Jets and Fields on Lie Algebroids

Geometry of Jets and Fields

Mechanics on Lie algebroids

(Weinstein 1996, Martínez 2001, ...)
Lie algebroid $E \rightarrow M$.
$L \in C^{\infty}(E)$ or $H \in C^{\infty}\left(E^{*}\right)$
$\square E=T M \rightarrow M$ Standard classical Mechanics
$\square E=\mathcal{D} \subset T M \rightarrow M$ (integrable) System with holonomic constraints
$\square E=T Q / G \rightarrow M=Q / G$ System with symmetry
$\square E=\mathfrak{g} \rightarrow\{e\}$ System on Lie algebras
$\square E=M \times \mathfrak{g} \rightarrow M$ System on a semidirect products (ej. heavy top)

Symplectic and variational

The theory is symplectic:

$$
i_{\Gamma} \omega_{L}=d E_{L}
$$

with $\omega_{L}=-d \theta_{L}, \theta_{L}=S(d L)$ and $E_{L}=d_{\Delta} L-L$.
Here d is the differential on the Lie algebroid $\tau_{E}^{E}: \mathcal{T}^{E} E \rightarrow E$.
It is also a variational theory:

- Admissible curves or E-paths
- Variations are E-homotopies
- Infinitesimal variations are

$$
\begin{aligned}
\delta x^{i} & =\rho_{\alpha}^{i} \sigma^{\alpha} \\
\delta y^{\alpha} & =\dot{\sigma}^{\alpha}+C_{\beta \gamma}^{\alpha} y^{\beta} \sigma^{\gamma}
\end{aligned}
$$

Time dependent systems

(Martínez, Mestdag and Sarlet 2002)
With suitable modifications one can describe time-dependent systems.
Cartan form

$$
\Theta_{L}=S(d L)+L d t
$$

Dynamical equation

$$
i_{\Gamma} d \Theta_{L}=0 \quad \text { and } \quad\langle\Gamma, d t\rangle=1 .
$$

Field theory in 1-d space-time
Affgebroids
Martinez, Mestdag and Sarlet 2002
Grabowska, Grabowski and Urbanski 2003

Example: standard case

$m \in M$ and $n=\pi(m)$

$$
0 \longrightarrow \operatorname{Ver}_{m} \longrightarrow T_{m} M \longrightarrow T_{n} N \longrightarrow 0
$$

Set of splittings: $J_{m} \pi=\left\{\phi: T_{n} N \rightarrow T_{m} M \mid T \pi \circ \phi=\mathrm{id} T_{n} N\right\}$.
Lagrangian: $L: J \pi \rightarrow \mathbb{R}$

Example: principal bundle

$m \in M$

$$
0 \longrightarrow \mathrm{Ad}_{m} \longrightarrow(T Q / G)_{m} \longrightarrow T_{m} M \longrightarrow 0
$$

Set of splittings: $C_{m}(\pi)$.
Lagrangian: $L: C(\pi) \rightarrow \mathbb{R}$

General case

Consider

with $\pi=(\bar{\pi}, \underline{\pi})$ epimorphism.
Consider the subbundle $K=\operatorname{ker}(\pi) \rightarrow M$.
For $m \in M$ and $n=\underline{\pi}(m)$ we have

$$
0 \longrightarrow K_{m} \longrightarrow E_{m} \longrightarrow F_{n} \longrightarrow 0
$$

and we can consider the set of splittings of this sequence.

We define the sets

$$
\begin{aligned}
\mathcal{L}_{m} \pi & =\left\{w: F_{n} \rightarrow E_{m} \mid w \text { is linear }\right\} \\
\mathcal{J}_{m} \pi & =\left\{\phi \in \mathcal{L}_{m} \pi \mid \bar{\pi} \circ \phi=\operatorname{id}_{F_{n}}\right\} \\
\mathcal{V}_{m} \pi & =\left\{\psi \in \mathcal{L}_{m} \pi \mid \bar{\pi} \circ \psi=0\right\} .
\end{aligned}
$$

Projections

$\underline{\tilde{\pi}_{10}}: \mathcal{L} \pi \rightarrow M$	vector bundle
$\underline{\pi_{10}}: \mathcal{J} \pi \rightarrow M$	affine subbundle
$\underline{\boldsymbol{\pi}_{10}}: \mathcal{V} \pi \rightarrow M$	vector subbundle

Local expressions

Take $\left\{e_{a}, e_{\alpha}\right\}$ adapted basis of $\operatorname{Sec}(E)$, i.e. $\left\{\bar{\pi}\left(e_{a}\right)=\bar{e}_{a}\right\}$ is a basis of $\operatorname{Sec}(F)$ and $\left\{e_{\alpha}\right\}$ basis of $\operatorname{Sec}(K)$. Also take adapted coordinates $\left(x^{i}, u^{A}\right)$ to the bundle $\pi: M \rightarrow N$.

An element of $\mathcal{L} \pi$ is of the form

$$
w=\left(y_{a}^{b} e_{b}+y_{a}^{\alpha} e_{\alpha}\right) \otimes e^{a}
$$

Thus we have coordinates ($x^{i}, u^{A}, y_{a}^{b}, y_{a}^{\alpha}$) on $\mathcal{L} \pi$.
An element of $\mathcal{J} \pi$ is of the form

$$
\phi=\left(e_{a}+y_{a}^{\alpha} e_{\alpha}\right) \otimes e^{a}
$$

Thus we have coordinates $\left(x^{i}, u^{A}, y_{a}^{\alpha}\right)$ on $\mathcal{J} \pi$.

Anchor

We will assume that F and E are Lie algebroids and π is a morphism of Lie algebroids.

$$
\begin{aligned}
& \rho\left(\bar{e}_{a}\right)=\rho_{a}^{i} \frac{\partial}{\partial x^{i}} \\
& \rho\left(e_{a}\right)=\rho_{a}^{i} \frac{\partial}{\partial x^{i}}+\rho_{a}^{A} \frac{\partial}{\partial u^{A}} \\
& \rho\left(e_{\alpha}\right)=\rho_{\alpha}^{A} \frac{\partial}{\partial u^{A}}
\end{aligned}
$$

Total derivative with respect to a section $\eta \in \operatorname{Sec}(F)$

$$
\widehat{d f \otimes \eta}=\hat{f}_{l a} \eta^{a} .
$$

where

$$
\dot{f}_{l a}=\rho_{a}^{i} \frac{\partial f}{\partial x^{i}}+\left(\rho_{a}^{A}+\rho_{\alpha}^{A} y_{a}^{\alpha}\right) \frac{\partial f}{\partial u^{A}} .
$$

Bracket

Since π is a morphism

$$
\begin{aligned}
& {\left[\bar{e}_{a}, \bar{e}_{b}\right]=C_{b c}^{a} \bar{e}_{a}} \\
& {\left[e_{a}, e_{b}\right]=C_{a b}^{\gamma} e_{\gamma}+C_{b c}^{a} e_{a}} \\
& {\left[e_{a}, e_{\beta}\right]=C_{a \beta}^{\gamma} e_{\gamma}} \\
& {\left[e_{\alpha}, e_{\beta}\right]=C_{\alpha \beta}^{\gamma} e_{\gamma}}
\end{aligned}
$$

Affine structure functions:

$$
\begin{aligned}
& Z_{a \gamma}^{\alpha}=\left(d_{e_{\gamma}} \widehat{\left.e^{\alpha}\right) \otimes} \bar{e}_{a}=C_{a \gamma}^{\alpha}+C_{\beta \gamma}^{\alpha} y_{a}^{\beta}\right. \\
& Z_{a c}^{\alpha}=\left(d_{e_{c}} \widehat{\left.e^{\alpha}\right) \otimes} \bar{e}_{a}=C_{a c}^{\alpha}+C_{\beta c}^{\alpha} y_{a}^{\beta}\right. \\
& Z_{a \gamma}^{b}=\left(d_{e_{\gamma}} \widehat{\left.e^{b}\right) \otimes} \bar{e}_{a}=0\right. \\
& Z_{a c}^{b}=\left(d_{e_{c}} \widehat{e^{b}}\right) \otimes \bar{e}_{a}=C_{a c}^{b}
\end{aligned}
$$

Variational Calculus

Only for $F=T N$.
Let ω be a fixed volume form on N.
Variational problem: Given a function $L \in C^{\infty}(\mathcal{J} \pi)$ find those morphisms $\Phi: F \rightarrow$ E of Lie algebroids which are sections of π and are critical points of the action functional

$$
\mathcal{S}(\Phi)=\int_{N} L(\Phi) \omega
$$

Variations

A homotopy is a morphism of Lie algebroids,

where $I=[0,1]$, such that $\bar{\pi} \circ \Psi=\mathrm{pr}_{2}$, satisfying some boundary conditions.
For every $s \in I=[0,1]$ define the maps
$\square \varphi_{s}: N \rightarrow M$ by $\varphi_{s}(n)=\varphi(s, n)$.
$\square \phi_{s}: N \rightarrow \mathcal{J} \pi$, section of $\pi_{1}: \mathcal{J} \pi \rightarrow N$ along φ_{s} by

$$
\phi_{s}(n)(a)=\Psi\left(0_{s}, a\right) \quad \text { for all } n \in N \text { and all } a \in F_{n} .
$$

$\square \sigma_{s}: N \rightarrow E$, section of $E \rightarrow N$ along φ_{s} by

$$
\sigma_{s}(n)=\psi\left(\left.\frac{\partial}{\partial s}\right|_{s}, 0_{n}\right)
$$

In this way

$$
\psi\left(\left.\lambda \frac{\partial}{\partial s}\right|_{s}, a_{n}\right)=\phi_{s}\left(a_{n}\right)+\lambda \sigma_{s}(n)
$$

- Interpretation:
$\square \phi_{s}$ is a 1-parameter family of jets, and we say that ϕ_{0} is homotopic to ϕ_{1}
$\square \sigma_{s}$ is the section that controls the variation ϕ_{s}

Boundary conditions:
$\square \sigma_{s}$ with compact support.

- Variational vector field:

$$
\left.\frac{d}{d s} \phi_{s}(n)\right|_{s=0}=\rho_{\alpha}^{A} \sigma^{\alpha} \frac{\partial}{\partial u^{A}}+\left(\sigma_{, a}^{\alpha}+Z_{a \gamma}^{\alpha} \sigma^{\gamma}\right) \frac{\partial}{\partial y_{a}^{\alpha}}
$$

Two consequences

Variations are of the form

$$
\begin{aligned}
\delta u^{A} & =\rho_{\alpha}^{A} \sigma^{\alpha} \\
\delta y_{a}^{\alpha} & =\sigma_{, a}^{\alpha}+Z_{a \beta}^{\alpha} \sigma^{\beta} .
\end{aligned}
$$

where σ^{α} have compact support.
$\square \phi_{s}$ is a morphism of Lie algebroids for every $s \in[0,1]$.

Variational problem

Only for $F=T N$.
Let ω be a fixed volume form on N.
Variational problem: Given a function $L \in C^{\infty}(\mathcal{J} \pi)$ find those sections $\Phi: F \rightarrow E$ of π which are a morphism of Lie algebroids and are critical points of the action

$$
\mathcal{S}(\Phi)=\int_{N} L(\Phi) \omega
$$

Euler-Lagrange equations

Infinitesimal admissible variations are

$$
\begin{aligned}
& \delta u^{A}=\rho_{\alpha}^{A} \sigma^{\alpha} \\
& \delta y_{a}^{\alpha}=\sigma_{, a}^{\alpha}+Z_{a \beta}^{\alpha} \sigma^{\beta}
\end{aligned}
$$

Integrating by parts we get the Euler-Lagrange equations

$$
\begin{gathered}
\frac{d}{d x^{a}}\left(\frac{\partial L}{\partial y_{a}^{\alpha}}\right)=\frac{\partial L}{\partial y_{a}^{\gamma}} Z_{a \alpha}^{\gamma}+\frac{\partial L}{\partial u^{A}} \rho_{\alpha}^{A} \\
u_{a}^{A}=\rho_{a}^{A}+\rho_{\alpha}^{A} y_{a}^{\alpha} \\
\left(y_{a, b}^{\alpha}+C_{b \gamma}^{\alpha} y_{a}^{\gamma}\right)-\left(y_{b, a}^{\alpha}+C_{a \gamma}^{\alpha} y_{b}^{\gamma}\right)+C_{\beta \gamma}^{\alpha} y_{b}^{\beta} y_{a}^{\gamma}+y_{c}^{\alpha} C_{a b}^{c}+C_{a b}^{\alpha}=0 .
\end{gathered}
$$

Prolongation

Given a Lie algebroid $\tau: E \rightarrow M$ and a submersion $\mu: P \rightarrow M$ we can construct the E-tangent to P (the prolongation of P with respect to E). It is the vector bundle $\tau_{P}^{E}: \mathcal{T}^{E} P \rightarrow P$ where the fibre over $p \in P$ is

$$
\mathcal{T}_{p}^{E} P=\left\{(b, v) \in E_{m} \times T_{p} P \mid T \mu(v)=\rho(b)\right\}
$$

where $m=\mu(p)$.
Redundant notation: (p, b, v) for the element $(b, v) \in \mathcal{T}_{p}^{E} P$.
The bundle $\mathcal{T}^{E} P$ can be endowed with a structure of Lie algebroid. The anchor $\rho^{1}: \mathcal{T}^{E} P \rightarrow T P$ is just the projection onto the third factor $\rho^{1}(p, b, v)=v$. The bracket is given in terms of projectable sections $(\sigma, X),(\eta, Y)$

$$
[(\sigma, X),(\eta, Y)]=([\sigma, \eta],[X, Y])
$$

Local basis

Local coordinates $\left(x^{i}, u^{A}\right)$ on P and a local basis $\left\{e_{\alpha}\right\}$ of sections of E, define a local basis $\left\{X_{\alpha}, \mathcal{V}_{A}\right\}$ of sections of $\mathcal{T}^{E} P$ by

$$
X_{\alpha}(p)=\left(p, e_{\alpha}(\pi(p)),\left.\rho_{\alpha}^{i} \frac{\partial}{\partial x^{i}}\right|_{p}\right) \quad \text { and } \quad \mathcal{V}_{A}(p)=\left(p, 0,\left.\frac{\partial}{\partial u^{A}}\right|_{p}\right) .
$$

The Lie brackets of the elements of the basis are

$$
\left[X_{\alpha}, X_{\beta}\right]=C_{\alpha \beta}^{\gamma} X_{\gamma}, \quad\left[X_{\alpha}, \mathcal{V}_{B}\right]=0 \quad \text { and } \quad\left[\mathcal{V}_{A}, \mathcal{V}_{B}\right]=0
$$

and the exterior differential is determined by

$$
\begin{array}{ll}
d x^{i}=\rho_{\alpha}^{i} X^{\alpha}, & d u^{A}=V^{A} \\
d X^{\gamma}=-\frac{1}{2} C_{\alpha \beta}^{\gamma} X^{\alpha} \wedge X^{\beta}, & d V^{A}=0
\end{array}
$$

where $\left\{X^{\alpha}, \mathcal{V}^{A}\right\}$ is the dual basis corresponding to $\left\{X_{\alpha}, \mathcal{V}_{A}\right\}$.

Prolongation of maps

If $\psi: P \rightarrow P^{\prime}$ is a bundle map over $\varphi: M \rightarrow M^{\prime}$ and $\Phi: E \rightarrow E^{\prime}$ is a morphism over the same map φ then we can define a morphism $\mathcal{T}^{\Phi} \Psi: \mathcal{T}^{E} P \rightarrow \mathcal{T}^{E^{\prime}} P^{\prime}$ by means of

$$
\mathcal{T}^{\Phi} \Psi(p, b, v)=\left(\Psi(p), \Phi(b), T_{p} \Psi(v)\right) .
$$

In particular, for $P=E$ we have the E-tangent to E

$$
\mathcal{T}_{a}^{E} E=\left\{(b, v) \in E_{m} \times T_{a} E \mid T \tau(v)=\rho(b)\right\} .
$$

Repeated jets

E-tangent to $\mathcal{J} \pi$.
Consider $\tau_{\mathcal{J} \pi}^{E}: \mathcal{T}^{E} \mathcal{J} \pi \rightarrow \mathcal{J} \pi$

$$
\mathcal{T}^{E} \mathcal{J} \pi=\left\{(\phi, a, V) \in \mathcal{J} \pi \times E \times T \mathcal{J} \pi \mid T_{\phi} \underline{\pi_{10}}(V)=\rho(a)\right\}
$$

and the projection $\pi_{1}=\pi \circ \pi_{10}=\left(\bar{\pi} \circ \overline{\pi_{10}}, \underline{\pi} \circ \underline{\pi_{10}}\right)$

A repeated jet $\psi \in \mathcal{J} \pi_{1}$ at the point $\phi \in \mathcal{J} \pi$ is a map $\psi: F_{n} \rightarrow \mathcal{T}_{\phi}^{E} \mathcal{J} \pi$ such that $\overline{\pi_{1}} \circ \psi=\mathrm{id}_{F_{n}}$.

Explicitely ψ is of the form $\psi=(\phi, \zeta, V)$ with
$\square \phi, \zeta \in \mathcal{J} \pi$ and $V \in T_{\phi} \mathcal{J} \pi$,
$\square \underline{\pi_{10}}(\phi)=\underline{\pi_{10}}(\zeta)$,
$\square V: F_{n} \rightarrow T_{\phi} \mathcal{J} \pi$ satisfying

$$
T \underline{\pi_{10}} \circ V=\rho \circ \zeta .
$$

Locally

$$
\psi=\left(X_{a}+\Psi_{a}^{\alpha} X_{\alpha}+\Psi_{a b}^{\alpha} \nu_{\alpha}^{b}\right) \otimes \bar{e}^{a} .
$$

Contact forms

An element $(\phi, a, V) \in \mathcal{T}^{E} \mathcal{J} \pi$ is horizontal if $a=\phi(\pi(a))$;

$$
Z=a^{b}\left(x_{b}+y_{b}^{\beta} x_{\beta}\right)+V_{b}^{\beta} v_{\beta}^{b}
$$

An element $\mu \in \mathcal{T}^{* E} \mathcal{J} \pi$ is vertical if it vanishes on horizontal elements.
A contact 1-form is a section of $\mathcal{T}^{* E} \mathcal{J} \pi$ which is vertical at every point. They are spanned by

$$
\theta^{\alpha}=X^{\alpha}-y_{a}^{\alpha} X^{a}
$$

The module generated by contact 1 -forms is the contact module \mathcal{M}^{c}

$$
\mathcal{M}^{c}=\left\langle\theta^{\alpha}\right\rangle .
$$

The differential ideal generated by contact 1-forms is the contact ideal \mathcal{J}^{C}.

$$
\mathcal{J}^{c}=\left\langle\theta^{\alpha}, d \theta^{\alpha}\right\rangle
$$

Second order jets

\square A jet $\psi \in \mathcal{J}_{\phi} \pi_{1}$ is semiholonomic if $\psi^{\star} \theta=0$ for every θ in \mathcal{M}^{c}.
The jet $\psi=(\phi, \zeta, V)$ is semiholonomic ifand only if $\phi=\zeta$.
\square A jet $\psi \in \mathcal{J}_{\phi} \pi_{1}$ is holonomic if $\psi^{\star} \theta=0$ for every θ in \mathcal{J}^{c}.
The jet $\psi=(\phi, \zeta, V)$ is semiholonomic if and only if $\phi=\zeta$ and $\mathcal{M}_{a b}^{\gamma}=0$, where

$$
\mathcal{M}_{a b}^{\gamma}=y_{a b}^{\gamma}-y_{b a}^{\gamma}+C_{b \alpha}^{\gamma} y_{a}^{\alpha}-C_{a \beta}^{\gamma} y_{b}^{\beta}-C_{\alpha \beta}^{\gamma} y_{a}^{\alpha} y_{b}^{\beta}+y_{c}^{\gamma} C_{a b}^{c}+C_{a b}^{\gamma} .
$$

Jet prolongation of sections

A bundle map $\Phi=(\bar{\Phi}, \underline{\Phi})$ section of π is equivalent to a bundle map $\check{\Phi}=(\check{\Phi}, \underline{\Phi})$ from N to $\mathcal{J} \pi$ section of π_{1}

$$
\check{\Phi}(n)=\left.\bar{\Phi}\right|_{F_{n}}
$$

The jet prolongation of Φ is the section $\Phi^{(1)} \equiv \mathcal{T}^{\Phi} \check{\Phi}$ of π_{1}.
In coordinates

$$
\Phi^{(1)}=\left(X_{a}+\Phi_{a}^{\alpha} X_{\alpha}+\Phi_{b \mid a}^{\alpha} \nu_{\alpha}^{b}\right) \otimes \bar{e}^{a}
$$

Theorem: Let $\psi \in \operatorname{Sec}\left(\pi_{1}\right)$ be such that the associated map $\check{\Psi}$ is a semiholonomic section and let $\check{\Phi}$ be the section of $\underline{\pi_{1}}$ to which it projects. Then

1. The bundle map Ψ is admissible if and only if Φ is admissible and $\Psi=\Phi^{(1)}$.
2. The bundle map Ψ is a morphism of Lie algebroids if and only if $\Psi=\breve{\Phi}^{(1)}$ and Φ is a morphism of Lie algebroids.

Corollary: Let Φ an admissible map and a section of π. Then Φ is a morphism if and only if $\Phi^{(1)}$ is holonomic.

Lagrangian formalism

$L \in C^{\infty}(\mathcal{J} \pi)$ Lagrangian, $\omega \in \bigwedge^{r} F^{\prime}$ 'volume' form.
Canonical form.
For every $\phi \in \mathcal{J}_{m} \pi$

$$
h_{\phi}(a)=\phi(\bar{\pi}(a)) \quad \text { and } \quad v_{\phi}(a)=a-\phi(\bar{\pi}(a))
$$

They define the map $\vartheta: \underline{\pi_{10}}{ }^{*} E \rightarrow \underline{\pi_{10}}{ }^{*} E$ by

$$
\vartheta(\phi, a)=v_{\phi}(a) .
$$

Vertical lifting.

As in any affine bundle

$$
\psi_{\phi}^{\vee} f=\left.\frac{d}{d t} f(\phi+t \psi)\right|_{t=0}, \quad \psi \in \mathcal{V}_{m} \pi, \quad \phi \in \mathcal{J}_{m} \pi
$$

Thus we have a map $\xi^{\vee}:{\underline{\pi_{10}}}^{*}(\mathcal{L} \pi) \rightarrow \mathcal{T}^{E} \mathcal{J} \pi$

$$
\xi^{\vee}(\phi, \varphi)=\left(\phi,\left(v_{\phi} \circ \varphi\right)_{\phi}^{\vee}\right)
$$

Vertical endomorphism.

Every $\nu \in \operatorname{Sec}\left(E^{*}\right)$ defines $S_{\nu}: \mathcal{T}^{E} \mathcal{J} \pi \rightarrow \mathcal{T}^{E} \mathcal{J} \pi$

$$
S_{\nu}(\phi, a, V)=\xi^{\nu}(\phi, a \otimes \nu)=\left(\phi, 0, v_{\phi}(a) \otimes \nu\right) .
$$

In coordinates

$$
S=\theta^{\alpha} \otimes \bar{e}_{a} \otimes \nu_{\alpha}^{a} .
$$

Finally

$$
S_{\omega}=\theta^{\alpha} \wedge \omega_{a} \otimes \mathcal{V}_{\alpha}^{a} .
$$

Cartan forms.

$$
\begin{gathered}
\Theta_{L}=S_{\omega}(d L)+L \omega \\
\Omega_{L}=-d \Theta_{L}
\end{gathered}
$$

In coordinates

$$
\Theta_{L}=\frac{\partial L}{\partial y_{a}^{\alpha}} \theta^{\alpha} \wedge \omega_{a}+L \omega
$$

Euler-Lagrange equations.

A solution of the field equations is a morphism $\Phi \in \operatorname{Sec}(\pi)$ such that

$$
\Phi^{(1) \star}\left(i_{X} \Omega_{L}\right)=0
$$

for all π_{1}-vertical section $X \in \operatorname{Sec}\left(\mathcal{T}^{E} \mathcal{J} \pi\right)$.
More generally one can consider the De Donder equations

$$
\psi^{\star}\left(i_{X} \Omega_{L}\right)=0 .
$$

If L is regular then $\Psi=\Phi^{(1)}$.

In coordinates we get the Euler-Lagrange partial differential equations

$$
\begin{aligned}
& u_{\mid a}^{A}=\rho_{a}^{A}+\rho_{\alpha}^{A} y_{a}^{\alpha} \\
& y_{a \mid b}^{\gamma}-y_{b \mid a}^{\gamma}+C_{b \alpha}^{\gamma} y_{a}^{\alpha}-C_{a \beta}^{\gamma} y_{b}^{\beta}-C_{\alpha \beta}^{\gamma} y_{a}^{\alpha} y_{b}^{\beta}+y_{c}^{\gamma} C_{a b}^{c}+C_{a b}^{\gamma}=0 \\
& \left(\frac{\partial L}{\partial y_{a}^{\alpha}}\right)_{\mid a}^{\prime}+\frac{\partial L}{\partial y_{a}^{\alpha}} C_{b a}^{b}-\frac{\partial L}{\partial y_{a}^{\gamma}} Z_{a \alpha}^{\gamma}-\frac{\partial L}{\partial u^{A}} \rho_{\alpha}^{A}=0,
\end{aligned}
$$

Standard case

In the standard case, we consider a bundle $\underline{\pi}: M \rightarrow N$, the standard Lie algebroids $F=T N$ and $E=T M$ and the tangent $\operatorname{map} \bar{\pi}=T \underline{\pi}: T M \rightarrow T N$. Then we have that $\mathcal{J} \pi=J^{1} \underline{\pi}$.

If we take a (non-coordinate) basis of vector fields, our equations provide an expression of the standard Euler-Lagrange and Hamiltonian field equations written in pseudo-coordinates.

In particular, one can take an Ehresmann connection on the bundle $\underline{\pi}: M \rightarrow N$ and use an adapted local basis

$$
\bar{e}_{i}=\frac{\partial}{\partial x^{i}} \quad \text { and } \quad\left\{\begin{array}{l}
e_{i}=\frac{\partial}{\partial x^{i}}+\Gamma_{i}^{A} \frac{\partial}{\partial u^{A}} \\
e_{A}=\frac{\partial}{\partial u^{A}}
\end{array}\right.
$$

We have the brackets

$$
\left[e_{i}, e_{j}\right]=-R_{i j}^{A} e_{A}, \quad\left[e_{i}, e_{B}\right]=\Gamma_{i B}^{A} e_{A} \quad \text { and } \quad\left[e_{A}, e_{B}\right]=0
$$

where we have written $\Gamma_{i A}^{B}=\partial \Gamma_{i}^{B} / \partial u^{A}$ and where $R_{i j}^{A}$ is the curvature tensor of the nonlinear connection we have chosen. The components of the anchor are $\rho_{j}^{i}=\delta_{j}^{i}$, $\rho_{i}^{A}=\Gamma_{i}^{A}$ and $\rho_{B}^{A}=\delta_{B}^{A}$ so that the Euler-Lagrange equations are

$$
\begin{aligned}
& \frac{\partial u^{A}}{\partial x^{i}}=\Gamma_{i}^{A}+y_{i}^{A} \\
& \frac{\partial y_{i}^{A}}{\partial x^{j}}-\frac{\partial y_{j}^{A}}{\partial x^{i}}+\Gamma_{j B}^{A} y_{i}^{B}-\Gamma_{i B}^{A} y_{j}^{B}=R_{i j}^{A} \\
& \frac{d}{d x^{i}}\left(\frac{\partial L}{\partial y_{i}^{A}}\right)-\Gamma_{i A}^{B} \frac{\partial L}{\partial y_{i}^{B}}=\frac{\partial L}{\partial u^{A}} .
\end{aligned}
$$

Time-dependent Mechanics

Consider a Lie algebroid $\tau_{M}^{E}: E \rightarrow M$ and the standard Lie algebroid $\tau_{\mathbb{R}}: T \mathbb{R} \rightarrow \mathbb{R}$. We consider the Lie subalgebroid $K=\operatorname{ker}(\pi)$ and define

$$
A=\left\{a \in E \left\lvert\, \begin{array}{l|l}
\pi(a)=\frac{\partial}{\partial t}
\end{array}\right.\right\} .
$$

Then A is an affine subbundle modeled on K and the 'bidual' of A is $\left(A^{\dagger}\right)^{*}=E$. Moreover, the Lie algebroid structure on E defines by restriction a Lie algebroid structure on the affine bundle A (i.e. an affgebroid).

Conversely, let A be an affine bundle with a Lie algebroid structure. Then the vector bundle $E \equiv\left(A^{\dagger}\right)^{*}$ has an induced Lie algebroid structure. If $\tilde{\rho}$ is the anchor of this bundle then the map $\bar{\pi}$ defined by $\bar{\pi}(z)=T \pi(\tilde{\rho}(z))$ is a morphism. Moreover we have that $A=\left\{a \in E \left\lvert\, \bar{\pi}(a)=\frac{\partial}{\partial t}\right.\right\}$ as above.

We have a canonical identification of A with $\mathcal{J} \pi$.

The morphism condition is just the admissibility condition so that the EulerLagrange equations are

$$
\begin{aligned}
& \frac{d u^{A}}{d t}=\rho_{0}^{A}+\rho_{\alpha}^{A} y^{\alpha} \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial y^{\alpha}}\right)=\frac{\partial L}{\partial y^{\gamma}}\left(C_{0 \alpha}^{\gamma}+C_{\beta \alpha}^{\gamma} y^{\beta}\right)+\frac{\partial L}{\partial u^{A}} \rho_{\alpha}^{A},
\end{aligned}
$$

where we have written $x^{0} \equiv t$ and $y_{0}^{\alpha} \equiv y^{\alpha}$.

Example: The autonomous case

We have two Lie algebroids $\tau_{N}^{F}: F \rightarrow N$ and $\tau_{Q}^{G}: G \rightarrow Q$ over different bases and we set $M=N \times Q$ and $E=F \times G$, where the projections are both the projection over the first factor $\underline{\pi}(n, q)=n$ and $\pi(a, k)=a$. The anchor is the sum of the anchors and the bracket is determined by the brackets of sections of F and G (a section of F commutes with a section of G). We therefore have that

$$
\rho_{a}^{\alpha}=0, \quad C_{a b}^{\alpha}=0 \quad \text { and } \quad C_{a \beta}^{\alpha}=0
$$

A jet at a point (n, q) is of the form $\phi(a)=(a, \zeta(a))$, for some map $\zeta: F_{n} \rightarrow G_{q}$. We can identify $\mathcal{J} \pi$ with the set of linear maps from a fibre of F to a fibre of G.

This is further justified by the fact that a map $\Phi: F \rightarrow G$ is a morphism of Lie algebroids if and only if the section (id, Φ) : $F \rightarrow F \times G$ of π is a morphism of Lie algebroids.

The affine functions $Z_{a \alpha}^{\gamma}$ reduce to $Z_{a \alpha}^{\gamma}=C_{\beta \alpha}^{\gamma} y_{a}^{\beta}$ and thus the Euler-Lagrange equations are

$$
\left(\frac{\partial L}{\partial y_{a}^{\alpha}}\right)_{\mid a}^{\prime}+C_{b a}^{b}\left(\frac{\partial L}{\partial y_{a}^{\alpha}}\right)=\frac{\partial L}{\partial y_{a}^{\gamma}} C_{\beta \alpha}^{\gamma} y_{a}^{\beta}+\frac{\partial L}{\partial u^{A}} \rho_{\alpha}^{A} .
$$

In the more particular and common case where $F=T N$ we can take a coordinate basis, so that we also have $C_{a b}^{c}=0$. Therefore the Euler-Lagrange partial differential equations are

$$
\begin{aligned}
& \frac{\partial u^{A}}{\partial x^{a}}=\rho_{\alpha}^{A} y_{a}^{\alpha} \\
& \frac{d}{d x^{a}}\left(\frac{\partial L}{\partial y_{a}^{\alpha}}\right)=\frac{\partial L}{\partial y_{a}^{\gamma}} C_{\beta \alpha}^{\gamma} y_{a}^{\beta}+\frac{\partial L}{\partial u^{A}} \rho_{\alpha}^{A}, \\
& \frac{\partial y_{a}^{\alpha}}{\partial x^{b}}-\frac{\partial y_{b}^{\alpha}}{\partial x^{a}}+C_{\beta \gamma}^{\alpha} y_{b}^{\beta} y_{a}^{\gamma}=0,
\end{aligned}
$$

Autonomous Classical Mechanics
When moreover $F=T \mathbb{R} \rightarrow \mathbb{R}$ then we recover Weinstein's equations for a Lagrangian system on a Lie algebroid

$$
\begin{aligned}
& \frac{d u^{A}}{d t}=\rho_{\alpha}^{A} y^{\alpha} \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial y^{\alpha}}\right)=\frac{\partial L}{\partial y^{\gamma}} C_{\beta \alpha}^{\gamma} y^{\beta}+\frac{\partial L}{\partial u^{A}} \rho_{\alpha}^{A},
\end{aligned}
$$

where, as before, we have written $x^{0} \equiv t$ and $y_{0}^{\alpha} \equiv y^{\alpha}$.

Example: Chern-Simons

Let \mathfrak{g} be a Lie algebra with an ad-invariant metric \boldsymbol{k}.
$\left\{\epsilon_{\alpha}\right\}$ basis of \mathfrak{g} and $C_{\beta \gamma}^{\alpha}$ the structure constants
The symbols $C_{\alpha \beta \gamma}=k_{\alpha \mu} C_{\beta \gamma}^{\mu}$ are skewsymmetric.
Let N be a 3-dimensional manifold and consider the Lie algebroid $E=T N \times \mathfrak{g} \rightarrow N$

$$
\tau\left(v_{n}, \xi\right)=n \quad \rho\left(v_{n}, \xi\right)=v_{n} \quad[(X, \xi),(Y, \zeta)]=([X, Y],[\xi, \zeta])
$$

A basis for sections of E is given by $e_{\alpha}(n)=\left(n, \epsilon_{\alpha}\right)$.
As before $F=T N \rightarrow N$, and $\pi\left(v_{n}, \xi\right)=v_{n}$ and $\underline{\pi}=\mathrm{id}_{N}$.
A section Φ of π is of the form $\Phi(v)=\left(v, A^{\alpha}(v) \epsilon_{\alpha}\right)$ for some 1 -forms A^{α} on N. In other words $\Phi^{\star} e^{\alpha}=A^{\alpha}=y_{a}^{\alpha} d x^{a}$.

The Lagrangian density for Chern-Simons theory is

$$
L d x^{1} \wedge d x^{2} \wedge d x^{3}=\frac{1}{3!} C_{\alpha \beta \gamma} A^{\alpha} \wedge A^{\beta} \wedge A^{\gamma}
$$

in other words $L=C_{\alpha \beta \gamma} y_{1}^{\alpha} y_{2}^{\beta} y_{3}^{\gamma}$.
No admissibility conditions (no coordinates u^{A}).
Morphism conditions $y_{i j j}^{\alpha}-y_{j \mid i}^{\alpha}+C_{\beta \gamma}^{\alpha} y_{j}^{\beta} y_{i}^{\gamma}=0$, can be written

$$
d A^{\alpha}+\frac{1}{2} C_{\beta \gamma}^{\alpha} A^{\beta} \wedge A^{\gamma}=0 .
$$

The Euler-Lagrange equations reduce to

$$
\begin{aligned}
\frac{d}{d x^{a}} \frac{\partial L}{\partial y_{a}^{\alpha}}-\frac{\partial L}{\partial y_{a}^{\gamma}} C_{\beta \alpha}^{\gamma} y_{a}^{\beta}=C_{\alpha \beta \gamma}[& \left(y_{2 \mid 1}^{\beta}-y_{1 \mid 2}^{\beta}+C_{\mu \nu}^{\beta} y_{1}^{\mu} y_{2}^{\nu}\right) y_{3}^{\gamma}+ \\
& +\left(y_{1 \mid 3}^{\beta}-y_{3 \mid 1}^{\beta}+C_{\mu \nu}^{\beta} y_{3}^{\mu} y_{1}^{\nu}\right) y_{2}^{\gamma}+ \\
& \left.+\left(y_{3 \mid 2}^{\beta}-y_{2 \mid 3}^{\beta}+C_{\mu \nu}^{\beta} y_{2}^{\mu} y_{3}^{\nu}\right) y_{1}^{\gamma}\right]=0
\end{aligned}
$$

which vanish identically in view of the morphism condition.

The conventional Lagrangian density for the Chern-Simons theory is

$$
L^{\prime} \omega=k_{\alpha \beta}\left(A^{\alpha} \wedge d A^{\beta}+\frac{1}{3} C_{\mu \nu}^{\beta} A^{\alpha} \wedge A^{\mu} \wedge A^{\nu}\right)
$$

and the difference between L^{\prime} and L is a multiple of the morphism condition

$$
L^{\prime} \omega-L \omega=k_{\alpha \mu} A^{\mu}\left[d A^{\alpha}+\frac{1}{2} C_{\beta \gamma}^{\alpha} A^{\beta} \wedge A^{\gamma}\right]
$$

Therefore both Lagrangians coincide on the set $\mathcal{M}(\pi)$ of morphisms, which is the set where the action is defined.

Example: Poisson Sigma model

As an example of autonomous theory, we consider a 2-dimensional manifold N and it tangent bundle $F=T N$. On the other hand, consider a Poisson manifold (Q, \wedge). Then the cotangent bundle $G=T^{*} Q$ has a Lie algebroid structure, where the anchor is $\rho(\sigma)=\Lambda(\sigma, \cdot)$ and the bracket is $[\sigma, \eta]=d_{\rho(\sigma)}^{T Q} \eta-d_{\rho(\eta)}^{T Q} \sigma-d^{T Q} \Lambda(\sigma, \eta)$, where $d^{T Q}$ is the ordinary exterior differential on Q.

The Lagrangian density for the Poisson Sigma model is $\mathcal{L}(\phi)=-\frac{1}{2} \phi^{\star} \Lambda$. In coordinates $\left(x^{1}, x^{2}\right)$ on N and $\left(u^{A}\right)$ in Q we have that $\Lambda=\frac{1}{2} \Lambda^{J K} \frac{\partial}{\partial u^{J}} \wedge \frac{\partial}{\partial u^{K}}$. A jet at the point (n, q) is a map $\phi: T_{n} N \rightarrow T_{q}^{*} Q$, locally given by $\phi=y_{K i} d u^{K} \otimes d x^{i}$. Thus we have local coordinates $\left(x^{i}, u^{K}, y_{K i}\right)$ on $\mathcal{J} \pi$. The local expression of the Lagrangian density is

$$
\mathcal{L}=-\frac{1}{2} \Lambda^{J K} A_{\lrcorner} \wedge A_{K}=-\frac{1}{2} \Lambda^{J K} y_{J 1} y_{K 2} d x^{1} \wedge d x^{2} .
$$

where we have written $A_{K}=\Phi^{\star}\left(\partial / \partial u^{K}\right)=y_{K i} d x^{i}$.

A long but straightforward calculation shows that for the Euler-Lagrange equation

$$
\frac{d}{d x^{a}}\left(\frac{\partial L}{\partial y_{a}^{\alpha}}\right)=\frac{\partial L}{\partial y_{a}^{\gamma}} C_{\beta \alpha}^{\gamma} y_{a}^{\beta}+\frac{\partial L}{\partial u^{A}} \rho_{\alpha}^{A}
$$

the right hand side vanishes while the left hand side reduces to

$$
\frac{1}{2} \Lambda^{L J}\left(y_{L 2 \mid 1}-y_{L 1 \mid 2}+\frac{\partial \Lambda^{M K}}{\partial u^{L}} y_{M 1} y_{K 2}\right)=0
$$

In view of the morphism condition, we see that this equation vanishes. Thus the field equations are just

$$
\begin{aligned}
& \frac{\partial u^{J}}{\partial x^{a}}+\Lambda^{J K} y_{K a}=0 \\
& \frac{\partial y_{J a}}{\partial x^{b}}-\frac{\partial y_{J b}}{\partial x^{a}}+\frac{\partial \Lambda^{K L}}{\partial u^{J}} y_{K b} y_{L a}=0
\end{aligned}
$$

or in other words

$$
\begin{aligned}
& d \phi^{J}+\Lambda^{J K} A_{K}=0 \\
& d A_{J}+\frac{1}{2} \Lambda_{, J}^{K L} A_{K} \wedge A_{L}=0
\end{aligned}
$$

The conventional Lagrangian density for the Poisson Sigma model (Strobl) is $\mathcal{L}^{\prime}=$ $\operatorname{tr}(\bar{\Phi} \wedge T \Phi)+\frac{1}{2} \Phi^{\star} \Lambda$, which in coordinates reads $\mathcal{L}^{\prime}=A_{J} \wedge d \phi^{J}+\frac{1}{2} \wedge^{J K} A_{J} \wedge A_{K}$. The difference between \mathcal{L}^{\prime} and \mathcal{L} is a multiple of the admissibility condition $d \phi^{J}+\Lambda^{J K} A_{K}$;

$$
\mathcal{L}^{\prime}-\mathcal{L}=A_{J} \wedge\left(d \phi^{J}+\Lambda^{J K} A_{K}\right) .
$$

Therefore both Lagrangians coincide on admissible maps, and hence on morphisms, so that the actions defined by them are equal.

In more generality, one can consider a presymplectic Lie algebroid, that is, a Lie algebroid with a closed 2 -form Ω, and the Lagrangian density $L=-\frac{1}{2} \Phi^{\star} \Omega$. The Euler-Lagrange equations vanish as a consequence of the morphism condition and the closure of Ω so that we again get a topological theory. In this way one can generalize the theory for Poisson structures to a theory for Dirac structures.

Hamiltonian formalism

Consider the affine dual of $\mathcal{J} \pi$ considered as the bundle $\underline{\pi}_{10}{ }^{\dagger}: \mathcal{J}^{\dagger} \pi \rightarrow M$ with fibre over m

$$
\mathcal{J}^{\dagger} \pi=\left\{\lambda \in\left(E_{m}^{*}\right)^{\wedge r} \mid i_{k_{1}} i_{k_{2}} \lambda=0 \text { for all } k_{1}, k_{2} \in K_{m}\right\}
$$

We have a canonical form Θ in $\mathcal{T}^{E} \mathcal{J}^{\dagger} \pi$, given by

$$
\Theta_{\lambda}=\left(\pi_{10}^{\dagger}\right)^{\star} \lambda .
$$

Explicitly

$$
\Theta_{\lambda}\left(Z_{1}, Z_{2}, \ldots, Z_{r}\right)=\lambda\left(a_{1}, a_{2}, \ldots, a_{r}\right)
$$

for $Z_{i}=\left(\lambda, a_{i}, V_{i}\right)$.

The differential of Θ is a multisymplectic form

$$
\Omega=-d \Theta
$$

For a section h of the projection $\mathcal{J}^{\dagger} \pi \rightarrow \mathcal{V}^{*} \pi$ we consider the Liouville-Cartan forms

$$
\Theta_{h}=(\mathcal{T} h)^{\star} \Theta \quad \text { and } \quad \Omega_{h}=(\mathcal{T} h)^{\star} \Omega
$$

We set the Hamilton equations

$$
\Lambda^{\star}\left(i_{\chi} \Omega_{h}\right)=0
$$

for a morphism \wedge.

In coordinates we get the Hamiltonian field pdes

$$
\begin{aligned}
& u_{\mid a}^{A}=\rho_{a}^{A}+\rho_{\alpha}^{A} \frac{\partial H}{\partial \mu_{\alpha}^{a}} \\
& \left(\frac{\partial H}{\partial \mu_{\alpha}^{a}}\right)_{\mid b}^{\prime}-\left(\frac{\partial H}{\partial \mu_{\alpha}^{b}}\right)_{\mid a}^{\prime}+C_{\beta \gamma}^{\alpha} \frac{\partial H}{\partial \mu_{\beta}^{b}} \frac{\partial H}{\partial \mu_{\gamma}^{a}}+C_{b \gamma}^{\alpha} \frac{\partial H}{\partial \mu_{\gamma}^{a}}-C_{a \gamma}^{\alpha} \frac{\partial H}{\partial \mu_{\gamma}^{b}}=C_{a b}^{\alpha} \\
& \mu_{\alpha \mid c}^{c} x^{i}+\mu_{\alpha}^{b} C_{b c}^{c}=-\rho_{\alpha}^{A} \frac{\partial H}{\partial u^{A}}+\mu_{\gamma}^{c}\left(C_{c \alpha}^{\gamma}+C_{\beta \alpha}^{\gamma} \frac{\partial H}{\partial \mu_{\beta}^{c}}\right)
\end{aligned}
$$

Legendre transformation

There is a Legendre transformation $\widehat{\mathcal{F}}_{\mathcal{L}}: \mathcal{J} \pi \rightarrow \mathcal{J}^{\dagger} \pi$ defined by affine approximation of the Lagrangian as in the standard case. We have similar results:
$\square \Theta_{L}=\left(\mathcal{T} \widehat{\mathcal{F}}_{\mathcal{L}}\right)^{\star} \Theta$
$\square \Omega_{L}=\left(\mathcal{T} \widehat{\mathcal{F}}_{\mathcal{L}}\right)^{\star} \Omega$
\square For hyperregular Lagrangian L : if Φ is a solution of the Euler-Lagrange equations then $\Lambda=\mathcal{T}_{\mathcal{L}} \circ \Phi^{(1)}$ is a solution of the Hamiltonian field equations. Conversely if Λ is a solution of the Hamiltonian field equations, then there exists a solution Φ of the Euler-Lagrange equations such that $\Lambda=\mathcal{T} \mathcal{F}_{\mathcal{L}} \circ \Phi^{(1)}$.

For singular systems there is a 'unified Lagrangian-Hamiltonian formalism'.

And of course, we cannot forget ... Tulczyjew triples.

Congratulations Janusz!

ACTIEF INTERIM

uitzenden - detacheren - werving \& selectie

The End

