm | Tymo(V) = p(a) }

and the projection m; = T o Mg = (T 0 710, T © T1g)

TEIr s F

|

Jm ——=N
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A repeated jet Y € Jmy at the point ¢ € Jwisa map ¥: F, — 7;537r such that

o = ide..
Explicitely 9 is of the form W = (¢, {, V) with

O ¢,(edmand V € Tydm,

O m0(¢) = m10(C).
O V: F, = Tgdm satisfying

TmpoV =po(.

Locally
Y= (X5 + Ve + VEVE) @ &°.
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Contact forms

An element (¢, a, V) € TEJm is horizontal if a = ¢(7(a));
Z = a"(Xp + v %Ag) + VEVE.
An element u € T*EJ7 is vertical if it vanishes on horizontal elements.

A contact 1-form is a section of 7*EJm which is vertical at every point. They are
spanned by
0% = X — yZ°.
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The module generated by contact 1-forms is the contact module M¢

ME = (6%).

The differential ideal generated by contact 1-forms is the contact ideal J°.

7¢ = (6, do™)
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Second order jets

A jet 9 € Jym is semiholonomic if 98 = 0 for every 8 in M€.

The jet ¢ = (¢, ¢, V) is semiholonomic ifand only if ¢ = (.

A jet 9 € Jym is holonomic if 8 = O for every 8 in J°.
The jet 9 = (¢, ¢, V) is semiholonomic if and only if ¢ = ¢ and M7, = 0, where

jWZb:yab yba+Cbaya Caﬁyb C,Yﬁyayb +yg +C
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Jet prolongation of sections

A bundle map ® = (b, d) section of 7 is equivalent to a bundle map ® = ($ )
from N to Jm section of

The jet prolongation of ® is the section ®® = T®d of 7.

In coordinates
PN = (X, + PIXAy + DY, Vo) @ &°.
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Theorem: Let W € Sec(7) be such that the associated map W is a semiholonomic

section and let ® be the section of m; to which it projects. Then

1. The bundle map W is admissible if and only if ® is admissible and W = &)

2. The bundle map W is a morphism of Lie algebroids if and only if W = &) and
@ is a morphism of Lie algebroids.

Corollary: Let & an admissible map and a section of w. Then & is a morphism if

and only if ®® is holonomic.
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Lagrangian formalism

L € C*(g~) Lagrangian, w € A" F 'volume’ form.

Canonical form.
For every ¢ € g

hy(a) = d(m(a))  and  vy(a) = a— ¢((a))
They define the map 9¥: " E — mo"E by

(¢, a) = vp(a).

27



Vertical lifting.

As in any affine bundle

ve_ d
Upf = F@+tw)| . wEVa

Thus we have a map £ mo* (L) — TEIm

§(d.0) = (9. (vgop)p).

¢ € Imm.
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Vertical endomorphism.
Every v € Sec(E*) defines S,: TEdm — TEdn

Su(d.aV)=¢"(¢.a0v)=(¢0 v(a) @v).

In coordinates

S=0"Re,Vi.
Finally

Sw=0%ANw,® V5.
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Cartan forms.

O, =S,(dL) + Lw

Q =-do;
In coordinates
oL

O, = Bys

ea/\wa+LaI
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Euler-Lagrange equations.

A solution of the field equations is a morphism ® € Sec(w) such that
PO (ixQ) =0

for all ;-vertical section X € Sec(TEJ).

More generally one can consider the De Donder equations

W (ixQ) = 0.

If L is regular then W = oW,
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In coordinates we get the Euler-Lagrange partial differential equations

iy = P35 + oy
yg‘b - yg|a + Cgaya Caﬁyb C’Yﬁya yb +ng + Cab —

< 6L:> oL oL oL A_g

N Sy S
aya 6ya ba ay; aa auApa
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Standard case

In the standard case, we consider a bundle w: M — N, the standard Lie algebroids
F=TNand E=TM and the tangent map T =T7w: TM — TN. Then we have
that Jm = Jim.

If we take a (non-coordinate) basis of vector fields, our equations provide an ex-
pression of the standard Euler-Lagrange and Hamiltonian field equations written in

pseudo-coordinates.

In particular, one can take an Ehresmann connection on the bundle m: M — N and

use an adapted local basis

o 0 a0
0 = o T g
e,—ﬁ and P

eAZ—auA.
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We have the brackets

lei ] = fRéeA, lei, es] = F,-ABeA and [ea, eg] =0,

where we have written [}, = 87 /0u” and where R} is the curvature tensor of the
nonlinear connection we have chosen. The components of the anchor are pj"- = 6J’

p =T74 and pp = 67 so that the Euler-Lagrange equations are

ouA

Ox! = r/’A + y’A
A

oyt 9y

A B A B A
o ax ey sy = Ry

d <8L>_ 0L oL

@i \ayA) " T4ayE = aun
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Time-dependent Mechanics

Consider a Lie algebroid ’T,@I E — M and the standard Lie algebroid 7 : TR — R.
We consider the Lie subalgebroid K = ker() and define

w(a)zaat}.

Then A is an affine subbundle modeled on K and the ‘bidual’ of A is (Af)* = E.
Moreover, the Lie algebroid structure on E defines by restriction a Lie algebroid
structure on the affine bundle A (i.e. an affgebroid).

A:{aEE

Conversely, let A be an affine bundle with a Lie algebroid structure. Then the vector
bundle E = (A")* has an induced Lie algebroid structure. If 5 is the anchor of this
bundle then the map 7 defined by 7(z) = Tw(p(z)) is a morphism. Moreover we
have that A={a€ E | T(a) = & } as above.

We have a canonical identification of A with Jm.
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The morphism condition is just the admissibility condition so that the Euler-

Lagrange equations are

du” AL Aa

i = Po Tl

d (LY _OL o
dt <8y°‘> ay7 (a6

where we have written x° = t and y§ = y*~.

oL
¥P) + HyAPa:

A
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Example: The autonomous case

We have two Lie algebroids T,C: F— N and ’Tgi G — Q over different bases and
we set M =N x Q and E = F x G, where the projections are both the projection
over the first factor m(n, g) = n and 7(a, k) = a. The anchor is the sum of the
anchors and the bracket is determined by the brackets of sections of F and G (a

section of F commutes with a section of G). We therefore have that

s =0, o =0 and =0
A jet at a point (n, q) is of the form ¢(a) = (a,{(a)), for some map (: F, = Gg.
We can identify Jm with the set of linear maps from a fibre of F to a fibre of G.

This is further justified by the fact that a map ®: F — G is a morphism of Lie
algebroids if and only if the section (id, ®): F — F x G of 7 is a morphism of Lie
algebroids.
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The affine functions Z7, reduce to Z2, = Cgayaﬁ and thus the Euler-Lagrange

equations are

oL\’ oL oL oL
Cb=—)==—=C P4+ =—0~
(ayg>|a + ba (ayg) ayg Baya + auApa

In the more particular and common case where F = TN we can take a coordi-
nate basis, so that we also have C5, = 0. Therefore the Euler-Lagrange partial

differential equations are

out o
ox? p’éya
d (aL\ oL ., 5 aL ,
dxa <6y§‘> oyl CoaYa + BuAPe
Oyy  Oyy

+CayPyl =0,

oxb  xa



Autonomous Classical Mechanics

When moreover F = TR — R then we recover Weinstein's equations for a La-

grangian system on a Lie algebroid

du®

— A,
dr PaY

dt \gy>) — ayr b« ouA

where, as before, we have written x® = t and y& = y©.

L L L
(D)0 By
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Example: Chern-Simons

Let g be a Lie algebra with an ad-invariant metric k.
{€a} basis of g and Cg, the structure constants
The symbols Capy = kouCh, are skewsymmetric.

Let N be a 3-dimensional manifold and consider the Lie algebroid E = TN xg — N

(v, &) =n  p(vn.&) =va (X, 8. (V. Ol = (X, Y] [£C]).

A basis for sections of E is given by e,(n) = (n, €4).
As before F = TN — N, and (v, &) = v, and ™ = idy.
A section @ of 7 is of the form ®(v) = (v, A*(v)e,) for some 1-forms A% on N.

In other words ®*e% = A% = yZdx?.
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The Lagrangian density for Chern-Simons theory is
1
Ldx* Ndx® A dx® = 31 Comn A° ANAPNAY

in other words L = Copyy2y2y3.
No admissibility conditions (no coordinates u*).
Morphism conditions y — yﬁ‘, + CB"‘,nyay,-"Y =0, can be written

dA* + Lea A a v =0

2 By -

The Euler-Lagrange equations reduce to
d oL oL

dx20yg  Oya

+ (Vs — Vi + CLvEv 3+

+ (yg\z - y§\3 + COYEYS)yY

which vanish identically in view of the morphism condition.

- 7Cgayaﬁ = Caﬁ'y|: (yg}\l - yﬁg + CE,,)/{L,V;))/;-F

:O’
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The conventional Lagrangian density for the Chern-Simons theory is
Lt = kg [ A* A dAP + 2CB A% A AR A AY
w = a3 + § % '
and the difference between L’ and L is a multiple of the morphism condition
1
L'w— Lw = kgpA* [dAa +5C5A A AV} .

Therefore both Lagrangians coincide on the set M(7) of morphisms, which is the

set where the action is defined.
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Example: Poisson Sigma model

As an example of autonomous theory, we consider a 2-dimensional manifold N and it
tangent bundle F = TN. On the other hand, consider a Poisson manifold (Q, A).
Then the cotangent bundle G = T*Q has a Lie algebroid structure, where the
anchor is p(o) = A(o, ) and the bracket is [0, 7] = de(S)n — de(%a —d"®A(o,m),
where d7@ is the ordinary exterior differential on Q.

The Lagrangian density for the Poisson Sigma model is £(¢) = —%d)*/\. In coordi-
nates (x!, x2) on N and (u*) in Q we have that A = SAIK2 A SO A jet at the
point (n, q) isa map ¢: T,N — T, @, locally given by ¢ = yridu® @ dx’. Thus we
have local coordinates (x’, uK,yK,-) on Jm. The local expression of the Lagrangian
density is

1 1
L= —EAJKAJ AAk = —5/\J*<yﬂy,<2 dxt A dx?.

where we have written Ax = ®*(8/0uX) = yi;dx’.
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A long but straightforward calculation shows that for the Euler-Lagrange equation

d (OL\ 8L ., 5 0L ,
dx? (ays) = By et F guara

the right hand side vanishes while the left hand side reduces to
1 AMK
EALJ <YL2|1 —Yip+ 8uLyM1yK2) =0.

In view of the morphism condition, we see that this equation vanishes. Thus the

field equations are just

!
ox@
Oysa Oy  ONKE

xb  Bxa + Y YKbYLa

+ /\JKyKa =0

= O'
or in other words

d¢’ + N Ak =0

1
dA, + EAijAK ANAL =0.
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The conventional Lagrangian density for the Poisson Sigma model (Strobl) is £’ =
tr(®AT®)+ FP*A, which in coordinates reads £’ = AjAd¢? + SAKA; A Ax. The
difference between £’ and £ is a multiple of the admissibility condition d¢?+A/X Ak

L= L= A N (dp? +NFAK).

Therefore both Lagrangians coincide on admissible maps, and hence on morphisms,

so that the actions defined by them are equal.
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In more generality, one can consider a presymplectic Lie algebroid, that is, a Lie
algebroid with a closed 2-form €2, and the Lagrangian density L = —%CD*Q. The
Euler-Lagrange equations vanish as a consequence of the morphism condition and
the closure of 2 so that we again get a topological theory. In this way one can

generalize the theory for Poisson structures to a theory for Dirac structures.
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Hamiltonian formalism

Consider the affine dual of Jm considered as the bundle m*: It — M with fibre

over m
HT’]'(' = {>\ S (E;)/\r | I oA = 0 for all ki, ko € Km}

We have a canonical form © in TEJ ', given by
O = (7)) A

Explicitly

for Z,‘ = ()\, aj, \/,)
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The differential of © is a multisymplectic form

Q=-do.

For a section h of the projection Jtm — V*1 we consider the Liouville-Cartan forms

O = (Th)© and Qp=(ThQ

We set the Hamilton equations
N (ixS2p) =0,

for a morphism A.
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In coordinates we get the Hamiltonian field pdes

Aa
U\a = pa +pa8ua

(6H>/ (5H>' Lca OH OH | o OH
oug ), \owh /), TYoupous " "Tou3

ug)'

, - OH
g X + paChe = —PQW + 1y (Cga + Ca

o)

OH

o« OH
- Covous

a
Cab
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Legendre transformation

There is a Legendre transformation 5% : g7 — J' defined by affine approximation

of the Lagrangian as in the standard case. We have similar results:
0 6, =(TF:)'©

0 Q = (TF:)Q

[0 For hyperregular Lagrangian L: if ® is a solution of the Euler-Lagrange equa-
tions then A = TF; o ®W is a solution of the Hamiltonian field equations.
Conversely if A is a solution of the Hamiltonian field equations, then there
exists a solution @ of the Euler-Lagrange equations such that A = 75 o W,

For singular systems there is a "unified Lagrangian-Hamiltonian formalism’.

And of course, we cannot forget ... Tulczyjew triples.
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Congratulations Janusz!

ACTIEF INTERIM

uvitzenden - detacheren - werving & selectie



The End
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