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Introduction

Graded geometry encodes efficiently (non-graded) geometric structures,
e.g. NQ-manifolds encode Lie algebroids and their higher analogues.

Remark

NQ-manifolds (M, Q) + a compatible geometric structure
encode

higher Lie algebroids + a compatible structure.

Differential forms onM preserved by Q are of a special interest. Vec-
tor bundle (VB) valued forms are even more interesting!

VB valued forms describe several interesting geometries: foliated,
(pre)contact, (pre)symplectic, locally conformal symplectic, poly-symplectic,
cosymplectic, multisymplectic, . . .
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Introduction

Examples

deg NQ-manifold standard geometry proved in

1 foliated infinitesimal ideal system [Zambon & Zhu 2012]

1 contact Jacobi
[Grabowski 2013]

[Mehta 2013]
1 symplectic Poisson [Roytenberg 2002]
2 contact contact-Courant [Grabowski 2013]
2 symplectic Courant [Roytenberg 2002]

Remark
All above cases can be regarded as:

NQ-manifold + a compatible VB valued form.

Luca Vitagliano VB Valued Forms on NQ-manifolds 3 / 32



Forms on N-Manifolds
1-Forms on Degree One NQ-Manifolds
2-Forms on Degree One NQ-Manifolds

Higher Forms on Degree One NQ-Manifolds

Introduction

The above examples motivate the study of VB valued differential forms
on NQ-manifolds!

Aims of the Talk
1 describe VB valued differential forms on N-manifolds in terms of

non-graded geometric data,
2 use this description as a unified formalism for examples above,
3 enlarge the list of examples.

Remark
I work in the simplest case: deg 1, i.e. (non-higher) Lie algebroids.
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Reminder on Graded Manifolds

Definition: graded manifold

A pair M = (M, C∞(M)) consisting of a manifold M and a graded
C∞(M)-algebra C∞(M) ≈ Γ(S•E•) for some graded VB E• → M.

Remark
Smooth maps, vector fields, differential forms, etc. onM are defined
algebraically via graded differential calculus on C∞(M).

Think ofM as a space locally coordinatized by (xi, zα) :
deg xi = 0 =⇒ the xi’s commute,
deg zα =: |α| ∈ Z r 0 =⇒ the zα’s graded commute.

The Euler vector field
∆ = |α| zα ∂

∂zα

measures the internal degree of geometric objects.
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Q-manifolds and Lie algebroids

Remark

I work with N-manifolds M, i.e. C∞(M) is non-negatively graded.
The degree ofM is the highest degree of its coordinates.

Definition: NQ-manifold

An N-manifoldM + an homological vector field Q, i.e.

deg Q = 1, and [Q, Q] = 0.

Proposition

There is a one-to-one correspondence between deg 1 NQ-manifolds and Lie
algebroids, given by (A[1], Q = dA)⇐= \ (A, ρA, [−,−]A). Conversely

[α, β]vA = [[Q, αv], βv] and ρA(α) f = [Q, αv] f , α, β ∈ Γ(A).

where αv ∈ X(A[1]) := vertical lift of α ∈ Γ(A).
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VB Valued Forms on N-manifolds

Let E → M be a VB in the category of graded manifolds. There is a
Cartan calculus on Ω(M, E) := {E -valued differential forms onM}.

Definition: derivation of E
An R-linear, graded operator X : Γ(E)→ Γ(E) such that

X( f e) = X( f )e + (−)| f | f Xe, for some graded vector field X.

Remark

ω ∈ Ω(M, E) can be contracted with and Lie differentiated along X. Inte-
rior products and Lie derivatives satisfy usual Cartan identities:

[iX, iY] = 0, [LX, iY] = i[X,Y], [LX, LY] = L[X,Y].

Definition: vector NQ-bundle

A VB E →M + an homological derivation Q, i.e.

deg Q = 1, and [Q, Q] = 0.
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Spencer Data

Simplifying Assumption: Γ(E) is generated in deg 0

I.e. E =M×M E for some non-graded VB E → M. Then a negatively
graded derivation X of E is determined by its symbol X ∈ X−(M).

Key Remark

A degree n > 0 form ω ∈ Ωk(M, E) is completely determined by interior
products with and Lie derivatives along negatively graded derivations:

nω = L∆ω = |α| (zαL∂/∂zα ω + dzα ∧ i∂/∂zα ω) .

Definition: Spencer data of a deg n > 0 form ω ∈ Ωk(M, E)

D : X−(M) −→ Ωk(M, E), X 7−→ D(X) := LXω,
and

` : X−(M) −→ Ωk−1(M, E), X 7−→ `(X) := iXω.
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Spencer Data

Theorem
Spencer data establish a one-to-one correspondence between degree n > 0
forms ω ∈ Ωk(M, E) and pairs (D, `), with

D : X−(M)→ Ωk(M, E) a degree n first order DO, and
` : X−(M)→ Ωk−1(M, E) a degree n C∞(M)-linear map,

such that
D( f X) = f D(X) + (−)Xd f ∧ `(X),

and, moreover,
LXD(Y)− (−)XY LYD(X) = D([X, Y]),

LX`(Y)− (−)X(Y−1)iYD(X) = `([X, Y]),

iX`(Y)− (−)(X−1)(Y−1)iY`(X) = 0.

One can describe (inductively on n) ω in terms of non-graded data!
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A First Example: Degree 1 Symplectic NQ-manifolds

Definition: deg n symplectic N-manifold

A deg n N-manifoldM + a deg n symplectic form ω.

Example: the shifted cotangent bundle T∗[n]M of a deg 0 manifold M

Notice that
X−(T∗[n]M) = Ω1(M)[n].

T∗[n]M is equipped with a deg n symplectic form ω determined by

L(d f )vω = 0, and i(d f )vω = d f , f ∈ C∞(M).

Hence D = (−)nd : Ω1(M)→ Ω2(M) and ` = id : Ω1(M)→ Ω1(M).

Definition: deg n symplectic NQ-manifold

A deg n NQ-manifold (M, Q) + a deg n symplectic form ω such that
LQω = 0.
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A First Example: Degree 1 Symplectic NQ-manifolds

Theorem [Roytenberg 2002]

There is a “one-to-one” correspondence between deg 1 symplectic NQ-
manifolds (M, Q) and Poisson manifolds.

An alternative proof via Spencer data

LetM = A[1]→ M. Then X−(M) = Γ(A)[1].

non-degeneracy ⇒ ` : Γ(A) ' Ω1(M)
closedness ⇒ D = −d ◦ `

}
⇒ (M, ω) ' (T∗[1]M, ω),

Hence, LQω = 0 ⇔ i(d f )v i(dg)v LQω = L(d f )v i(dg)v LQω = 0.

From Q = dT∗M for a Lie algebroid (T∗M, ρT∗M, [−,−]T∗M), follows

i(d f )v i(dg)v LQω = −ρT∗M(d f )(g)− ρT∗M(dg)( f )

and
L(d f )v i(dg)v LQω = dρT∗M(d f )(g)− [d f , dg]T∗M.
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Distributions on NQ-Manifolds

Let (M, Q) be an NQ-manifold, and D ⊂ TM a distribution.

Simplifying Assumption: TM/D is generated in deg −k

Projection

θD : TM→ TM/D → (TM/D)[−k] =: ED

can be seen as a deg k (surjective) ED-valued 1-form.

Definition: D compatible with Q

If [Q, Γ(D)] ⊂ Γ(D).

Proposition

D is compatible with Q iff there is an homological derivation Q of ED with
symbol Q such that LQθD = 0.
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Degree 1 Foliated NQ-Manifolds

Definition: deg n foliated NQ-manifold

A deg n NQ-manifold (M, Q) + an involutive distribution D such
that TM/D is generated in deg −n and [Q, Γ(D)] ⊂ Γ(D).

Proposition [Zambon & Zhu 2012]

There is a “one-to-one” correspondence between deg 1 foliated NQ-manifolds
and Lie algebroids A→ M + an infinitesimal ideal system covering TM.

Reminder: infinitesimal ideal system covering TM

A Lie subalgebroid B ⊂ A over M,
a flat connection in A/B,

+ a certain compatibility condition.

There is a simple, alternative proof via Spencer data of θD .

Luca Vitagliano VB Valued Forms on NQ-manifolds 16 / 32



Forms on N-Manifolds
1-Forms on Degree One NQ-Manifolds
2-Forms on Degree One NQ-Manifolds

Higher Forms on Degree One NQ-Manifolds

Degree 1 Contact NQ-Manifolds

A contact structure on M is an hyperplane distribution C with non-
degenerate curvature: ωC : C × C −→ TM/C, (X, Y) 7−→ θC([X, Y]).

Definition: deg n contact NQ-manifold

A deg n NQ-manifold (M, Q) + a contact structure C such that TM/C
is generated in deg −n, and [Q, Γ(C)] ⊂ Γ(C).

Proposition [Grabowski 2013], [Mehta 2013]

There is a “one-to-one” correspondence between deg 1 contact NQ-manifolds
and Jacobi bundles.

Reminder: Jacobi bundle

A line bundle L → M + a Lie bracket {−,−} on Γ(L) which is a first
order DO in each entry.

There is a simple, alternative proof via Spencer data of θC .
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Degree 1 LCS NQ-Manifolds

A lcs structure on M is a pair consisting of a flat line bundle (L,∇)
overM and a d∇ -closed, non-degenerate, L-valued, 2-form ω.

Definition: deg n lcs NQ-manifold

A deg n N-manifoldM + a line NQ-bundle (L, Q) generated in deg
0, and a lcs structure ((L,∇), ω) such that deg ω = n, and LQω = 0.

Proposition

There is a “one-to-one” correspondence between deg 1 lcs NQ-manifolds and
lc Poisson manifolds.

Reminder: lc Poisson manifold

A manifold M with a flat line bundle (L,∇) and a morphism P :
∧2(T∗M⊗ L)→ L inducing a Lie bracket {−,−}P on Γ(L):

{λ, µ}P = P(d∇λ, d∇µ), λ, µ ∈ Γ(L).
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Degree 1 Presymplectic NQ-Manifolds

Definition: deg n presymplectic NQ-manifold

A deg n NQ-manifold (M, Q) + a deg n presymplectic form ω such
that LQω = 0.

Proposition

There is a “one-to-one” correspondence between deg 1, dim (m, m) presym-
plectic NQ-manifolds [+ clean intersection] and Dirac m-folds.

Reminder: Dirac manifold

A manifold M + a maximal isotropic subbundle D ⊂ TM ⊕ T∗M
whose sections are preserved by Dorfman brackets.

Dirac structures can be alternatively described within graded geome-
try as Lagrangian submanifolds in deg 2 symplectic NQ-manifolds!
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Degree 1 Poly-Symplectic NQ-Manifolds

A k-poly-symplectic structure on M is a closed, Rk-valued 2-form ω

such that ω[ : X 7→ iXω is a VB embedding.

Definition: deg n k-poly-symplectic NQ-manifold

A deg n NQ-manifold (M, Q) + a deg n k-poly-symplectic structure
ω such that LQω = 0.

Proposition

There is a “one-to-one” correspondence between deg 1 k-poly-symplectic
NQ-manifolds and k-poly-Poisson manifolds.

Reminder: k-poly-Poisson manifold (in the sense of [Martinez 2015])

A manifold M + a subbundle S ⊂ T∗M⊗Rk + a VB morphism P : S→ TM:
1 iP(α)β + iP(β)α = 0, with α, β ∈ Γ(S),
2 Γ(S) is preserved by bracket [α, β]S := LP(α)β− LP(β)α + diP(β)α,
3 non degeneracy.
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Half Step Behind: Degree 1 Cosymplectic NQ-Manifolds

A cosymplectic structure onM is a pair (η, ω):
1 η ∈ Ω1(M) and ω ∈ Ω2(M),
2 η 6= 0 and ω is non-degenerate on ker η,
3 dη = dω = 0.

The “hard” part is to guess the definition of cosymplectic NQ-manifold!

Definition: deg n cosymplectic NQ-manifold

A deg n NQ-manifold (M, Q) + a deg n cosymplectic structure (η, ω)
such that LQη|ker η = LQω|ker η = 0.

Proposition

There is a “one-to-one” correspondence between deg 1 cosymplectic NQ-
manifolds and Poisson manifolds with a Poisson vector field.
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One Step Behind: Degree 1 Precontact NQ-Manifolds

A precontact structure is an hyperplane distribution.

Definition: deg n precontact NQ-manifold

A deg n NQ-manifold (M, Q) + a precontact structure C such that
TM/C is generated in deg −n, and [Q, Γ(C)] ⊂ Γ(C).

Proposition

There is a “one-to-one” correspondence between deg 1, dim (m, m + 1) pre-
contact NQ-manifolds [+ clean intersection] and Dirac-Jacobi bundles over
a dim m manifold.

Reminder: Dirac-Jacobi bundle

A line bundle L → M + a maximal isotropic subbundle D ⊂ der L⊕
J1L whose sections are preserved by Dorfman-Jacobi brackets.
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Spencer Operators on Lie Algebroids

Spencer operators are infinitesimal counterparts of multiplicative VB val-
ued differential forms on Lie groupoids.

Let A→ M be a Lie algebroid and (E,∇) a representation of A.

Definition: E-valued k-Spencer operator on A

A pair (D, `) with
D : Γ(A)→ Ωk(M, E) a first order DO, and
` : Γ(A)→ Ωk−1(M, E) a C∞(M)-linear map,

such that
D( f α) = f D(α)− d f ∧ `(α), and, moreover

L∇α
D(β)− L∇β

D(α) = D([α, β]A),

L∇α
`(β) + iρA(β)D(α) = `([α, β]A),

iρA(α)
`(β) + iρA(β)`(α) = 0.
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deg 1 Higher Forms on NQ-Manifolds

Theorem
There is a one-to-one correspondence between

1 deg 1 N-manifoldsM,
an NQ-vector bundle (E →M, Q), with Γ(E) generated in deg 0,
a deg 1 form ω ∈ Ωk(M, E) such that LQω = 0,

2 Lie algebroids A→ M,
a representation (E,∇) of A,
an E-valued k-Spencer operator on A.

Proof

M = A[1] and E =M×M E.

Q⇐⇒ a Lie algebroid structure on A + a representation (E,∇).
Spencer data of ω define an E-valued k-Spencer operator on A.
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deg 1 Multisymplectic NQ-manifolds

A k-plectic structure onM is ω ∈ Ωk+1(M) such that ω[ : X 7→ iXω is
a VB embedding.

Definition: deg n k-plectic NQ-manifold

A deg n NQ-manifold (M, Q) + a deg n k-plectic structure ω such
that LQω = 0.

Corollary

There is a “one-to-one” correspondence between deg 1 k-plectic NQ-
manifolds and Lie algebroids + an IM k-plectic structure.

Reminder: IM k-plectic structure on a Lie algebroid A

A C∞(M)-linear map ` : Γ(A)→ Ωk(M) such that

iρA(α)
`(β) + iρA(β)`(α) = 0, and LρA(α)

`(β)− iρA(β)d`(α) = `([X, Y]A),

+ non-degeneracy conditions.
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Conclusions

I presented a unified formalism for deg 1, contact, symplectic, and
foliated NQ-manifolds.

New Examples in Degree 1

deg 1 NQ-manifold standard geometry (first) considered in

precontact Dirac-Jacobi [Wade 2000]
lcs lc Poisson [Vaisman 2007]

poly-symplectic poly-Poisson
[Iglesias et al. 2013]

[Martinez 2015]
presymplectic Dirac [Courant 1990]
cosymplectic coPoisson [Janyška & Modugno 2009]
higher form Spencer operator [Crainic et al. 2013]

multisymplectic IM multisymplectic [Bursztyn et al. 2013]
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Best Wishes, Janusz!
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