Tulczyjew's approach for particles in gauge fields

J. Phys. A: Math. Theor. 48 (2015) 145201 Guowu Meng

Department of Mathematics Hong Kong Univ. of Sci. & Tech.

Geometry of Jets and Fields (in honour of Janusz Grabowski's 60th birthday) Będlewo, 10-15 May, 2015

・ロト ・四ト ・ヨト ・ヨト 三日

I am very honoured to present a talk at this conference in honour of Professor Janusz Grabowski.

Geometry of Jets and Fields (in honour of

/ 16

I would like to thank the conference organizers for the invitation.

J. Phys. A: Math. Theor. 48 (2015) 145201GuTulczyjew's approach for particles in gauge fie

I am very honoured to present a talk at this conference in honour of Professor Janusz Grabowski.

Geometry of Jets and Fields (in honour o

I would like to thank the conference organizers for the invitation.

J. Phys. A: Math. Theor. 48 (2015) 145201GuTulczyjew's approach for particles in gauge fie

The work reported here is a natural consequence of three ideas, two of which, namely

- The Tulczyjew triple $T^*T^*X \stackrel{\beta}{\longleftarrow} TT^*X \stackrel{\alpha}{\longrightarrow} T^*TX$,
- The canonical isomorphism $T^*E^* \cong T^*E$,

came from a talk by Janusz at a workshop organized by Partha Guha in January 2014.

Thank you very much, Janusz, for sharing the great ideas.

I would also thank the warm receptions I received from Janusz, Paweł, and perhaps some other members of the Polish school.

nd Fields (in hono

The work reported here is a natural consequence of three ideas, two of which, namely

- The Tulczyjew triple $T^*T^*X \stackrel{\beta}{\longleftarrow} TT^*X \stackrel{\alpha}{\longrightarrow} T^*TX$,
- The canonical isomorphism $T^*E^* \cong T^*E$,

came from a talk by Janusz at a workshop organized by Partha Guha in January 2014.

Thank you very much, Janusz, for sharing the great ideas.

I would also thank the warm receptions I received from Janusz, Paweł, and perhaps some other members of the Polish school.

Fields (in hone

Let me start the talk with two quotes.

• God always geometrizes.

— Plato

 At any particular moment in the history of science, the most important and fruitful ideas are often lying dormant merely because they are unfashionable.
 Freeman L Dyson

I believe that Tulczyjew's idea about mechanics is one of these ideas.

J. Phys. A: Math. Theor. 48 (2015) 145201GuTulczyjew's approach for particles in gauge fie

Let me start the talk with two quotes.

God always geometrizes.

— Plato

 At any particular moment in the history of science, the most important and fruitful ideas are often lying dormant merely because they are unfashionable.
 — Freeman J. Dyson

I believe that Tulczyjew's idea about mechanics is one of these ideas.

• In 1974 Tulczyjew introduced a geometric approach to classical mechanics which brings the Hamiltonian and Lagrangian formalisms under a common geometric roof.

- In this approach the dynamics of a particle with configuration space X is determined by a Lagrangian submanifold D of TT^*X (the total tangent space of T^*X), and the description of D by its Hamiltonian $H: T^*X \to \mathbb{R}$ (resp. its Lagrangian $L: TX \to \mathbb{R}$) yields the Hamilton (resp. Euler-Lagrange) equation.
- In fact, this approach works in a much more general setting, as one can see from a plethora of papers authored by members of the Polish school.

- In 1974 Tulczyjew introduced a geometric approach to classical mechanics which brings the Hamiltonian and Lagrangian formalisms under a common geometric roof.
- In this approach the dynamics of a particle with configuration space X is determined by a Lagrangian submanifold D of TT^*X (the total tangent space of T^*X), and the description of D by its Hamiltonian $H: T^*X \to \mathbb{R}$ (resp. its Lagrangian $L: TX \to \mathbb{R}$) yields the Hamilton (resp. Euler-Lagrange) equation.
- In fact, this approach works in a much more general setting, as one can see from a plethora of papers authored by members of the Polish school.

- In 1974 Tulczyjew introduced a geometric approach to classical mechanics which brings the Hamiltonian and Lagrangian formalisms under a common geometric roof.
- In this approach the dynamics of a particle with configuration space X is determined by a Lagrangian submanifold D of TT^*X (the total tangent space of T^*X), and the description of D by its Hamiltonian H: $T^*X \to \mathbb{R}$ (resp. its Lagrangian L: $TX \to \mathbb{R}$) yields the Hamilton (resp. Euler-Lagrange) equation.
- In fact, this approach works in a much more general setting, as one can see from a plethora of papers authored by members of the Polish school.

- review Dufour's canonical isomorphism of double vector bundles,
- review Tulczyjew's approach to particle dynamics,
- review Sternberg's phase space,
- introduce an extension of Tulczyjew's approach to dynamics of (charged) particles in gauge fields. This is another demonstration of the simple and powerful idea of Tulczyjew.

Fields (in honou

- review Dufour's canonical isomorphism of double vector bundles,
- review Tulczyjew's approach to particle dynamics,
- review Sternberg's phase space,
- introduce an extension of Tulczyjew's approach to dynamics of (charged) particles in gauge fields. This is another demonstration of the simple and powerful idea of Tulczyjew.

Fields (in honor

- review Dufour's canonical isomorphism of double vector bundles,
- review Tulczyjew's approach to particle dynamics,
- review Sternberg's phase space,
- introduce an extension of Tulczyjew's approach to dynamics of (charged) particles in gauge fields. This is another demonstration of the simple and powerful idea of Tulczyjew.

- review Dufour's canonical isomorphism of double vector bundles,
- review Tulczyjew's approach to particle dynamics,
- review Sternberg's phase space,
- introduce an extension of Tulczyjew's approach to dynamics of (charged) particles in gauge fields. This is another demonstration of the simple and powerful idea of Tulczyjew.

A canonical isomorphism

Theorem (J. P. Dufour, 1990)

Let $E \to X$ be a real vector bundle and $E^* \to X$ be its dual vector bundle. Then $T^*E^* \cong T^*E$ canonically as symplectic manifolds.

- The canonical symplectomorphism is a family version of V* × V** ≅ V × V*.
- In Tulczyjew's work, $E \to X$ is $TX \to X$, so $E^* \to X$ is $T^*X \to X$ and we have Tulczyjew isomorphism $\kappa : T^*T^*X \cong T^*TX$.

to and Fields (in hor

A canonical isomorphism

Theorem (J. P. Dufour, 1990)

Let $E \to X$ be a real vector bundle and $E^* \to X$ be its dual vector bundle. Then $T^*E^* \cong T^*E$ canonically as symplectic manifolds.

- The canonical symplectomorphism is a family version of V* × V** ≅ V × V*.
- In Tulczyjew's work, $E \to X$ is $TX \to X$, so $E^* \to X$ is $T^*X \to X$ and we have Tulczyjew isomorphism $\kappa : T^*T^*X \cong T^*TX$.

Tulczyjew discovered (1974) that TT^*X has

• one symplectic structure: $d_T \omega_X$

• two Liouville structures: $d_T \theta_X$, $i_T \omega_X$ as one can see from the Tulczyjew's triangle

 $\alpha^* \theta_{TX} = d_T \theta_X$ and $\beta^* \theta_{T^*X} = i_T \omega_X$. The Lagrangian *L*: $TX \to \mathbb{R}$ defines a Lagrangian sub manifold $D_L := \operatorname{Im}(dL)$ and the Hamiltonian *H*: $T^*X \to \mathbb{R}$ defines a Lagrangian sub manifold $D_H := \operatorname{Im}(-dH)$. Fact: $\alpha^{-1}(D_L) = \beta^{-1}(D_H)$ if *L* and *H* are related by the Legendre transformation. In general, a dynamics is just a Lagrangian sub manifold of TT^*X , which may or may not have a Lagrangian or a Hamiltonian.

Tulczyjew discovered (1974) that TT^*X has

- one symplectic structure: $d_T \omega_X$
- two Liouville structures: $d_T \theta_X$, $i_T \omega_X$

as one can see from the Tulczyjew's triangle

$$\begin{array}{cccc} T^*T^*X & \stackrel{\beta}{\longleftarrow} & TT^*X \\ \searrow \kappa & \swarrow \alpha \\ & T^*TX \end{array}$$

 $\alpha^* \theta_{TX} = \mathbf{d}_T \theta_X$ and $\beta^* \theta_{T^*X} = \mathbf{i}_T \omega_X$. The Lagrangian *L*: $TX \to \mathbb{R}$ defines a Lagrangian sub manifold $D_L := \operatorname{Im}(\mathrm{d}L)$ and the Hamiltonian *H*: $T^*X \to \mathbb{R}$ defines a Lagrangian sub manifold $D_H := \operatorname{Im}(-\mathrm{d}H)$. Fact: $\alpha^{-1}(D_L) = \beta^{-1}(D_H)$ if *L* and *H* are related by the Legendre transformation. In general, a dynamics is just a Lagrangian sub manifold of TT^*X , which may or may not have a Lagrangian or a Hamiltonian.

and Fields (in honour

Tulczyjew discovered (1974) that TT^*X has

- one symplectic structure: $d_T \omega_X$
- two Liouville structures: $d_T \theta_X$, $i_T \omega_X$

as one can see from the Tulczyjew's triangle

$$\begin{array}{cccc} T^*T^*X & \stackrel{\beta}{\longleftarrow} & TT^*X \\ \searrow \kappa & \swarrow \alpha \\ T^*TX & \end{array}$$

 $\alpha^* \theta_{TX} = d_T \theta_X$ and $\beta^* \theta_{T^*X} = i_T \omega_X$. The Lagrangian *L*: $TX \to \mathbb{R}$ defines a Lagrangian sub manifold $D_L := \operatorname{Im}(dL)$ and the Hamiltonian *H*: $T^*X \to \mathbb{R}$ defines a Lagrangian sub manifold $D_H := \operatorname{Im}(-dH)$. Fact: $\alpha^{-1}(D_L) = \beta^{-1}(D_H)$ if *L* and *H* are related by the Legendre transformation. In general, a dynamics is just a Lagrangian sub manifold of TT^*X , which may or may not have a Lagrangian or a Hamiltonian.

Tulczyjew discovered (1974) that TT^*X has

- one symplectic structure: $d_T \omega_X$
- two Liouville structures: $d_T \theta_X$, $i_T \omega_X$

as one can see from the Tulczyjew's triangle

$$\begin{array}{cccc} T^*T^*X & \stackrel{\beta}{\longleftarrow} & TT^*X \\ \searrow \kappa & \swarrow \alpha \\ T^*TX & \end{array}$$

 $\alpha^* \theta_{TX} = d_T \theta_X$ and $\beta^* \theta_{T^*X} = i_T \omega_X$. The Lagrangian *L*: $TX \to \mathbb{R}$ defines a Lagrangian sub manifold $D_L := \operatorname{Im}(dL)$ and the Hamiltonian *H*: $T^*X \to \mathbb{R}$ defines a Lagrangian sub manifold $D_H := \operatorname{Im}(-dH)$. Fact: $\alpha^{-1}(D_L) = \beta^{-1}(D_H)$ if *L* and *H* are related by the Legendre transformation. In general, a dynamics is just a Lagrangian sub manifold of TT^*X , which may or may not have a Lagrangian or a Hamiltonian.

Tulczyjew discovered (1974) that TT^*X has

- one symplectic structure: $d_T \omega_X$
- two Liouville structures: $d_T \theta_X$, $i_T \omega_X$

as one can see from the Tulczyjew's triangle

$$\begin{array}{cccc} T^*T^*X & \stackrel{\beta}{\longleftarrow} & TT^*X \\ \searrow \kappa & \swarrow \alpha \\ T^*TX & \end{array}$$

 $\alpha^* \theta_{TX} = d_T \theta_X$ and $\beta^* \theta_{T^*X} = i_T \omega_X$. The Lagrangian *L*: $TX \to \mathbb{R}$ defines a Lagrangian sub manifold $D_L := \operatorname{Im}(dL)$ and the Hamiltonian *H*: $T^*X \to \mathbb{R}$ defines a Lagrangian sub manifold $D_H := \operatorname{Im}(-dH)$. Fact: $\alpha^{-1}(D_L) = \beta^{-1}(D_H)$ if *L* and *H* are related by the Legendre transformation. In general, a dynamics is just a Lagrangian sub manifold of TT^*X , which may or may not have a Lagrangian or a Hamiltonian.

Geometry of Jets and Fields (in honour o

The dynamics is given by a Lagrangian sub-manifold D of TT^*X , where D could be

$$\beta^{-1}(D_H) = \{(q, p, \dot{q}, \dot{p}) : \dot{p} = -\frac{\partial H}{\partial q}, \ \dot{q} = \frac{\partial H}{\partial p}\}$$

or

$$\alpha^{-1}(D_L) = \{(q, p, \dot{q}, \dot{p}) : p = \frac{\partial L}{\partial \dot{q}}, \ \dot{p} = \frac{\partial L}{\partial q}\}$$

The dynamics is given by a Lagrangian sub-manifold D of TT^*X , where D could be

$$\beta^{-1}(D_H) = \{(q, p, \dot{q}, \dot{p}) : \dot{p} = -\frac{\partial H}{\partial q}, \ \dot{q} = \frac{\partial H}{\partial p}\}$$

or

$$\alpha^{-1}(D_L) = \{(q, p, \dot{q}, \dot{p}) : p = \frac{\partial L}{\partial \dot{q}}, \ \dot{p} = \frac{\partial L}{\partial q}\}$$

The dynamics is given by a Lagrangian sub-manifold D of TT^*X , where D could be

$$\beta^{-1}(D_H) = \{ (q, p, \dot{q}, \dot{p}) : \dot{p} = -\frac{\partial H}{\partial q}, \ \dot{q} = \frac{\partial H}{\partial p} \}$$

or

$$\alpha^{-1}(D_L) = \{ (q, p, \dot{q}, \dot{p}) : p = \frac{\partial L}{\partial \dot{q}}, \ \dot{p} = \frac{\partial L}{\partial q} \}$$

The dynamics is given by a Lagrangian sub-manifold D of TT^*X , where D could be

$$\beta^{-1}(D_H) = \{ (q, p, \dot{q}, \dot{p}) : \dot{p} = -\frac{\partial H}{\partial q}, \ \dot{q} = \frac{\partial H}{\partial p} \}$$

or

$$\alpha^{-1}(D_L) = \{ (q, p, \dot{q}, \dot{p}) : p = \frac{\partial L}{\partial \dot{q}}, \ \dot{p} = \frac{\partial L}{\partial q} \}$$

The dynamics is given by a Lagrangian sub-manifold D of TT^*X , where D could be

$$\beta^{-1}(D_H) = \{ (q, p, \dot{q}, \dot{p}) : \dot{p} = -\frac{\partial H}{\partial q}, \ \dot{q} = \frac{\partial H}{\partial p} \}$$

or

$$\alpha^{-1}(D_L) = \{ (q, p, \dot{q}, \dot{p}) : p = \frac{\partial L}{\partial \dot{q}}, \ \dot{p} = \frac{\partial L}{\partial q} \}$$

A technical setup

G	a compact connected Lie group
$\mathfrak{g},\ \mathfrak{g}^*$	the Lie algebra of <i>G</i> and its dual
P ightarrow X	a principal <i>G</i> -bundle over <i>X</i>
Θ	a fixed principal connection form
F	a Hamiltonian G-space
Ω	the symplectic form on F
$\Phi: \textit{F} \to \mathfrak{g}^*$	the G-equivariant moment map
$\mathcal{F} ightarrow X$	the associated fiber bundle with fiber F
\mathcal{F}^{\sharp}	the limit of diagram $T^*X \to X \leftarrow \mathcal{F}$

For notational sanity here, we shall use the same notation for both a differential form (or a map) and its pullback under a fiber bundle projection map.

Geometry of Jets and Fields (in honour of Jar / 16

Sternberg Phase Space

Theorem (Sternberg, 1977)

• There is a closed real differential two-form Ω_{Θ} on \mathcal{F} which is of the form $\Omega - d\langle A, \Phi \rangle$ under a local trivialization of $P \to X$ in which the connection form Θ is represented by the g-valued differential one-form A on X.

• The differential two-form $\omega_{\Theta} := \omega_X + \Omega_{\Theta}$ is a symplectic form on \mathcal{F}^{\sharp} , where ω_X is the canonical symplectic form on T^*X , pulled back under $\mathcal{F}^{\sharp} \to T^*X$, and Ω_{Θ} is the pullback of Ω_{Θ} under $\mathcal{F}^{\sharp} \to \mathcal{F}$.

- Ω_Θ is the right substitute for Ω when we go from a product bundle with the product connection to a generic bundle.
- If G = U(1), then (F[♯], ω_Θ) = (T^{*}X, ω_X − q_e dA) where q_e is the electric charge of the particle.
- In the Hamiltonian formalism, as shown by Sternberg and others, the Sternberg phase space (*F*[♯], ω_Θ) is the right substitute for (*T***X*, ω_X) when particles move in a background gauge field.

• The Lagrangian side of Sternberg's work is missing.

• Tulczyjew's approach for particles in gauge fields is missing.

Since both Sternberg's work and Tulczyjew's work are quite natural, there should be a very natural setting to combine them. A further setup

 \mathcal{F}_{\sharp} the limit of diagram $TX \to X \leftarrow \mathcal{F}$

Note that $\mathcal{F}_{\sharp} \to \mathcal{F}$ is a real vector bundle and its dual is vector bundle $\mathcal{F}^{\sharp} \to \mathcal{F}$. So $T^* \mathcal{F}^{\sharp} \cong T^* \mathcal{F}_{\sharp}$ by Dufour's theorem. So we arrive at a magnetized version of the Tulczyjew triple:

$$T^*\mathcal{F}^{\sharp} \stackrel{\beta_M}{\longleftarrow} T\mathcal{F}^{\sharp} \stackrel{\alpha_M}{\longrightarrow} T^*\mathcal{F}_{\sharp}$$

and Fields (in hono

- The Lagrangian side of Sternberg's work is missing.
- Tulczyjew's approach for particles in gauge fields is missing.

Since both Sternberg's work and Tulczyjew's work are quite natural, there should be a very natural setting to combine them.

A further setup

 \mathcal{F}_{\sharp} the limit of diagram $TX \to X \leftarrow \mathcal{F}$

Note that $\mathcal{F}_{\sharp} \to \mathcal{F}$ is a real vector bundle and its dual is vector bundle $\mathcal{F}^{\sharp} \to \mathcal{F}$. So $T^* \mathcal{F}^{\sharp} \cong T^* \mathcal{F}_{\sharp}$ by Dufour's theorem. So we arrive at a magnetized version of the Tulczyjew triple:

$$T^*\mathcal{F}^{\sharp} \stackrel{\beta_M}{\longleftarrow} T\mathcal{F}^{\sharp} \stackrel{\alpha_M}{\longrightarrow} T^*\mathcal{F}_{\sharp}$$

and Fields (in honou

- The Lagrangian side of Sternberg's work is missing.
- Tulczyjew's approach for particles in gauge fields is missing.

Since both Sternberg's work and Tulczyjew's work are quite natural, there should be a very natural setting to combine them.

A further setup

 $\mathcal{F}_{\sharp} \ \ \text{the limit of diagram } \mathcal{T}X \to X \leftarrow \mathcal{F}$

Note that $\mathcal{F}_{\sharp} \to \mathcal{F}$ is a real vector bundle and its dual is vector bundle $\mathcal{F}^{\sharp} \to \mathcal{F}$. So $T^* \mathcal{F}^{\sharp} \cong T^* \mathcal{F}_{\sharp}$ by Dufour's theorem. So we arrive at a magnetized version of the Tulczyjew triple:

$$T^*\mathcal{F}^{\sharp} \stackrel{\beta_M}{\longleftarrow} T\mathcal{F}^{\sharp} \stackrel{\alpha_M}{\longrightarrow} T^*\mathcal{F}_{\sharp}$$

and Fields (in hono

- The Lagrangian side of Sternberg's work is missing.
- Tulczyjew's approach for particles in gauge fields is missing.

Since both Sternberg's work and Tulczyjew's work are quite natural, there should be a very natural setting to combine them.

A further setup

 $\mathcal{F}_{\sharp} \ \ \text{the limit of diagram } \mathcal{T}X \to X \leftarrow \mathcal{F}$

Note that $\mathcal{F}_{\sharp} \to \mathcal{F}$ is a real vector bundle and its dual is vector bundle $\mathcal{F}^{\sharp} \to \mathcal{F}$. So $T^* \mathcal{F}^{\sharp} \cong T^* \mathcal{F}_{\sharp}$ by Dufour's theorem. So we arrive at a magnetized version of the Tulczyjew triple:

$$T^*\mathcal{F}^{\sharp} \stackrel{\beta_M}{\longleftarrow} T\mathcal{F}^{\sharp} \stackrel{\alpha_M}{\longrightarrow} T^*\mathcal{F}_{\sharp}$$

- *TF*[#] (the substitute of *TT***X*) has one symplectic structure and two Liouville structures.
- A dynamics is just a Lagrangian submanifold D of $T\mathcal{F}^{\sharp}$.
- The Lagrangian for *D*, if it exists, is a real function *L* on a submanifold *J* of *F*[↓]. (It is an unconstrained system if *J* = *F*[↓].)
- The Hamiltonian for *D*, if it exists, is a real function *H* on a submanifold *K* of *F*[♯]. (It is an unconstrained system if *K* = *F*[♯].)
- *H* and *L* are related by the Legendre transform if they all exist.
- The Hamiltonian side for unconstrained systems is equivalent to Sternberg's work.
 <u>Geometry of Jels and Fields (in honory</u>)

$$\begin{array}{ccc} \mathcal{TF}^{\sharp} \\ \stackrel{c'}{\nearrow} & \downarrow \\ \stackrel{c}{\longrightarrow} & \mathcal{F}^{\sharp} \end{array}$$

- *TF*[#] (the substitute of *TT***X*) has one symplectic structure and two Liouville structures.
- A dynamics is just a Lagrangian submanifold D of $T\mathcal{F}^{\sharp}$.
- The Lagrangian for D, if it exists, is a real function L on a submanifold J of F_♯. (It is an unconstrained system if J = F_♯.)
- The Hamiltonian for D, if it exists, is a real function H on a submanifold K of \$\mathcal{F}^\#\$. (It is an unconstrained system if \$K = \mathcal{F}^\#\$.)
- *H* and *L* are related by the Legendre transform if they all exist.
- The Hamiltonian side for unconstrained systems is equivalent to Sternberg's work.
 <u>Geometry of Jels and Fields (in honory</u>)

$$\begin{array}{ccc} \mathcal{TF}^{\sharp} \\ \stackrel{c'}{\nearrow} & \downarrow \\ \stackrel{c}{\longrightarrow} & \mathcal{F}^{\sharp} \end{array}$$

- *TF*[#] (the substitute of *TT***X*) has one symplectic structure and two Liouville structures.
- A dynamics is just a Lagrangian submanifold D of $T\mathcal{F}^{\sharp}$.
- The Lagrangian for *D*, if it exists, is a real function *L* on a submanifold *J* of *F*[♯]. (It is an unconstrained system if *J* = *F*[♯].)
- The Hamiltonian for D, if it exists, is a real function H on a submanifold K of F[#]. (It is an unconstrained system if K = F[#].)
- *H* and *L* are related by the Legendre transform if they all exist.
- The Hamiltonian side for unconstrained systems is equivalent to Sternberg's work.

$$\begin{array}{ccc} \mathcal{TF}^{\sharp} \\ \stackrel{c'}{\nearrow} & \downarrow \\ \stackrel{c}{\longrightarrow} & \mathcal{F}^{\sharp} \end{array}$$

- *TF*[#] (the substitute of *TT***X*) has one symplectic structure and two Liouville structures.
- A dynamics is just a Lagrangian submanifold D of $T\mathcal{F}^{\sharp}$.
- The Lagrangian for *D*, if it exists, is a real function *L* on a submanifold *J* of *F*[↓]. (It is an unconstrained system if *J* = *F*[↓].)
- The Hamiltonian for *D*, if it exists, is a real function *H* on a submanifold *K* of *F*[♯]. (It is an unconstrained system if *K* = *F*[♯].)
- *H* and *L* are related by the Legendre transform if they all exist.
- The Hamiltonian side for unconstrained systems is equivalent to Sternberg's work.

nd Fields (in honoi

$$\begin{array}{ccc} \mathcal{TF}^{\sharp} \\ \stackrel{c'}{\nearrow} & \downarrow \\ \stackrel{c}{\longrightarrow} & \mathcal{F}^{\sharp} \end{array}$$

- *TF*[#] (the substitute of *TT***X*) has one symplectic structure and two Liouville structures.
- A dynamics is just a Lagrangian submanifold D of $T\mathcal{F}^{\sharp}$.
- The Lagrangian for *D*, if it exists, is a real function *L* on a submanifold *J* of *F*_♯. (It is an unconstrained system if *J* = *F*_♯.)
- The Hamiltonian for D, if it exists, is a real function H on a submanifold K of F[#]. (It is an unconstrained system if K = F[#].)
- H and L are related by the Legendre transform if they all exist.
- The Hamiltonian side for unconstrained systems is equivalent to Sternberg's work.

nd Fields (in hono

$$\begin{array}{ccc} \mathcal{TF}^{\sharp} \\ \stackrel{c'}{\nearrow} & \downarrow \\ \stackrel{c}{\longrightarrow} & \mathcal{F}^{\sharp} \end{array}$$

- *TF*[#] (the substitute of *TT***X*) has one symplectic structure and two Liouville structures.
- A dynamics is just a Lagrangian submanifold D of $T\mathcal{F}^{\sharp}$.
- The Lagrangian for *D*, if it exists, is a real function *L* on a submanifold *J* of *F*_♯. (It is an unconstrained system if *J* = *F*_♯.)
- The Hamiltonian for D, if it exists, is a real function H on a submanifold K of \$\mathcal{F}^\#\$. (It is an unconstrained system if \$K = \mathcal{F}^\#\$.)
- H and L are related by the Legendre transform if they all exist.
- The Hamiltonian side for unconstrained systems is equivalent to Sternberg's work.

and Fields (in hono

The Lagrangian side, even for unconstrained systems, seems to be new: locally we have

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}^{i}} \right) = \frac{\partial L}{\partial q^{i}} + \frac{dq^{i}}{dt} \langle F_{ji}, \Phi \rangle + \{L, \langle A_{i}, \Phi \rangle \}_{F}$$
$$\frac{Dz}{dt} \lrcorner \Omega = \partial_{F} L$$

provided that *F* is a homogeneous Hamiltonian *G*-space. Here *L*: $\mathcal{F}_{\sharp} \to \mathbb{R}$ is a Lagrangian, and

$$\{f,g\}_{\mathsf{F}} := \Omega^{\alpha\beta} \frac{\partial f}{\partial z^{\alpha}} \frac{\partial g}{\partial z^{\beta}}, \quad \partial_{\mathsf{F}} L := \frac{\partial L}{\partial z^{\alpha}} \, \mathrm{d} z^{\alpha}$$

J. Phys. A: Math. Theor. 48 (2015) 145201GuTulczyjew's approach for particles in gauge fie

eometry of Jets and Fields (in honour of Ja

(1)

 There is a charge quantization condition: Ω_Θ/2π represents an integral lattice point of the 2nd cohomology group of *F* with real coefficient. This generalizes Dirac's charge quantization condition: ^{q_cq_m}/_{hc} ∈ ½Z. That is because *p*: *F*[#] → *F* is a homotopy equivalence and ω_X is exact, so

$$[rac{\omega_{\chi}+\Omega_{\Theta}}{2\pi}]=[rac{\Omega_{\Theta}}{2\pi}]\in H^2(\mathcal{F}^{\sharp},\mathbb{R}).$$

 A great advantage of this formalism, as already demonstrated in the literature, is the study of constrained system.

Happy Birthday, Janusz!

J. Phys. A: Math. Theor. 48 (2015) 145201GuTulczyjew's approach for particles in gauge fie

Geometry of Jets and Fields (in honour of Jai