Vector Bundle Valued Differential Forms on Non-Negatively Graded DG Manifolds

Luca Vitagliano

University of Salerno, Italy

Geometry of Jets and Fields for Janusz's 60th Birthday Będlewo, May 15, 2015

Introduction

Graded geometry encodes efficiently (non-graded) geometric structures, e.g. $\mathbb{N}Q$ -manifolds encode Lie algebroids and their higher analogues.

Remark

 $\mathbb{N}Q$ -manifolds (\mathcal{M}, Q) + a compatible geometric structure encode higher Lie algebroids + a compatible structure.

Differential forms on M preserved by Q are of a special interest. Vector bundle (VB) valued forms are even more interesting!

VB valued forms describe several interesting geometries: *foliated*, *(pre)contact*, *(pre)symplectic*, *locally conformal symplectic*, *poly-symplectic*, *cosymplectic*, *multisymplectic*, ...

Introduction

Examples

deg	N <i>Q</i> -manifold	standard geometry	proved in
1	foliated	infinitesimal ideal system	[Zambon & Zhu 2012]
1	contact	Jacobi	[Grabowski 2013] [Mehta 2013]
1	symplectic	Poisson	[Roytenberg 2002]
2	contact	contact-Courant	[Grabowski 2013]
2	symplectic	Courant	[Roytenberg 2002]

Remark

All above cases can be regarded as:

 $\mathbb{N}Q$ -manifold + a compatible VB valued form.

Introduction

The above examples motivate the study of *VB valued differential forms* on $\mathbb{N}Q$ -manifolds!

Aims of the Talk

- describe VB valued differential forms on N-manifolds in terms of non-graded geometric data,
- use this description as a unified formalism for examples above,
- enlarge the list of examples.

Remark

I work in the simplest case: deg 1, i.e. (non-higher) Lie algebroids.

- 1-Forms on Degree One NQ-Manifolds
- 3 2-Forms on Degree One NQ-Manifolds
- 4 Higher Forms on Degree One NQ-Manifolds

Forms on N-Manifolds

1-Forms on Degree One NQ-Manifolds 2-Forms on Degree One NQ-Manifolds Higher Forms on Degree One NQ-Manifolds

Outline

1-Forms on Degree One NQ-Manifolds

3 2-Forms on Degree One NQ-Manifolds

I Higher Forms on Degree One NQ-Manifolds

Reminder on Graded Manifolds

Definition: graded manifold

A pair $\mathcal{M} = (M, C^{\infty}(\mathcal{M}))$ consisting of a manifold M and a graded $C^{\infty}(M)$ -algebra $C^{\infty}(\mathcal{M}) \approx \Gamma(S^{\bullet}E^{\bullet})$ for some graded VB $E^{\bullet} \to M$.

Remark

Smooth maps, vector fields, differential forms, etc. on \mathcal{M} are defined algebraically via graded differential calculus on $C^{\infty}(\mathcal{M})$.

Think of \mathcal{M} as a space locally coordinatized by (x^i, z^{α}) :

- deg $x^i = 0 \Longrightarrow$ the x^i 's commute,
- deg $z^{\alpha} =: |\alpha| \in \mathbb{Z} \setminus 0 \Longrightarrow$ the z^{α} 's graded commute.

The Euler vector field

$$\Delta = |\alpha| \, z^{\alpha} \frac{\partial}{\partial z^{\alpha}}$$

measures the *internal degree* of geometric objects.

Q-manifolds and Lie algebroids

Remark

I work with \mathbb{N} -manifolds \mathcal{M} , i.e. $C^{\infty}(\mathcal{M})$ is non-negatively graded. The *degree* of \mathcal{M} is the *highest* degree of its coordinates.

Definition: NQ-manifold

An \mathbb{N} -manifold \mathcal{M} + an homological vector field Q, i.e.

deg Q = 1, and [Q, Q] = 0.

Proposition

There is a one-to-one correspondence between deg 1 NQ-manifolds and Lie algebroids, given by $(A[1], Q = d_A) \iff (A, \rho_A, [-, -]_A)$. Conversely

 $[\alpha,\beta]^{\mathsf{v}}_A = [[Q,\alpha^{\mathsf{v}}],\beta^{\mathsf{v}}] \text{ and } \rho_A(\alpha)f = [Q,\alpha^{\mathsf{v}}]f, \quad \alpha,\beta\in\Gamma(A).$

where $\alpha^{\vee} \in \mathfrak{X}(A[1]) :=$ vertical lift of $\alpha \in \Gamma(A)$.

VB Valued Forms on N-manifolds

Let $\mathcal{E} \to \mathcal{M}$ be a VB in the category of graded manifolds. There is a Cartan calculus on $\Omega(\mathcal{M}, \mathcal{E}) := \{\mathcal{E}\text{-valued differential forms on } \mathcal{M}\}.$

Definition: *derivation of* \mathcal{E}

An \mathbb{R} -linear, graded operator $\mathbb{X} : \Gamma(\mathcal{E}) \to \Gamma(\mathcal{E})$ such that

 $X(fe) = X(f)e + (-)^{|f|}fXe$, for some graded vector field *X*.

Remark

 $\omega \in \Omega(\mathcal{M}, \mathcal{E})$ can be *contracted with* and *Lie differentiated along* X. Interior products and Lie derivatives satisfy usual Cartan identities:

 $[i_{\mathbf{X}},i_{\mathbf{Y}}]=0,\quad [L_{\mathbf{X}},i_{\mathbf{Y}}]=i_{[\mathbf{X},\mathbf{Y}]},\quad [L_{\mathbf{X}},L_{\mathbf{Y}}]=L_{[\mathbf{X},\mathbf{Y}]}.$

Definition: *vector* $\mathbb{N}Q$ *-bundle*

A VB $\mathcal{E} \to \mathcal{M}$ + an homological derivation \mathbb{Q} , i.e.

 $\deg \mathbb{Q} = 1, \quad \text{and} \quad [\mathbb{Q}, \mathbb{Q}] = 0.$

Spencer Data

Simplifying Assumption: $\Gamma(\mathcal{E})$ is generated in deg 0

I.e. $\mathcal{E} = \mathcal{M} \times_M E$ for some non-graded VB $E \to M$. Then a negatively graded derivation \mathbb{X} of \mathcal{E} is determined by its symbol $X \in \mathfrak{X}_{-}(\mathcal{M})$.

Key Remark

A degree n > 0 form $\omega \in \Omega^k(\mathcal{M}, \mathcal{E})$ is completely determined by interior products with and Lie derivatives along negatively graded derivations:

$$n\omega = L_{\Delta}\omega = |\alpha| \left(z^{\alpha} L_{\partial/\partial z^{\alpha}} \omega + dz^{\alpha} \wedge i_{\partial/\partial z^{\alpha}} \omega \right).$$

Definition: *Spencer data of a deg n* > 0 *form* $\omega \in \Omega^k(\mathcal{M}, \mathcal{E})$

$$D:\mathfrak{X}_{-}(\mathcal{M})\longrightarrow\Omega^{k}(\mathcal{M},\mathcal{E}), \hspace{1em} X\longmapsto D(X):=L_{X}\omega,$$

and

$$\ell:\mathfrak{X}_{-}(\mathcal{M})\longrightarrow \Omega^{k-1}(\mathcal{M},\mathcal{E}), \hspace{1em} X\longmapsto \ell(X):=i_X\omega.$$

Forms on N-Manifolds as on Degree One NQ-Manifolds

2-Forms on Degree One NQ-Manifolds Higher Forms on Degree One NQ-Manifolds

Spencer Data

Theorem

Spencer data establish a one-to-one correspondence between degree n > 0 forms $\omega \in \Omega^k(\mathcal{M}, \mathcal{E})$ and pairs (D, ℓ) , with

- $D: \mathfrak{X}_{-}(\mathcal{M}) \to \Omega^{k}(\mathcal{M}, \mathcal{E})$ a degree *n* first order DO, and
- $\ell : \mathfrak{X}_{-}(\mathcal{M}) \to \Omega^{k-1}(\mathcal{M}, \mathcal{E})$ a degree $n \ C^{\infty}(\mathcal{M})$ -linear map,

such that

$$D(fX) = fD(X) + (-)^X df \wedge \ell(X),$$

and, moreover,

$$L_X D(Y) - (-)^{XY} L_Y D(X) = D([X, Y]),$$

$$L_X \ell(Y) - (-)^{X(Y-1)} i_Y D(X) = \ell([X, Y]),$$

$$i_X \ell(Y) - (-)^{(X-1)(Y-1)} i_Y \ell(X) = 0.$$

One can describe (inductively on *n*) ω in terms of non-graded data!

A First Example: Degree 1 Symplectic NQ-manifolds

Definition: *deg n symplectic* \mathbb{N} *-manifold*

A deg *n* \mathbb{N} -manifold \mathcal{M} + a deg *n* symplectic form ω .

Example: the shifted cotangent bundle $T^*[n]M$ of a deg 0 manifold M

Notice that

 $\mathfrak{X}_{-}(T^{*}[n]M) = \Omega^{1}(M)[n].$

 $T^*[n]M$ is equipped with a deg *n* symplectic form ω determined by

$$L_{(df)^{\vee}}\omega = 0$$
, and $i_{(df)^{\vee}}\omega = df$, $f \in C^{\infty}(M)$.

Hence $D = (-)^n d : \Omega^1(M) \to \Omega^2(M)$ and $\ell = \mathrm{id} : \Omega^1(M) \to \Omega^1(M)$.

Definition: *deg n symplectic* **N***Q-manifold*

A deg *n* NQ-manifold (\mathcal{M}, Q) + a deg *n* symplectic form ω such that $L_Q \omega = 0$.

A First Example: Degree 1 Symplectic NQ-manifolds

Theorem [Roytenberg 2002]

There is a "one-to-one" correspondence between deg 1 symplectic $\mathbb{N}Q$ -manifolds (\mathcal{M}, Q) and Poisson manifolds.

An alternative proof via Spencer data

Let
$$\mathcal{M} = A[1] \to M$$
. Then $\mathfrak{X}_{-}(\mathcal{M}) = \Gamma(A)[1]$.

 $\begin{array}{l} \text{non-degeneracy} \ \Rightarrow \ \ell : \Gamma(A) \simeq \Omega^1(M) \\ \text{closedness} \ \Rightarrow \ D = -d \circ \ell \end{array} \right\} \Rightarrow (\mathcal{M}, \omega) \simeq (T^*[1]\mathcal{M}, \omega),$

Hence,
$$L_Q \omega = 0 \iff i_{(df)^{\vee}} i_{(dg)^{\vee}} L_Q \omega = L_{(df)^{\vee}} i_{(dg)^{\vee}} L_Q \omega = 0.$$

From $Q = d_{T^*M}$ for a Lie algebroid $(T^*M, \rho_{T^*M}, [-, -]_{T^*M})$, follows $i_{(df)^{\vee}}i_{(dg)^{\vee}}L_Q\omega = -\rho_{T^*M}(df)(g) - \rho_{T^*M}(dg)(f)$

and

$$L_{(df)^{\vee}}i_{(dg)^{\vee}}L_Q\omega=d\rho_{T^*M}(df)(g)-[df,dg]_{T^*M}.$$

Outline

1-Forms on Degree One NQ-Manifolds

3 2-Forms on Degree One NQ-Manifolds

I Higher Forms on Degree One NQ-Manifolds

Distributions on NQ-Manifolds

Let (\mathcal{M}, Q) be an $\mathbb{N}Q$ -manifold, and $\mathcal{D} \subset T\mathcal{M}$ a distribution.

Simplifying Assumption: TM/D is generated in deg -k

Projection

$$\theta_{\mathcal{D}}: T\mathcal{M} \to T\mathcal{M}/\mathcal{D} \to (T\mathcal{M}/\mathcal{D})[-k] =: \mathcal{E}_{\mathcal{D}}$$

can be seen as a deg k (surjective) $\mathcal{E}_{\mathcal{D}}$ -valued 1-form.

Definition: \mathcal{D} compatible with Q

If $[Q, \Gamma(\mathcal{D})] \subset \Gamma(\mathcal{D})$.

Proposition

 \mathcal{D} is compatible with Q iff there is an homological derivation Q of $\mathcal{E}_{\mathcal{D}}$ with symbol Q such that $L_Q \theta_{\mathcal{D}} = 0$.

Degree 1 Foliated NQ-Manifolds

Definition: *deg n foliated* NQ-manifold

A deg *n* $\mathbb{N}Q$ -manifold (\mathcal{M}, Q) + an involutive distribution \mathcal{D} such that $T\mathcal{M}/\mathcal{D}$ is generated in deg -n and $[Q, \Gamma(\mathcal{D})] \subset \Gamma(\mathcal{D})$.

Proposition [Zambon & Zhu 2012]

There is a "one-to-one" correspondence between deg 1 foliated $\mathbb{N}Q$ -manifolds and Lie algebroids $A \to M$ + an infinitesimal ideal system covering TM.

Reminder: infinitesimal ideal system covering TM

- A Lie subalgebroid $B \subset A$ over M,
- a flat connection in *A*/*B*,

+ a certain compatibility condition.

There is a simple, alternative proof via Spencer data of $\theta_{\mathcal{D}}$.

Degree 1 Contact $\mathbb{N}Q$ -Manifolds

A *contact structure on* \mathcal{M} is an hyperplane distribution \mathcal{C} with nondegenerate *curvature*: $\omega_{\mathcal{C}} : \mathcal{C} \times \mathcal{C} \longrightarrow T\mathcal{M}/\mathcal{C}$, $(X, Y) \longmapsto \theta_{\mathcal{C}}([X, Y])$.

Definition: *deg n contact* NQ-manifold

A deg *n* $\mathbb{N}Q$ -manifold (\mathcal{M}, Q) + a contact structure \mathcal{C} such that $T\mathcal{M}/\mathcal{C}$ is generated in deg -n, and $[Q, \Gamma(\mathcal{C})] \subset \Gamma(\mathcal{C})$.

Proposition [Grabowski 2013], [Mehta 2013]

There is a "one-to-one" correspondence between deg 1 contact $\mathbb{N}Q$ -manifolds and Jacobi bundles.

Reminder: Jacobi bundle

A line bundle $L \to M$ + a Lie bracket $\{-, -\}$ on $\Gamma(L)$ which is a first order DO in each entry.

There is a simple, alternative proof via Spencer data of $\theta_{\mathcal{C}}$.

Outline

2 1-Forms on Degree One NQ-Manifolds

3 2-Forms on Degree One NQ-Manifolds

I Higher Forms on Degree One NQ-Manifolds

Degree 1 LCS NQ-Manifolds

A *lcs structure* on \mathcal{M} is a pair consisting of a flat line bundle (\mathcal{L}, ∇) over \mathcal{M} and a d_{∇} -closed, non-degenerate, \mathcal{L} -valued, 2-form ω .

Definition: deg n lcs $\mathbb{N}Q$ -manifold

A deg *n* \mathbb{N} -manifold \mathcal{M} + a line $\mathbb{N}Q$ -bundle $(\mathcal{L}, \mathbb{Q})$ generated in deg 0, and a lcs structure $((\mathcal{L}, \nabla), \omega)$ such that deg $\omega = n$, and $L_{\mathbb{Q}}\omega = 0$.

Proposition

There is a "one-to-one" correspondence between deg 1 lcs $\mathbb{N}Q$ -manifolds and lc Poisson manifolds.

Reminder: lc Poisson manifold

A manifold *M* with a flat line bundle (L, ∇) and a morphism P : $\wedge^2(T^*M \otimes L) \to L$ inducing a Lie bracket $\{-, -\}_P$ on $\Gamma(L)$:

 $\{\lambda,\mu\}_P = P(d_{\nabla}\lambda,d_{\nabla}\mu), \quad \lambda,\mu\in\Gamma(L).$

Degree 1 Presymplectic NQ-Manifolds

Definition: *deg n presymplectic* $\mathbb{N}Q$ *-manifold*

A deg *n* NQ-manifold (\mathcal{M}, Q) + a deg *n* presymplectic form ω such that $L_Q \omega = 0$.

Proposition

There is a "one-to-one" correspondence between deg 1, dim (m, m) *presymplectic* $\mathbb{N}Q$ *-manifolds* [+ clean intersection] *and Dirac m-folds*.

Reminder: Dirac manifold

A manifold M + a maximal isotropic subbundle $D \subset TM \oplus T^*M$ whose sections are preserved by *Dorfman brackets*.

Dirac structures can be alternatively described within graded geometry as Lagrangian submanifolds in deg 2 symplectic $\mathbb{N}Q$ -manifolds!

Degree 1 Poly-Symplectic NQ-Manifolds

A *k-poly-symplectic structure* on \mathcal{M} is a closed, \mathbb{R}^k -valued 2-form ω such that $\omega^{\flat} : X \mapsto i_X \omega$ is a VB embedding.

Definition: deg n k-poly-symplectic $\mathbb{N}Q$ -manifold

A deg $n \mathbb{N}Q$ -manifold (\mathcal{M}, Q) + a deg n k-poly-symplectic structure ω such that $L_Q \omega = 0$.

Proposition

There is a "one-to-one" correspondence between deg 1 k-poly-symplectic $\mathbb{N}Q$ -manifolds and k-poly-Poisson manifolds.

Reminder: k-poly-Poisson manifold (in the sense of [Martinez 2015])

A manifold M + a subbundle $S \subset T^*M \otimes \mathbb{R}^k$ + a VB morphism $P: S \to TM$:

- $i_{P(\alpha)}\beta + i_{P(\beta)}\alpha = 0$, with $\alpha, \beta \in \Gamma(S)$,
- $\Gamma(S)$ is preserved by bracket $[\alpha, \beta]_S := L_{P(\alpha)}\beta L_{P(\beta)}\alpha + di_{P(\beta)}\alpha$,
- Inon degeneracy.

Half Step Behind: Degree 1 Cosymplectic NQ-Manifolds

A *cosymplectic structure* on \mathcal{M} is a pair (η, ω) :

- $\ \, { \ \, 0 } \ \, \eta \in \Omega^1({\mathcal M}) \ \, { and } \ \, \omega \in \Omega^2({\mathcal M}),$
- $\eta \neq 0$ and ω is non-degenerate on ker η ,
- $d\eta = d\omega = 0.$

The "hard" part is to guess the definition of cosymplectic $\mathbb{N}Q$ -manifold!

Definition: deg n cosymplectic $\mathbb{N}Q$ -manifold

A deg *n* NQ-manifold (\mathcal{M}, Q) + a deg *n* cosymplectic structure (η, ω) such that $L_Q \eta|_{\ker \eta} = L_Q \omega|_{\ker \eta} = 0$.

Proposition

There is a "one-to-one" correspondence between deg 1 cosymplectic $\mathbb{N}Q$ -manifolds and Poisson manifolds with a Poisson vector field.

One Step Behind: Degree 1 Precontact NQ-Manifolds

A precontact structure is an hyperplane distribution.

Definition: *deg n precontact* NQ-manifold

A deg *n* NQ-manifold (\mathcal{M}, Q) + a precontact structure C such that $T\mathcal{M}/C$ is generated in deg -n, and $[Q, \Gamma(C)] \subset \Gamma(C)$.

Proposition

There is a "one-to-one" correspondence between deg 1, dim (m, m + 1) precontact $\mathbb{N}Q$ -manifolds [+ clean intersection] and Dirac-Jacobi bundles over a dim m manifold.

Reminder: Dirac-Jacobi bundle

A line bundle $L \to M$ + a maximal isotropic subbundle $D \subset \det L \oplus J^1L$ whose sections are preserved by Dorfman-Jacobi brackets.

Outline

2 1-Forms on Degree One NQ-Manifolds

3 2-Forms on Degree One NQ-Manifolds

4 Higher Forms on Degree One NQ-Manifolds

Spencer Operators on Lie Algebroids

Spencer operators are infinitesimal counterparts of *multiplicative* VB valued differential forms on Lie groupoids.

Let $A \to M$ be a Lie algebroid and (E, ∇) a representation of A.

Definition: *E-valued k-Spencer operator on A*

A pair (D, ℓ) with

• $D: \Gamma(A) \to \Omega^k(M, E)$ a first order DO, and

• $\ell : \Gamma(A) \to \Omega^{k-1}(M, E)$ a $C^{\infty}(M)$ -linear map,

such that

 $D(f\alpha) = fD(\alpha) - df \wedge \ell(\alpha), \text{ and, moreover}$ $L_{\nabla_{\alpha}}D(\beta) - L_{\nabla_{\beta}}D(\alpha) = D([\alpha, \beta]_A),$ $L_{\nabla_{\alpha}}\ell(\beta) + i_{\rho_A(\beta)}D(\alpha) = \ell([\alpha, \beta]_A),$ $i_{\rho_A(\alpha)}\ell(\beta) + i_{\rho_A(\beta)}\ell(\alpha) = 0.$

deg 1 Higher Forms on NQ-Manifolds

Theorem

2

There is a one-to-one correspondence between

- deg 1 $\mathbb N$ -manifolds $\mathcal M$,
 - an $\mathbb{N}Q$ -vector bundle $(\mathcal{E} \to \mathcal{M}, \mathbb{Q})$, with $\Gamma(\mathcal{E})$ generated in deg 0,
 - a deg 1 form $\omega \in \Omega^k(\mathcal{M}, \mathcal{E})$ such that $L_{\mathbb{Q}}\omega = 0$,

• Lie algebroids
$$A \to M$$
,

- a representation (E, ∇) of A,
- an *E*-valued *k*-Spencer operator on *A*.

Proof

 $\mathcal{M} = A[1]$ and $\mathcal{E} = \mathcal{M} \times_M E$.

 $\mathbb{Q} \iff$ a Lie algebroid structure on A + a representation (E, ∇) . Spencer data of ω define an *E*-valued *k*-Spencer operator on *A*.

deg 1 Multisymplectic NQ-manifolds

A *k*-plectic structure on \mathcal{M} is $\omega \in \Omega^{k+1}(\mathcal{M})$ such that $\omega^{\flat} : X \mapsto i_X \omega$ is a VB embedding.

Definition: *deg n k-plectic* $\mathbb{N}Q$ *-manifold*

A deg $n \mathbb{N}Q$ -manifold (\mathcal{M}, Q) + a deg n k-plectic structure ω such that $L_Q \omega = 0$.

Corollary

There is a "one-to-one" correspondence between deg 1 k-plectic $\mathbb{N}Q$ -manifolds and Lie algebroids + an IM k-plectic structure.

Reminder: IM k-plectic structure on a Lie algebroid A

A $C^{\infty}(M)$ -linear map $\ell : \Gamma(A) \to \Omega^k(M)$ such that

 $i_{\rho_A(\alpha)}\ell(\beta) + i_{\rho_A(\beta)}\ell(\alpha) = 0$, and $L_{\rho_A(\alpha)}\ell(\beta) - i_{\rho_A(\beta)}d\ell(\alpha) = \ell([X,Y]_A)$,

+ non-degeneracy conditions.

Conclusions

I presented a unified formalism for deg 1, contact, symplectic, and foliated $\mathbb{N}\mathcal{Q}\text{-}\mathsf{manifolds}.$

New Examples in Degree 1					
deg 1 N <i>Q</i> -manifold	standard geometry	(first) considered in			
precontact	Dirac-Jacobi	[Wade 2000]			
lcs	lc Poisson	[Vaisman 2007]			
poly-symplectic	poly-Poisson	[Iglesias et al. 2013] [Martinez 2015]			
presymplectic	Dirac	[Courant 1990]			
cosymplectic	coPoisson	[Janyška & Modugno 2009]			
higher form	Spencer operator	[Crainic et al. 2013]			
multisymplectic	IM multisymplectic	[Bursztyn et al. 2013]			

References

- J. GRABOWSKI, Graded contact manifolds and contact Courant algebroids, J. Geom. Phys. 68 (2013) 27–58.
- R.A. MEHTA, Differential graded contact geometry and Jacobi structures, Lett. Math. Phys. 106 (2013) 729–741.
- D. ROYTENBERG,

On the structure of graded symplectic supermanifolds and Courant algebroids, in: Quantization, Poisson Brackets and Beyond, Contemp. Math. **315**, AMS, Providence, RI, 2002, pp. 169–185.

- ▶ L. V., VB valued differential forms on ℕQ-manifolds, arXiv:1406.6256.
- M. ZAMBON, AND C. ZHU, Distributions and quotients on degree one NQ-manifolds and Lie algebroids, J. Geom. Mech. 4 (2012) 469–485.

References

- T. COURANT, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990) 631–661.
- E. BURSZTYN, A. CABRERA, AND D. IGLESIAS, *Multisymplectic geometry and Lie groupoids*, in: Geometry, Mechanics and Dynamics, Field Inst. Commun. Series 73, Springer, New York, NY, 2015, pp. 57–73.
- M. CRAINIC, M.A. SALAZAR, AND I. STRUCHINER, Multiplicative forms and Spencer operators, Math. Z. 279 (2015) 939–979.
- D. IGLESIAS, J.C. MARRERO, AND M. VAQUERO, *Poly-Poisson Structures*, Lett. Math. Phys. 103 (2013) 1103–1133.

References

- J. JANYŠKA, AND M. MODUGNO, Generalized geometrical structures of odd dimensional manifolds, J. Math. Pures. Appl. 91 (2009) 211–232.
- N. MARTINEZ, *Poly-symplectic Groupoids and Poly-Poisson Structures*, Lett. Math. Phys. 105 (2015) 693–721.
- I. VAISMAN, Dirac structures and generalized complex structures on TM × ℝ^h, Adv Geom. 7 (2007) 453–474.
- A. WADE, Conformal Dirac structures, Lett. Math. Phys. 53 (2000) 331–348.

Best Wishes, Janusz!