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Aim of this talk

I shall survey the notion of “multiplicativity” from its inception in
Drinfel’d’s 1983 paper to recent developments in the theory of Lie
groupoids and in that of generalized geometry.

• It all started with Drinfel’d’s, “Hamiltonian structures on Lie
groups, Lie bialgebras and the geometric meaning of classical
Yang-Baxter equations”, Dokl. Akad. Nauk SSSR 268 (1983),

translated in Soviet Math. Doklady 27 (1983).

• At the time that Kirill Mackenzie was publishing his first book,
“Lie groupoids and Lie algebroids in differential geometry” (1987),
groupoids entered the picture in a very important way with Alan
Weinstein’s introduction of symplectic groupoids (1987) and
Poisson groupoids (1988).
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This talk

• The main part of this talk will deal with the theory of Poisson
(and symplectic) groupoids, synthesized from the work of many
people, in particular, Weinstein, Mackenzie, and Ping Xu.

• I shall introduce elements of the generalized geometry of
manifolds, and of Lie groupoids and Lie algebroids.

• I shall show how properties of various structures (Poisson,
presymplectic, holomorphic) on groupoids can be viewed as
particular cases of the theorems on multiplicative generalized
complex structures on Lie groupoids in the paper (to appear) of
Madeleine Jotz, Mathieu Stiénon and Ping Xu.
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References?

Many authors, including several in the audience, have made
important contributions to the subject, and I shall not attempt to
cite them all.

But I want to emphasize the role of our colleagues
Janusz Grabowski, Pawe l Urbański, Katarzyna Grabowska,
and all their co-authors, in Poland and elsewhere, in the
development of the theory of Lie algebroids and Lie groupoids and
its applications to mechanics, and to recall the pioneering role of
W lodzimierz Tulczyjew and that of our late colleague and friend
Stanis law Zakrzewski.

This talk could be viewed as a partial introduction to the recent
preprint, “Graded bundles in the category of Lie groupoids”
by Grabowska and Grabowski with James Bruce, available
on arXiv since February.
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Why multiplicativity?

Sophus Lie (1842-1899)
On a Lie group, there is a multiplication.

It is natural to ask that any additional structure on the group be
compatible with that multiplication.

Multiplicativity is what expresses this compatibility.

Later on, we shall extend the consideration of Lie groups to that of
Lie groupoids.
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Multiplicativity, a very simple concept

• Consider a Lie group G .
By definition, G is a smooth manifold with a group structure such
that the multiplication, m : G × G → G , (g , h) 7→ m(g , h) = gh,
is a smooth map, and also the inversion, g 7→ g−1, is smooth.

• Let X be a vector field on G .

Question. Can we compare the value of X at gh with the values of
X at g and at h?

Answer
• We can left-translate the value of X at h by the tangent of the
left translation by g .
• We can right-translate the value of X at g by the tangent of the
right translation by h.
• Both resulting vectors are tangent to G at gh.
• So we can add these two vectors.

Therefore...
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Multiplicativity of vector fields on Lie groups

Definition
A vector field X is multiplicative if

Xgh = g · Xh + Xg · h

We have abreviated (Thλg )(Xh) to g · Xh, where λg is the left
translation by g ∈ G .
Similarly, we have abreviated (Tgρh)(Xg ) to Xg · h, where ρh is the
right translation by h ∈ G .
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Existence of multiplicative vector fields?

We now consider the Lie algebra g = Lie(G ) of G .
For any element x ∈ g, let xλ be the left-invariant vector field
defined by x so that, for all g ∈ G , (xλ)g = g · x ,
and let xρ be the right-invariant vector field defined by x , so that
for all g ∈ G , (xρ)g = x · g .

Proposition

For any x ∈ g, the vector field xλ − xρ is multiplicative.

Proof. Use the properties λgh = λg ◦ λh and ρgh = ρh ◦ ρg , and
the fact that left- and right- translations commute.

A multiplicative vector field that can be written as X = xλ− xρ for
some x ∈ g is called exact or coboundary.
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What is the flow of a multiplicative vector field?

The following proposition justifies the term “multiplicativity”.

Proposition

Let φt be the flow of a multiplicative vector field X on a Lie group
G . Then, for g , h ∈ G ,

φt(gh) = φt(g)φt(h)

Proof. In fact, X = d
dtφt |t=0 satisfies

Xgh = d
dtφt(g)φt(h)|t=0 = d

dtφt(g)|t=0 · h + g · d
dtφt(h)|t=0,

and conversely by integration.

In the case of an exact multiplicative vector field, X = xλ− xρ, the
flow of X satisfies φt(g) = exp(−tx) g exp(tx).
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Multiplicative multivectors

• The definition of multiplicativity is generalized to contravariant
tensor fields X of order k > 1 in the obvious way: replacing Thλg
by the tensor product of order k , ⊗k(Thλg ), and replacing Tgρh
by ⊗k(Tgρh).

• In particular, there are multiplicative multivectors.
Any q ∈ ∧kg defines an exact multiplicative k-vector Q = qλ − qρ.
For example, an element r ∈ ∧2g defines an exact multiplicative
bivector π = rλ − rρ.

The general notion of “multiplicativity” for bivectors and more
generally for multivectors appeared about 1990, together with the
more general notion of affine multivectors, in the papers of
Weinstein (1990), Lu and Weinstein (1990), Pierre Dazord and
Daniel Sondaz (1991), yks (1991).
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Another characterization of multiplicativity

Theorem
Let π be a Poisson bivector on a Lie group G . Then π is
multiplicative if and only if the group multiplication
m : (g , h) 7→ gh is a Poisson map from G × G to G , where G × G
is equipped with the product Poisson structure.

Proof. Let { , } be the associated Poisson bracket defined by
π(df1, df2) = {f1, f2}. A map, m : G → G × G , is a Poisson
morphism if and only if
{f1, f2}(gh) = {f1(g , .), f2(g , .)}(h) + {f1(., h), f2(., h)}(g)
which is equivalent to the multiplicativity of π.
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From QISM to multiplicativity

The theory of Poisson groups originated in

• the theory of the quantum inverse scattering method (QISM)
and dressing transformations, that was the work of the
Saint-Petersburg (then Leningrad) school, Ludwig Faddeev,
Evgeny Sklyanin, P. P. Kulish, Leon Takhtajan, Mikhael
Semenov-Tian-Shansky, and Alexei Reiman,

• the work of I. M. Gelfand and Irene Ya. Dorfman in Moscow on
the relationship between solutions of the classical Yang-Baxter
equation and Hamiltonian (i.e., Poisson) structures (1980, 1982).
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Drinfel’d 1983

In his 3-page article (Doklady, 1983), motivated by
Semenov-Tian-Shansky’s ”What is a classical r-matrix?” (1983),
Drinfel’d introduced Lie groups with a “grouped Hamiltonian
structure” which he called “Hamilton-Lie groups”.

V. G. Drinfel’d (b. 1954) Fields medal 1990

Hamilton-Lie groups are defined by the requirement that the group
multiplication be a Poisson map from the product manifold G × G
with the product Poisson structure to G .
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A little advertizing

In a lecture in Oberwolfach in the summer of 1986, I called
Drinfel’d’s Hamilton-Lie groups “Poisson-Drinfel’d groups”.
The full text appeared in 1987 in the proceedings of the conference.

N. Yu. Reshetikhin wrote in his review of that paper in
Mathematical Reviews [MathSciNet] that it was an “attempt to
understand the subject originally exposed by Drinfel’d in a very
condensed form”.

Reshetikhin was right!
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Drinfel’d 1986

In his talk at the ICM in Berkeley in 1986, Drinfel’d called
“Poisson-Lie groups” those groups in which “the Poisson bracket
[is] compatible with the group operation”.

[You may have heard the true story that, because Vladimir Drinfel’d was
not allowed to travel to Berkeley, his celebrated address at the Congress
in Berkeley in early August, ”Quantum groups”, was actually delivered by
Pierre Cartier, who was given a few hours to master Drinfel’d’s 32-page
text which he had never seen before.

Cartier gave me a photocopy of a photocopy of Drinfel’d’s typewritten

manuscript shortly after he returned to Paris from Berkeley.]

We now use the term, Poisson Lie groups, following Drinfel’d and
following Jiang-Hua Lu and Weinstein’s influential paper (1990), or
simply Poisson groups.
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Definition
A Poisson group is a Lie group equipped with a multiplicative
Poisson bivector.

Siméon-Denis Poisson (1781-1840)

Portrait by E. Marcellot, 1802. Copyright Collections École polytechnique
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Multiplicativity as a cocycle condition

For any field of multivectors Q, define the map
ρ(Q) : G → ∧kg by ρ(Q)(g) = Qg · g−1,
and the map λ(Q) : G → ∧kg by λ(Q)(g) = −g−1 · Qg .
Theorem
The following properties are equivalent:
(i) Q is multiplicative,
(ii) ρ(Q) is a group cocycle,
(iii) λ(Q) is a group cocycle.

Proof. If Q is multiplicative, then
ρ(Q)(gh) = Qg · h · (gh)−1 + g · Qh · (gh)−1. Therefore,

ρ(Q)(gh) = ρ(Q)(g) + g · ρ(Q)(h) · g−1;
Thus ρ(Q) is a 1-cocycle of the group G with values in ∧kg,
where G acts by the adjoint action.
The converse follows from the same calculation.
The computation for λ(Q) is similar.
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The exact case

If a multivector Q is multiplicative and exact, then ρ(Q) = λ(Q).
In fact, if Q = qλ − qρ, then ρ(Q) = g · q · g−1 − q = λ(Q).

A k-vector is multiplicative and exact if and only if ρ(Q) (or λ(Q))
is a 1-coboundary of G with values in ∧kg.

These facts justify the terms “exact” and “coboundary”.
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Coboundary Poisson groups

When the bivector π is equal to rλ − rρ, where r ∈ ∧2g, it is
multiplicative. It remains to express the fact that it is “Poisson”.

Theorem In order for π = rλ − rρ to be a Poisson bivector there is
a conditon on r , known as the generalized classical Yang-Baxter
equation: the element [r , r ] ∈ ∧3g is AdG -invariant. A sufficient
condition is [r , r ] = 0, which is known as the classical Yang-Baxter
equation (CYBE).

What is [r , r ]? It is the “algebraic Schouten bracket” defined as
the extension of the Lie bracket of g as a biderivation of the
exterior algebra ∧•g.
A Poisson group, defined by r ∈ ∧2g satisfying the classical
Yang-Baxter equation, is said to be triangular.
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Questions

Are there multiplicative differential forms on Lie groups?
multiplicative symplectic forms?

Remark. Any multiplicative multivector Q vanishes at the identity
of the group, because setting g = h = e in the defining equation
yields Qe = Qe + Qe .
Since a multiplicative Poisson bivector vanishes at the identity of
the group, it cannot be everywhere non degenerate, which implies
that it cannot correspond to a symplectic structure.

We need to introduce Lie groupoids, following Reinhold Baer,
Ronald Brown, Charles Ehresmann, Jean Pradines, Mackenzie,
Weinstein, Xu and many others.
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The tangent group of a group

The multiplication in TG is the tangent of the multiplication in G .
In other words the multiplication ×TG : TG ×TG → TG is defined
as follows:
if X ∈ TgG and Y ∈ ThG , then X ×(TG) Y = g · Y + X · h .

Proposition
A vector field on G , X : G → TG , is multiplicative if and only if X
is a morphism of groups.

Proof. Vector field X , seen as a map from G to TG , is a morphism
of groups if and only if

Xgh = Xg ×(TG) Xh.

By the definition of the multiplication in the group TG , this
condition coincides with the multiplicativity property for X .
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Groupoids generalize groups

In a Lie groupoid, Γ and M are smooth manifolds.

Γ
α ↓↓ β

M

Source α : Γ→M and target β : Γ→M are surjective submersions.
There is a partially defined associative multiplication:
if g ∈ Γ , h ∈ Γ , then gh is defined if and only if α(g) = β(h).
Let Γ (2) be the submanifold of composable pairs in Γ × Γ .
The multiplication map (g , h) ∈ Γ (2) 7→ gh ∈ Γ is smooth.
Each element has an inverse.
The space M, called the base of the groupoid, is identified with the
units of the multiplication.
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Examples

Example. The trivial groupoid, M ×M on base M, with the
projections, α = pr2, β = pr1, and multiplication map

(x , y)(y , z) = (x , z).
The inversion is (x , y) 7→ (y , x).
M is embedded in M ×M as m 7→ (m,m).

Example. Any Lie group can be considered to be a groupoid
over a point.

Example. The gauge groupoid of a principal bundle P → M whose
structure group is a Lie group G . Let Γ be the quotient of P × P
by the diagonal action of G on the right: (g , (u, v)) 7→ (ug , vg).
The product of two elements in the quotient Γ is defined by
choosing representatives (u, v) and (v ,w) and setting

cl(u, v) · cl(v ,w) = cl(u,w).
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The cotangent groupoid of a group

• The tangent bundle of a Lie group is a Lie group. It can be
considered as a Lie groupoid over a point.

• What about the cotangent bundle of a Lie group?

• For any Lie group G , the cotangent bundle T ∗G has a canonical
structure of Lie groupoid with base g∗.

T ∗G
αT∗G ↓↓ βT∗G

g∗

For ξ ∈ (TgG )∗, let αT∗G (ξ) = ξ ◦ Tλg and βT∗G (ξ) = ξ ◦ Tρg .

If ξ ∈ (TgG )∗ and η ∈ (ThG )∗, their product is defined if and only
if

ξ ◦ Tλg = η ◦ Tρh,
and it is then

ξ ×(T∗G) η = ξ ◦ Tρh−1 = η ◦ Tλg−1 ∈ (TghG )∗.
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Multiplicative bivectors as morphisms of groupoids

Theorem A
A Poisson bivector on a Lie group G is multiplicative if and only if
it is a morphism from the Lie groupoid T ∗G over g∗ to the Lie
group TG considered as a Lie groupoid over a point.

T ∗G → TG
↓↓ ↓↓
g∗ → {pt}

This theorem is due to Mackenzie (1992).
Mackenzie’s formulation permitted vast generalizations of the
concept of multiplicativity.
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From groups to groupoids: the tangent groupoid of a Lie
groupoid

The construction of the tangent group of a group can be extended
to the construction of the tangent groupoidof a groupoid, Γ ,

TΓ
↓↓
TM

The groupoid multiplication in tangent bundle TΓ is the tangent
of the multiplication in Γ , and the source and target are also
obtained by applying the tangent functor to the source and target
of Γ .
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From groups to groupoids: the cotangent groupoid of a Lie
groupoid

For any Lie groupoid Γ , the cotangent bundle T ∗Γ has a
canonical structure of a Lie groupoid, with, as its base, the dual A∗

of the Lie algebroid A of Γ .

T ∗Γ
αT∗Γ ↓↓ βT∗Γ

A∗

Let g ∈ Γ . The source of an element ξ ∈ (TgΓ )∗ is the element of
A∗αg defined by

αT∗Γ ξ(X ) = ξ(g · (X − ρX )), for X ∈ Aαg ,
and its target is the element of A∗βg defined by

βT∗Γ ξ(X ) = ξ(X · g), for X ∈ Aβg ,
where ρ is the anchor of A. ( Recall that g · X is short for
(Tλg )(X ) and X · g is short for (Tρg )(X ).)
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The multiplication in T ∗Γ

Let g , h ∈ Γ . If ξ ∈ (TgΓ )∗ and η ∈ (ThΓ )∗, their product is
defined if and only if αT∗Γ ξ = βT∗Γ η, and then αg = βh.
Their product is the element ξ ×(T∗Γ ) η ∈ (TghΓ )∗ such that

(ξ ×(T∗Γ ) η)(X ×(TΓ ) Y ) = ξ(X ) + η(Y )

for all X ∈ TgΓ and Y ∈ ThΓ .
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Poisson groupoids

Question. How can we generalize the definition of Poisson groups
to groupoids?

The most straightforward method is to consider a groupoid
analogue of the characterization of multiplicativity given in
Theorem A and set it as the definition of a “multiplicative”
Poisson structure on a Lie groupoid.

Definition
A Poisson groupoid is a Lie groupoid equipped with a Poisson
bivector that defines a map, π] : T ∗Γ → TΓ , over a map
A∗ → TM, which is a morphism of Lie groupoids,

T ∗Γ → TΓ
↓↓ ↓↓
A∗ → TM
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Coisotropic and Lagrangian submanifolds

By definition, a submanifold of a Poisson manifold is coisotropic if
the Poisson bracket of two functions that vanish on the
submanifold itself vanishes on the submanifold.

A submanifold of a Poisson manifold is coisotropic if and only if, at
each point in the submanifold, the image by the Poisson map of the
orthogonal of the tangent space is contained in the tangent space.

By definition, a submanifold of a symplectic manifold is Lagrangian
if and only if it is coisotropic and of minimal dimension (half the
dimension of the ambient symplectic manifold).

A submanifold of a symplectic manifold is Lagrangian if the
symplectic orthogonal of each tangent space is equal to that
tangent space.
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Original definition of Poisson groupoids

Poisson groupoids were introduced by Weinstein in “Coisotropic
calculus and Poisson groupoids” (1988) as a generalization of both
the Poisson groups and the symplectic groupoids.

They were defined as Lie groupoids with a Poisson structure, π,
which is multiplicative, in the sense that the graph of the
multiplication is a coisotropic submanifold of the Poisson manifold,
Γπ × Γπ × Γ−π.

It is clear that Poisson groupoids, defined in this way, generalize
Poisson groups. In fact, recall that a bivector on a Lie group, G , is
multiplicative if and only if the multiplication is a Poisson map
from G × G , with the product Poisson structure, to G and apply
the following lemma.
Lemma.
A map from Gπ × Gπ to Gπ is Poisson if and only if its graph is
coisotropic in Gπ × Gπ × G−π.
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Equivalence of definitions

The definition of Poisson groupoids in terms of morphisms of
groupoids is indeed equivalent to Weinstein’s original definition, as
was proved by Claude Albert and Dazord (1990) and by Mackenzie
and Xu in 1994.

* * *

A bisection of a Lie groupoid Γ−→→M is a section, M → Γ , of the
source map such that its composition with the target map is a
diffeomorphism of the base.
Bisections act on tensor fields and diffferential forms on the
groupoid by the associated left and right translations.

The role of the translations on a Lie group defined by an element
in the group is played by the translations defined by the bisections
in a Lie groupoid.
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Multiplicativity in groupoids

There is a relation that generalizes the relation satisfied by an
affine bivector on a Lie group.

Theorem (Xu, 1995)
Let π be a bivector on a Lie groupoid. If π satisfies the morphism
property, then

πgh = ĝ · πh + πg · ĥ − ĝ · παg · ĥ
for all g , h ∈ Γ such that αg = βh, where ĝ is a bisection,
M → Γ , that takes the value g at αg , and ĥ is a bisection,
M → Γ , that takes the value h at αh.
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Symplectic groupoids as Poisson groupoids

Originally defined circa 1985, independently, by Mikhail Karasev
and V. P. Maslov, by Weinstein, and by Zakrzewski, symplectic
groupoids are Lie groupoids with a symplectic structure, ω, which
is multiplicative, in the sense that the graph of the multiplication is
a Lagrangian submanifold of the symplectic manifold
Γω × Γω × Γ−ω.

It follows from the definitions that symplectic groupoids coincide
with those Poisson groupoids whose Poisson structure is
non-degenerate.

Although it is particularly important and has many features not
present in the Poisson case in general, the case of symplectic
groupoids can thus be treated as a particular case of the more
general theory of Poisson groupoids.
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Remark on “Symplectic groups”

Since any multiplicative Poisson bivector on a Lie group vanishes
at the identity, there are no multiplicative symplectic forms on Lie
groups.

On the other hand, in the 1980’s, André Lichnerowicz with Alberto
Medina studied the Lie groups equipped with a left-invariant
symplectic form and called them “symplectic groups”.
See Lichnerowicz’s lecture at the Colloque Souriau of 1989 (Prog. Math. 99, 1991).

Despite the terminology, these “symplectic groups” are not a
particular case of the symplectic groupoids defined above.
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The infinitesimal of a Poisson groupoid

• The infinitesimal of a Poisson group is a Lie bialgebra.

• In a Poisson groupoid Γ , the base is a coisotropic submanifold.

The Poisson bivector on Γ induces a unique Poisson structure on
the base such that the source map is a Poisson map and the
target map is anti-Poisson.

The Lie algebroid A inherits a linear Poisson structure, as the
normal bundle of a coisotropic submanifold of a Poisson manifold,
and therefore the dual vector bundle A∗ inherits a Lie algebroid
structure.

From the multiplicativity of the Poisson structure of Γ , it follows
that the pair (A,A∗) is a Lie bialgebroid (Mackenzie and Xu, 1994).
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The infinitesimal of a symplectic groupoid

• In a symplectic groupoid, Γ , the base, M, is a Lagrangian
submanifold of Γ . The Lie algebroid of Γ is isomorphic to the
cotangent bundle of the base (equipped with the Lie algebroid
structure of M with the induced Poisson structure)
and (A,A∗) is a Lie bialgebroid isomorphic to (T ∗M,TM).

• Conversely, “integrating” a Poisson manifold into a symplectic
groupoid was the subject of an important paper by Crainic and
Rui Fernandes in 2004.
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Multiplicative multivectors and forms on Lie groupoids

We have defined multiplicative multivectors on groups,
multiplicative bivectors on groupoids, and multiplicative 2-forms on
groupoids.
Are there, more generally, multiplicative k-vectors and k-forms on
groupoids? and are there infinitesimal versions on Lie algebroids?

***
For 0-forms and 1-forms, the following was already known in 1998.

A function, f , on a Lie groupoid, Γ , is called multiplicative if it
defines a morphism of groupoids from Γ to M × R, i.e.,
for g and h composable elements of Γ , f (g · h) = f (g) + f (h).

A 1-form, ω, on a Lie groupoid, Γ , is called multiplicative if it is a
morphism of groupoids from Γ to T ∗Γ , i.e.,
for X and Y composable in TΓ , ω(X ×(TG) Y ) = ω(X ) + ω(Y ).

The contraction of a multiplicative 1-form with a multiplicative
vector is a multiplicative function.
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Multiplicative 2-forms

Multiplicative 2-forms on a Lie groupoid Γ−→→M appeared when
Weinstein defined symplectic groupoids in 1987 (although he did
not use the term “multiplicative” in this context). Recall that they
were defined as 2-forms, ω, such that the graph of the partially
defined groupoid multiplication, m : Γ (2) ⊂ Γ × Γ → Γ , is
Lagrangian in Γω × Γω × Γ−ω.

We now give equivalent characterizations of multiplicative 2-forms
in terms of morphisms of Lie groupoids.
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Multiplicative 2-forms as morphisms of groupoids

Theorem
Let ω be a 2-form on a Lie groupoid Γ over M, with multiplication
m. The following properties are equivalent.
(i) graph(m) is Lagrangian in Γω × Γω × Γ−ω.
(ii) m∗(ω) = pr∗1 (ω) + pr∗2 (ω).
(iii) ω[ : TΓ → T ∗Γ is a morphism of Lie groupoids,

TΓ
ω[

→ T ∗Γ
↓↓ ↓↓
TM → A∗

(iv) For all sections X1,X2 of TΓ → Γ ,
ω[(X2 ×(TΓ ) X1) = ω[(X2)×(T∗Γ ) ω

[(X1),
where the multiplication on the left-hand side (resp., right-hand
side) is that of TΓ (resp., T ∗Γ ).
(v) graph(ω[) is a Lie subgroupoid of the direct sum Lie groupoid
TΓ ⊕ T ∗Γ−→→TM ⊕ A∗ over some vector subbundle of TM ⊕ A∗.
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Multiplicative k-forms on Lie groupoids

It is straightforward to extend the definition of multiplicative forms
to the case of k-forms, k > 2, and to formulate equivalent
characterizations.

By definition, on a Lie groupoid Γ with multiplication m, a k-form,
ω, is multiplicative if

m∗(ω) = pr∗1 (ω) + pr∗2 (ω).

A k-form ω is multiplicative if and only if it defines a groupoid
morphism from TΓ ⊕ TΓ ⊕ . . .⊕ TΓ (k terms) to M × R.

A k-form ω on Γ is multiplicative if and only if, for all pairs of
composable elements of TΓ , (X1,Y1), (X2,Y2), ..., (Xk ,Yk),

ω(X1 ×(TΓ ) Y1,X2 ×(TΓ ) Y2, ...,Xk ×(TΓ ) Yk)

= ω(X1,X2, ...,Xk) + ω(Y1,Y2, ...,Yk).
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Multiplicative k-vectors on Lie groupoids

Similarly, by definition, a k-vector on Γ is multiplicative if it
defines a groupoid morphism from T ∗Γ ⊕ T ∗Γ ⊕ . . .⊕ T ∗Γ
(k terms) to M × R.

Applying a multiplicative k-vector to a multiplicative k-form yields
a multiplicative function.

Questions
Are the multiplicative multivectors closed under the Schouten
bracket ?
Is the differential of a multiplicative form multiplicative ?
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The group of bisections

The bisections of Γ form a group, denoted by G(Γ ), with
multiplication defined by:

(Σ1 ∗ Σ2)(m) = Σ1(βΣ2(m)) .Σ2(m),

for Σ1,Σ2 ∈ G(Γ ), and m ∈ M. Here β is the target map of Γ
and the dot is the groupoid multiplication.

By definition, each bisection Σ ∈ G(Γ ) induces a diffeomorphism
φΣ = β ◦ Σ of M. Therefore a bisection Σ acts on Ωk(M), the
k-forms on M, by (Σ, λ) 7→ Σ.λ = φ∗Σ(λ), for λ ∈ Ωk(M).
In other words, for vector fields, ε1, ε2, ..., εk , tangent to M,

(Σ.λ)(ε1, ε2, ..., εk) = λ(TφΣ(ε1),TφΣ(ε2), ...,TφΣ(εk)).

Since φΣ1∗Σ2 = φΣ1 ◦ φΣ2 , the action thus defined is an action on
Ωk(M) of the opposite group G(Γ )opp of G(Γ ).
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Multiplicative forms induce cocycles on the group of
bisections

We denote by α the source map of Γ . For Σ ∈ G(Γ ), α|Σ is a
diffeomorphism from Σ to M.
Let ω ∈ Ωk(Γ ) be a k-form on Γ . We define a map

cω : Σ ∈ G(Γ )opp 7→ (α−1
|Σ )∗ω ∈ Ωk(M).

Theorem (Camille Laurent-Gengoux,unpublished)
If ω is a multiplicative k-form on Γ , then cω is a 1-cocycle on the
group G(Γ )opp with values in the G(Γ )opp-module Ωk(M),

cω(Σ1 ∗ Σ2) = cω(Σ2) + Σ2.cω(Σ1).
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Proof

Let ε be a vector field on M.
To evaluate T (α−1

|Σ1∗Σ2
)ε, for ε tangent to M, we write ε as the

tangent at t = 0 of a curve mt on M.
Then the image of mt under α−1

|Σ1∗Σ2
is (α−1

|Σ1
(βΣ2mt).(α

−1
|Σ2

mt).

Therefore the image of ε under T (α−1
|Σ1∗Σ2

) is the tangent at t = 0
of this curve on Γ , defined by the product in TΓ ,

T (α−1
|Σ1∗Σ2

)ε =
d

dt |t=0

(
(α−1
|Σ1

(βΣ2mt)×(TΓ ) (α−1
|Σ2

mt

)
= T (α−1

|Σ1
)TϕΣ2ε ×(TΓ ) T (α−1

|Σ2
)ε,

where ϕΣ2 = βΣ2 is the diffeomorphism of M defined by Σ2.
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End of proof

Now, assume that ω is multiplicative.
Let ε1, ε2, ..., εk be vector fields on M. Apply the lemma, with
ui = T (α−1

|Σ1
)TϕΣ2εi and vi = T (α−1

|Σ2
)εi , to obtain,

cω(Σ1 ∗ Σ2)(ε1, ε2, ..., εk)

= ω(T (α−1
|Σ1

)TϕΣ2ε1,T (α−1
|Σ1

)TϕΣ2ε2, ...,T (α−1
|Σ1

)TϕΣ2εk)

+ω(T (α−1
|Σ2

)ε1,T (α−1
|Σ2

)ε2, ...,T (α−1
|Σ2

)εk).

The first term of the right-hand side is Σ2.cω(Σ1)(ε1, ε2, ..., εk),
and the second term is cω(Σ2)(ε1, ε2, ..., εk).
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Unifying results in generalized geometry

We shall now report on recent work that shows that “generalized
geometry” plays the role, among others, of unifying many
scattered results.
We shall not deal with Courant algebroids in general, but only with
the generalized tangent bundles of manifolds, in particular those of
groupoids and of Lie algebroids.
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Generalized tangent bundle

The generalized tangent bundle, τM = TM ⊕ T ∗M, of an
arbitrary smooth manifold, M, is a framework that permits treating
Poisson structures, presymplectic structures (defined by closed
2-forms) and complex structures as particular cases of generalized
complex structures.

Consider the bracket on the sections of the vector bundle
τM = TM ⊕ T ∗M defined by

[X + ξ,Y + η] = [X ,Y ] + LXη − iY dξ

for all X ,Y ∈ C∞(TM), ξ, η ∈ C∞(T ∗M).
In particular, [X , ξ] = LX ξ and [ξ,X ] = −iXdξ.

This non-skewsymmetric bracket satisfies the Jacobi identity in its
Leibniz form,

[u, [v ,w ]] = [[u, v ],w ] + [v , [u,w ]],
for all sections u, v ,w of the vector bundle τM = TM ⊕ T ∗M.
This bracket is called the Dorfman bracket.
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The Courant bracket and Courant algebroids

• The generalized tangent bundle was the subject of Ted Courant’s
thesis (1990). He defined a bracket on TM ⊕ T ∗M which is
skewsymmetric but does not satisfy the Jacobi identity. This
bracket is now called the Courant bracket.
• The Courant bracket was generalized to the double of a Lie
bialgebroid by Zhang-Ju Liu, Weinstein and Ping Xu, who then
defined the general concept of a Courant algebroid (1997).
• The Dorfman bracket had appeared in Irene Dorfman’s papers on
integrable systems and in her book on Dirac structures (1993),
but it was only introduced in the theory of Courant algebroids circa
1998, independently by Pavol Ševera, Ping Xu, and yks.
• The Courant bracket is the skew-symmetrization of the Dorfman
bracket.
• The generalized tangent bundles are also called standard Courant
algebroids, or Pontryagin bundles. They are the framework of
Nigel Hitchin’s generalized geometry (2003).
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Dirac structures

P.A.M. Dirac (1902-1984) Nobel prize in Physics 1933

A Dirac bundle (or Dirac structure) in TM ⊕ T ∗M is a maximally
isotropic vector subbundle (with respect to the canonical fibrewise
bilinear symmetric form) whose space of sections is closed under
the Dorfman bracket. A Dirac bundle in TM ⊕ T ∗M is said to
define a Dirac structure on M.

Examples
• The graph of a Poisson bivector on M is a Dirac structure.
• The graph of a closed 2-form (presymplectic structure) on M is a
Dirac structure.
• Dirac pairs generalize bihamiltonian structures (yks 2012).
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Multiplicative Dirac structures on Lie groupoids

Recall that, for any Lie group G , the generalized tangent bundle
TG ⊕T ∗G is a Lie groupoid over g∗, the sum of the Lie group TG
(considered as a groupoid) and the Lie groupoid T ∗G−→→g∗.
Recall also that in a Poisson group, G , the bivector π is such that
(i) graph(π) ⊂ TG ⊕T ∗G is a Dirac structure (since π is Poisson),
(ii) graph(π) is a subgroupoid of TG ⊕ T ∗G−→→g∗

(since π is multiplicative, or, equivalently, π] : T ∗G → TG is a
morphism of groupoids).

Whence the following definition (Cristián Ortiz, 2009, 2013).

Definition
A Dirac structure on a Lie groupoid Γ is multiplicative if it is
defined by a vector subbundle L ⊂ TΓ ⊕ T ∗Γ which is a
subgroupoid of the Lie groupoid TΓ ⊕ T ∗Γ−→→TM ⊕ A∗ over a
vector subbundle L0 ⊂ TM ⊕ A∗.
A Lie groupoid equipped with a multiplicative Dirac structure is
called a Dirac groupoid.
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Examples of Dirac groupoids

• Poisson groupoids. In this case, L is the graph of π] and the
vector subbundle L0 ⊂ TM ⊕ A∗ is the graph of the anchor
A∗ → TM of the Lie algebroid A∗.

• Presymplectic groupoids. A presymplectic groupoid is a groupoid
Γ−→→M with dimΓ = 2 dimM, equipped with a multiplicative,
closed 2-form ω.
In some papers, the definition includes an additional condition on
the 2-form ω, kerωm ∩ kerTmα ∩ kerTmβ = {0}.
In the case of a presymplectic groupoid, L is the graph of ω[ and
the vector subbundle L0 ⊂ TM ⊕ A∗ is the graph of the map
ω0 : TM → A∗ defined by the restriction to TM ⊂ TΓ of
ω[ : TΓ → T ∗Γ .
The map σ : A→ T ∗M dual to −ω0 is called infinitesimally
multiplicative in Bursztyn-Crainic-Weinstein-Zhu, 2004,
Bursztyn-Cabrera, 2009 and 2012, and elsewhere.
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The structure of TA⊕ T ∗A

Let A be a Lie algebroid with base M. Then

• TA is a Lie algebroid with base TM,

• T ∗A is a Lie algebroid with base A∗.

In fact, since A is a Lie algebroid, A∗ has a linear Poisson structure
and therefore T ∗A∗ → A∗ is a Lie algebroid.
Composing with the canonical map T ∗A→ T ∗A∗ yields the Lie
algebroid structure of T ∗A→ A∗.

Taking the direct sum TA⊕ T ∗A yields a Lie algebroid with base
TM ⊕ A∗.

Theorem
Let Γ be a Lie groupoid with Lie algebroid A. The Lie algebroid of
the Lie groupoid TΓ ⊕ T ∗Γ−→→TM ⊕ A∗ is the Lie algebroid
TA⊕ T ∗A→ TM ⊕ A∗.
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Towards the study of the infinitesimal of a Dirac groupoid

On a vector bundle A, a linear bivector π defines a map,
π] : T ∗A→ TA, which is a morphism of double vector bundles

from
T ∗A → A
↓ ↓
A∗ → M

to
TA → A
↓ ↓

TM → M
.

Therefore the graph of π] is a double vector subbundle of
TA⊕ T ∗A → A
↓ ↓

TM ⊕ A∗ → M
over a vector subbundle of TM ⊕ A∗.

If the bivector π is Poisson, the graph of π is a Dirac structure
on A, graph(π) ⊂ TA⊕ T ∗A→ A.
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Almost Dirac and Dirac algebroids

With a view to applications to Lagrangian and Hamiltonian
mechanics, Grabowska and Grabowski (2011) defined a
Dirac algebroid (resp., Dirac-Lie algebroid) structure on a vector
bundle E to be an almost Dirac (resp., Dirac) structure on E ∗ that
satisfies the above double vector subbundle property.

The notion of Dirac-Lie algebroid clearly extends the notion of Lie
algebroid since, whenever A is a Lie algebroid, the graph of the
associated linear Poisson bivector on A∗ defines a Dirac-Lie
algebroid structure on A.

International Conference in honor of Janusz Grabowski Multiplicativity, from Lie groups to generalized geometry



Morphic Dirac algebroids

With the different aim of characterizing the infinitesimal of a
”Dirac groupoid”, thus generalizing the Lie bialgebroids which are
the infinitesimals of Lie groupoids, Ortiz defined a “Dirac
algebroid” to be a Lie algebroid, A, with a Dirac structure,
` ⊂ TA⊕ T ∗A, satisfying the double vector subbundle property
with the additional requirement that ` is a Lie subalgebroid of the
Lie algebroid TA⊕ T ∗A→ TM ⊕ A∗ over a vector subbundle
`0 ⊂ TM ⊕ A∗.

To avoid confusion, we shall call such Lie algebroids
“morphic Dirac algebroids”.
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Lie bialgebroids as morphic Dirac algebroids

• Lie bialgebroids are examples of “morphic Dirac algebroids” since
in a Lie bialgebroid (A,A∗), A is a Lie algebroid and the Lie
algebroid structure of A∗ defines a linear Poisson bivector π(A∗) on
the vector bundle A (whence the double vector subbundle property)
and the compatibility of the two Lie algebroid structures, on A and
on its dual, is expressed by the fact that the Poisson bivector π(A∗)

on A is a Lie algebroid morphism from T ∗A to TA (whence its
graph is a Lie subalgebroid of the Lie algebroid TA⊕ T ∗A).

• The graph of a linear closed 2-form ω on a Lie algebroid A
(a double vector bundle map form TA→ TM to T ∗A→ A∗)
defines a morphic Dirac structure if and only the map
ω[ : TA→ T ∗A is a morphism of Lie algebroids.
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Infinitesimal multiplicativity

Theorem (Ortiz)

There is a bijective correspondence between multiplicative Dirac
structures on a source connected and source simply-connected
Lie groupoid and morphic Dirac structures on its Lie algebroid.
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Dirac groups as examples of Dirac groupoids

Dirac groups are, by definition, Lie groups G equipped with a
multiplicative Dirac structure (Ortiz 2008, Madeleine Jotz 2011).

Dirac groups generalize Poisson groups.

The isotropy subgroups of a Dirac groupoid are Dirac groups.

There is a bijective correspondence between multiplicative Dirac
structures on a connected and simply-connected Lie group G
and ideals h in the Lie algebra g such that g/h and its dual form
a Lie bialgebra.

To conclude, I shall now consider multiplicative complex structures
on Lie groupoids.
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Complex structures

Recall that the Nijenhuis torsion of a (1, 1)-tensor on a manifold is
a (1, 2)-tensor defined by means of the Lie bracket of vector fields,
and that complex structures on manifolds are endomorphisms of
the tangent bundle whose square is −Id and whose Nijenhuis
torsion vanishes.

The Nijenhuis torsion is named after Albert Nijenhuis.

Nijenhuis, born in 1926, died in Seattle on 13 February 2015.
He had been a student of Jan A. Schouten (1883 - 1971) in Amsterdam.
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Generalized complex structures

• The generalized complex structures on a manifold M are defined
just as the complex sructures, replacing the tangent bundle by the
generalized tangent bundle and the Lie bracket of vector fields by
the Dorfman bracket of sections of the generalized tangent bundle.
They are skew-symmetric endomorphisms of τM = TM ⊕ T ∗M,
whose square is −IdτM , and whose Nijenhuis torsion vanishes.

Remark. Indeed, the Nijenhuis torsion of a skew-symmetric
endomorphism of τM of square ±IdτM is again a tensor!
(cf. yks 2011)

• Poisson structures, presymplectic structures, and complex
structures are particular cases of the generalized complex
structures.
• A generalized complex structure is equivalent to a pair of
complex conjugate Dirac structures in the complexified generalized
tangent bundle.
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Multiplicative generalized complex structures

Question. What are multiplicative generalized complex structures
on Lie groupoids?

When Γ is a Lie groupoid over a manifold M, TΓ ⊕ T ∗Γ , the
generalized tangent bundle of Γ , is a Lie groupoid over TM ⊕ A∗.

Definition
A generalized complex structure on a Lie groupoid Γ is called
multiplicative if it is a Lie groupoid automorphism of TΓ ⊕ T ∗Γ .

Madeleine Jotz, Mathieu Stiénon, and Ping Xu coined the name
“Glanon groupoids” (see arXiv 2013).

The notion of a multiplicative generalized complex structure on a
Lie groupoid incorporates many particular cases.
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Symplectic groupoids

• Let ω[ : TΓ → T ∗Γ be skew-symmetric and non-degenerate.
The skew-symmetric endomorphism of TΓ ⊕ T ∗Γ ,

N =

(
0 (ω[)−1

ω[ 0

)
,

is a multiplicative generalized complex structure if and only if
(Γ, ω) is a symplectic groupoid.

• Multiplicative generalized complex structures of the form

N =

(
N (ω[)−1

ω[ − tN

)
,

where N : TΓ → TΓ and ω is a non-degenerate 2-form,
correspond to symplectic-Nijenhuis structures.

• Multiplicative generalized complex structures of the form

N =

(
N π]

ω[ − tN

)
,

where N : TΓ → TΓ , ω is a 2-form, and π is a bivector,
correspond to Poisson-quasi-Nijenhuis structures.
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Holomorphic groupoids

• Let N be a vector bundle endomorphism of TΓ → Γ .
The skew-symmetric endomorphisms of TΓ ⊕ T ∗Γ

N =

(
N 0
0 − tN

)
which are generalized multiplicative complex structures correspond
to multiplicative holomorphic Lie groupoid structures, N, on Γ .

A holomorphic groupoid, (Γ,N), is a Lie groupoid, Γ , equipped
with a vector bundle endomorphism, N : TΓ → TΓ , that satisfies
N2 = −Id, T N = 0 and is multiplicative, i.e., is a Lie groupoid
endomorphism over a map, NM : TM → TM that satisfies
N2
M = −Id and T NM = 0 (Laurent-Gengoux, Stiénon, Xu, 2009).
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The infinitesimal of a multiplicative generalized complex
structure

Theorem (Jotz-Stiénon-Xu)
Let A be the Lie algebroid of a Lie groupoid Γ .
A multiplicative generalized complex structure on Γ induces a
multiplicative generalized complex structure on A, i.e., a
skew-symmetric vector bundle endomorphism,
ν : TA⊕ T ∗A→ TA⊕ T ∗A, such that ν2 = −Id, T ν = 0, and ν
is a Lie algebroid endomorphism.

Integration theorem (Jotz-Stiénon-Xu)
If Γ is a source-connected and source simply-connected
Lie groupoid integrating a Lie algebroid A with a multiplicative
generalized complex structure, then there is a multiplicative
generalized complex structure on Γ integrating that of A.
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Induced Poisson groupoid structure (Jotz-Stiénon-Xu)

Proposition. A Lie groupoid equipped with a multiplicative
generalized complex structure has an induced Poisson groupoid
structure.

In fact, N is necessarily of the form N =

(
N π]

ω[ − tN

)
, with

π] : T ∗Γ → TΓ a morphism of Lie groupoids, i.e., the associated
bivector, π, is multiplicative, and π is a Poisson bivector.

Proposition. If a Lie algebroid A is equipped with a multiplicative
generalized complex structure, then there is an associated Lie
algebroid structure on A∗ such that (A,A∗) is a Lie bialgeboid.

Theorem Let Γ be a Lie groupoid equipped with a multiplicative
generalized complex structure N . Let A be the Lie algebroid of Γ .
Then the Lie bialgebroid of Γ , viewed as the Poisson groupoid with
the Poisson structure induced by N , is the Lie bialgebroid (A,A∗)
associated to the multiplicative generalized complex structure on A
induced by N .
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And...

There is a host of developments related to the theme of this talk:
• groupoid cohomology and multiplicative forms as groupoid
cocycles,
• Dirac Lie groups, multiplicative Manin pairs,
• quasi-Poisson groupoids,
• twisted multiplicative forms on groupoids,
• Poisson actions,
• infinite-dimensional case and integrable systems,
• multiplicative forms with non-trivial coefficients and Spencer
operators,
• the general problem of the infinitesimal descripton of structures
and of their integration,
• contact groupoids and Courant algebroids,
• applications to Lagrangian and Hamiltonian mechanics...
... as in the papers of, in particular, Janusz Grabowski, Pawe l
Urbański, Katarzyna Grabowska, ...
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Bon anniversaire!

Best wishes to Prof. Janusz Grabowski!
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