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Abstract. According to a conjecture of Lindenstrauss and Tsukamoto,

a topological dynamical system (X,T ) is embeddable in the d-cubical

shift (([0, 1]d)Z, shift) if both its mean dimension and periodic dimen-

sion are strictly bounded by d
2
. We verify the conjecture for the class of

systems admitting a �nite dimensional non-wandering set and a closed

set of periodic points. This class of systems is closely related to systems

arising in physics. In particular we prove an embedding theorem for

systems associated with the two dimensional Navier-Stokes equations of

�uid mechanics. The main tool in the proof of the embedding result

is the new concept of local markers. Continuing the investigation of

(global) markers initiated in previous work it is shown that the marker

property is equivalent to a topological version of the Rokhlin Lemma.

Moreover new classes of systems are found to have the marker property,

in particular, extensions of aperiodic systems with a countable num-

ber of minimal subsystems. Extending work of Lindenstrauss we show

that for systems with the marker property, vanishing mean dimension

is equivalent to the small boundary property.
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1. Introduction

The question under which conditions a topological dynamical system (X,T )

is embeddable in the d-cubical shift (([0, 1]d)Z, shift) stems from Auslan-

der's 1988 in�uential book. According to Jaworski's Theorem (1974), for

X �nite-dimensional and T aperiodic, embedding is possible with d = 1.

Auslander posed the question if for d = 1, it is su�cient that X is mini-

mal. The question was solved in the negative by Lindenstrauss and Weiss

(2000), adroitly using the invariant of mean dimension introduced by Gro-

mov (1999). Around the same time Lindenstruass (1999) showed that if

X is an extension of an aperiodic minimal system and mdim(X,T ) < d
36 ,

then (X,T ) is embeddable in (([0, 1]d)Z, shift). Recently Lindenstrauss and

Tsukamoto (2012) have introduced a unifying conjecture and several cases

of this conjecture have been veri�ed. According to this conjecture the only

obstructions for embeddability are given by the invariants of mean dimen-

sion and periodic dimension, the later quantifying the natural obstruction

due to the set of periodic points. A precise statement of the conjecture is

that mdim(X,T ) < d
2 and perdim(X,T ) < d

2 imply (X,T ) is embeddable in

(([0, 1]d)Z, shift). In Gutman and Tsukamoto (2012) the conjecture was ver-

i�ed for extensions of aperiodic subshifs and in Gutman (2012) the conjecture

was veri�ed for �nite-dimensional systems. In the same article it was shown

that for extensions of aperiodic �nite-dimensional systemsmdim(X,T ) < d
16

implies (X,T ) is embeddable in (([0, 1]d+1)Z, shift).

A keen observer will notice that all embedding results mentioned above,

involving in�nite-dimensional systems, require the assumption of aperiodic-

ity. This is due to a common device used in the proofs: existence of markers

(of all orders). Markers can be thought of as a suitable generalization of

the familiar markers of symbolic dynamics, introduced by Krieger (1982), to

the setting of arbitrary dynamical systems. As a necessary condition for the
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existence of markers of all orders is the aperiodicity of the system, one is

con�ned to the category of aperiodic systems.

In this article we resolve this di�culty by introducing the concept of lo-

cal markers. It has the desired consequence of allowing us to treat some

in�nite-dimensional systems admitting periodic points. In particular we ver-

ify the Lindenstrauss-Tsukamoto Conjecture for the class of systems whose

non-wondering set is �nite dimensional and set of periodic points is closed

and discuss some examples. The result is a consequence of a more gen-

eral embedding theorem stating that systems with the local marker prop-

erty verifying mdim(X,T ) < d
36 and perdim(X,T ) < d

2 are embeddable in

(([0, 1]d)Z, shift).

The embedding results we obtain can be �tted into a framework not

uncommon in physics: in�nite-dimensional systems which exhibit �nite-

dimensional global attractors. We demonstrate this by proving the em-

beddability into cubical shift of a discrete version of a model of the two-

dimensional Navier-Stokes equations from �uid mechanics.

Recognizing the importance of markers, both local and global, we continue

the investigation of markers as carried out in Gutman (2012) which itself was

a generalization of previous work by Bonatti and Crovisier (2004), and prove

in particular that an aperiodic system with a countable number of minimal

subsystems admits the marker property.

In Gutman (2011) the notion of the topological Rokhlin property was in-

troduced. This is a dynamical topological analogue of the Rokhlin Lemma

of measured dynamics. Here we show that the marker property is equivalent

to a strong version of the topological Rokhlin property. Following closely

Lindenstrauss (1999) this characterization results with several fruitful appli-

cations: Systems with the marker property admit a compatible metric with

respect to which the metric mean dimension equals the (topological) mean
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dimension. Moreover for such systems, vanishing mean dimension is equiv-

alent to the small boundary property and to being an inverse limit of �nite

entropy systems. Preliminary results for this work were reported in [Gut13].

2. Preliminaries

The following article is closely related to the article [Gut15] and we rec-

ommend the reader to familiarize herself or himself with the Introduction

and Preliminaries sections of that article.

2.1. Conventions. Throughout the article with the exception of Section 8

and Appendix ??, a topological dynamical system (t.d.s) (X,T ), also

denoted (Z, X), consists of a metric compact space (X, d) and a homeomor-

phism T : X → X. In Subsections 2.2, 2.5, 2.6, Section 8 and Appendix

?? (and only there) we relax this requirement and assume only T : X → X

is continuous. These systems are denoted by (N, X). If it is desired to em-

phasize T is a homemorphism we say (X,T ) is an invertible topological

dynamical system. P = P (X,T ) denotes the set of periodic points and

Pn denotes the set of periodic points of period ≤ n. In addition we use

the notation Hn = Pn \ Pn−1. 4 = {(x, x)|x ∈ X} denotes the diagonal

of X × X. If x ∈ X and ε > 0, let Bε(x) = {y ∈ X| d(y, x) < ε} denote

the open ball around x. We denote Bε(x) = Bε(x). Note Bε(x) ⊆ {y ∈

X| d(y, x) ≤ ε} but equality does not necessary hold. For A and B compact

subsets of the same metric space we denote d(A,B) = mina∈A,b∈B d(a, b).

For f, g ∈ (C(X, [0, 1]d), we de�ne ||f − g||∞ , supx∈X ||f(x) − g(x)||∞. In

�8 || · || is used to denote the norm in a Hilbert space.

2.2. The Non-Wandering Set. Let (X,T ) be a t.d.s where T is not nec-

essarily invertible. The following de�nition is based on [Wal82, Theorem

5.7]. A point x ∈ X is said to be non-wandering if for every open set
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x ∈ U and every N ≥ 1 there is k ≥ N so that U ∩ T−kU 6= ∅. The non-

wandering set Ω(X) is the collection of all non-wandering points. Note

Ω(X) is a non-empty, closed and TΩ(X) ⊂ Ω(X). If T is invertible then

TΩ(X) = Ω(X).

2.3. Covers. A collection τ of sets in X covers a set A ⊂ X if A ⊂
⋃
S∈τ S.

The restriction of τ to A is de�ned by τ|A = {S ∩ A}S∈τ . An open

respectively closed cover is a �nite collection of open respectively closed

sets which covers X. Let α, β be collections of sets. One says that β is a

re�nement of α, denoted β � α, if for every V ∈ β, there is U ∈ α so that

V ⊂ U .

2.4. Dimension. Let C denote the collection of open covers of X. For

α ∈ C de�ne its order by ord(α) = maxx∈X
∑

U∈α 1U (x) − 1. Let D(α) =

minβ∈C:β�α ord(β) The Lebesgue covering dimension is de�ned by dim(X) =

supα∈C D(α).

2.5. Periodic Dimension. Let (X,T ) be a t.d.s where T is not necessarily

invertible. Let Pm denote the set of points of period ≤ m. Introduce the

in�nite vector
−−−−→
perdim(X,T ) =

(dim(Pm)
m

)
m∈N. This vector is clearly a topo-

logical dynamical invariant. Let d > 0. We write perdim(X,T ) < d, if for

every m ∈ N,
−−−−→
perdim(X,T )|m < d.

2.6. Mean Dimension. Let (X,T ) be a t.d.s where T is not necessarily

invertible. De�ne:

mdim(X,T ) = sup
α∈C

lim
n→∞

D(αn)

n

where αn =
∨n−1
i=0 T

−iα.Mean dimension was introduced by Gromov [Gro99]

and systematically investigated by Lindenstrauss and Weiss in [LW00].
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The following two subsections follow closely the corresponding subsections

in [Gut11]:

2.7. The Topological Rokhlin Property. The classical Rokhlin lemma

states that given an aperiodic invertible measure-preserving system (X,T, µ)

and given ε > 0 and n ∈ N, one can �nd A ⊂ X so that A, TA, . . . , Tn−1A

are pairwise disjoint and µ
(⋃n−1

k=0 T
kA
)
> 1− ε. It easily follows that given

an aperiodic invertible measure-preserving system (X,T, µ) and given ε > 0,

one can �nd a measurable function f : X → {0, 1, . . . , n − 1} so that if we

de�ne the exceptional set Ef = {x ∈ X | f(Tx) 6= f(x)+1}, then µ(Ef ) < ε.

The new formulation allows us to generalize to the topological category.

Indeed following [SW91], given a t.d.s (X,T ) and a set E ⊂ X, we de�ne

the orbit-capacity of a set E in the following manner (the limit exists):

ocap(E) = lim
n→∞

1

n
sup
x∈X

n−1∑
k=0

1E(T kx)

(X,T ) is said to have the topological Rokhlin property (TRP) if and

only if for every ε > 0 there exists a continuous function f : X → R so

that for the exceptional set Ef = {x ∈ X | f(Tx) 6= f(x) + 1}, one has

ocap(Ef ) < ε.

2.8. The Small Boundary Property. Following [SW91] we call E ⊂ X

small if ocap(E) = 0. For closed sets this has a simple interpretation. Indeed

a closed set A ⊂ X is small if and only if for any T -invariant measure µ of X,

one has µ(A) = 0. When X has a basis of open sets with small boundaries,

(X,T ) is said to have the small boundary property (SBP). In [LW00] it

was shown that SBP implies mean dimension zero. In [Gut11] it was shown

that if (X,T ) is an extension of an aperiodic space with SBP then it has

TRP.
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2.9. The Metric Mean Dimension. A set S ⊂ X is called (n, ε, d)-

spanning if for every x ∈ X there is a y ∈ S so that for all 0 ≤ k < n,

d(T kx, T ky) < ε. De�ne A(n, ε, d) to be the cardinality of a minimal (n, ε, d)-

spanning set. De�ne:

s(ε, d) = lim sup
n→∞

log(A(n, ε, d))

n

mdimd(X,T ) = lim inf
ε→0

s(ε, d)

| log(ε)|
In [LW00] it was shown that mdimd(X,T ) ≤ mdim(X,T ). By a classi-

cal theorem of Bowen and Dinaburg, the topological entropy is given by

htop(X,T ) = limε→0 s(ε, d). Thus it was concluded in [LW00] that �nite

topological entropy implies mean dimension zero.

2.10. The Baire Category Theorem Framework. Let G = Z or G =

N. We are interested in the question under which conditions a topologi-

cal dynamical system (G,X)1 is embeddable in the (G−) d-cubical shift

(([0, 1]d)G, G − shift) for some d ∈ N. Notice that a continuous function

f : X → [0, 1]d induces a continuous G-equivariant mapping If : (X,T ) →

(([0, 1]d)G, G− shift) given by x 7→ (f(T kx))k∈G, also known as the orbit-

map. Conversely, any G-equivariant continuous factor map π : (X,T ) →

(([0, 1]d)G, G− shift) is induced in this way by π0 : X → [0, 1]d, the projec-

tion on the zeroth coordinate. We therefore study the space of continuous

functions C(X, [0, 1]d). Instead of explicitly constructing a f ∈ C(X, [0, 1]d)

so that If : (X,T ) ↪→ (([0, 1]d)G, G − shift) is an embedding, we show

that the property of being an embedding If : (X,T ) ↪→ (([0, 1]d)G, shift) is

generic in C(X, [0, 1]d) (but without exhibiting an explicit embedding). To

make this precise introduce the following de�nition:

1In most of this article G = Z and therefore we do not usually specify G. Note however

that in Section 8, G = N.
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De�nition 2.1. Let G = Z or G = N. Suppose K ⊂ (X × X) \ ∆ is a

compact set and f ∈ C(X, [0, 1]d). We say that If is (G−)K-compatible if

for every (x, y) ∈ K, If (x) 6= If (y), or equivalently if for every (x, y) ∈ K,

there exists n ∈ G so that f(Tnx) 6= f(Tny). De�ne:

DK = {f ∈ C(X, [0, 1]d)| If is K− compatible}

By Lemma A.2 of [Gut15], DK is open in C(X, [0, 1]d). Suppose we have

shown that there exists a a closed countable coverK of (X×X)\∆ so thatDK

is dense for all K ∈ K. By the Baire category theorem (C(X, [0, 1]d), || · ||∞),

is a Baire space, i.e., a topological space where the intersection of count-

ably many dense open sets is dense. This implies
⋂
K∈KDK is dense in

(C(X, [0, 1]d), || · ||∞). Any f ∈
⋂
K∈KDK is K-compatible for all K ∈ K si-

multaneously and therefore induces an embedding If : (X,T ) ↪→ (([0, 1]d)G, G−

shift). A set in a topological space is said to be comeagre or generic if

it is the complement of a countable union of nowhere dense sets. A set is

said to be Gδ if it is the countable intersection of open sets. As a dense Gδ

set is comeagre, the above argument shows that the set A ⊂ C(X, [0, 1]d)

for which If : (X,T ) ↪→ (([0, 1]d)G, G − shift) is an embedding is comea-

gre, or equivalently, that the fact of If being an embedding is generic in

(C(X, [0, 1]d), || · ||∞).

2.11. Overview of the Article. In Section 3 the de�nition of the marker

property is recalled and new classes of system admitting the marker property

are exhibited, in particular, extensions of aperiodic systems with a count-

able number of minimal subsystems. Additionally some simple examples are

discussed. In Section 4 the local marker property is de�ned and veri�ed

for systems of �nite dimensional systems with closed sets of periodic points.

In Section 5 the local and global strong topological Rokhlin properties are
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introduced and investigated. In particular it is shown that the marker prop-

erty is equivalent to the (global) strong topological Rokhlin property. In

Section 6 the following embedding theorem is proven: If (X,T ) has the local

marker property, mdim(X,T ) < d
36 and perdim(X,T ) < d

2 , then (X,T ) is

generically embeddable in (([0, 1]d)Z, shift). In Section 7 various applica-

tions of the embedding theorem are given, in particular, the veri�cation of

the Lindenstrauss-Tsukamoto Conjecture for the class of systems admitting

a �nite dimensional non-wandering set and a closed set of periodic points. In

Section 8 the last result is applied to a family of dynamical systems associ-

ated with the Navier-Stokes equations for a two-dimensional incompressible

viscous �ow. In particular it is shown that after a �nite and calculable

time a discretization of the system modelling the �ow can be embedded in

a cubical shift. In Appendix A it is shown that systems with the marker

property admit a compatible metric with respect to which the metric mean

dimension equals the (topological) mean dimension. Moreover for systems

with the marker property, vanishing mean dimension is equivalent to having

the small boundary property and to being an inverse limit of �nite entropy

systems.

3. The Marker Property

De�nition 3.1. A subset F of a t.d.s (X,T ) is called an n-marker (n ∈ N)

if:

(1) F ∩ T i(F ) = ∅ for i = 1, 2, . . . , n− 1.

(2) The sets {T i(F )}mi=1 cover X for some m ∈ N.

The system (X,T ) is said to have the marker property if there exist open

n-markers for all n ∈ N.



DYNAMICAL EMBEDDING IN CUBICAL SHIFTS 10

Remark 3.2. Clearly the marker property is stable under extension, i.e. if

(X,T ) has the marker property and (Y, S) → (X,T ) is an extension, then

(Y, S) has the marker property.

Remark 3.3. By Lemma A.1 of [Gut15] (X,T ) has a closed n-marker i�

(X,T ) has an open n-marker.

The marker property was �rst de�ned in [Dow06] (De�nition 2), where one

requires the n-markers to be clopen. In the same article it was proven that an

extension of an aperiodic zero-dimensional (non necessarily invertible) t.d.s

has the marker property. This was essentially based on the "Krieger Marker

Lemma" (Lemma 2 of [Kri82]). In [Gut15] Theorem 6.1 it was proven that

aperiodic �nite dimensional t.d.s have the marker property. From [Lin99,

Lemma 3.3] it follows that an extension of an aperiodic minimal system has

the marker property. Given these results it is natural to ask the following

question:

Problem 3.4. Does any aperiodic system have the marker property?

We do not know the answer of the previous problem. However we are

able to prove two theorems establishing the existence of the marker property

under natural assumptions. We also discuss examples.

Theorem 3.5. (Downarowicz & Gutman) If (X,T ) is an extension of an

aperiodic t.d.s which has a countable number of minimal subsystems then it

has the marker property.

Proof. We may assume w.l.o.g that (X,T ) is aperiodic and has a countable

number of minimal subsystems. Let n ∈ N. We will construct inductively

an open set U ⊂ X so that the sets {T i(U)}ni=1 are pairwise disjoint and

{T i(U)}mi=1 cover X for some m. Let M1,M2, . . . be an enumeration of the

minimal subsystems of X. Using the fact there is only a countable number
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of minimal subsystems �nd m1 ∈ M1, r1 > 0 so that {T iBr1(m1)}ni=−n are

pairwise disjoint and for all l ≥ 2, Ml *
⋃n
i=−n T

i∂Br1(m1) (here we use

that {
⋃n
i=−n T

i∂Br(m1)}r>0 is a uncountable collection of pairwise disjoint

sets). De�ne U1 = Br1(m1). Assume one has de�ned an open set Uk ⊂ X

so that:

(1) For any i = 1, . . . , k there exists j = j(i) ∈ Z so that Uk ∩T jMi 6= ∅.

(2) For all l ≥ k + 1, Ml *
⋃n
i=−n T

i∂Uk.

(3) {T i(Uk)}ni=1 are pairwise disjoint

If Uk ∩ T jMk+1 6= ∅ for some j ∈ Z, de�ne Uk+1 = Uk. We now assume

that Uk ∩ T jMk+1 = ∅ for all j ∈ Z. By assumption Mk+1 *
⋃n
i=−n T

i∂Uk.

Conclude Mk+1 *
⋃n
i=−n T

iUk. Using the fact there is only a countable

number of minimal subsystems, we can �nd mk+1 ∈ Mk+1 and rk+1 > 0 so

that {T iBrk+1
(mk+1)}ni=−n are pairwise disjoint and so that it holds:

(3.1) Brk+1
(mk+1) ∩

n⋃
i=−n

T iUk = ∅,

(3.2) ∀l > k + 1 Ml \
n⋃

i=−n
T i∂Uk *

n⋃
i=−n

T i∂Br1(m1)

De�ne Uk+1 = Uk ∪Brk+1
(mk+1). We now verify that the desired properties

hold:

(1) For any i = 1, . . . , k + 1 there exists j = j(i) ∈ Z so that Uk+1 ∩

T jMi 6= ∅. Indeed if i ≤ k, this follows from property (1) above. For

i = k + 1 it is trivial.

(2) For all l ≥ k + 2, Ml *
⋃n
i=−n T

i∂Uk+1. Indeed if follows from

∂Uk+1 ⊂ ∂Uk ∪ ∂Brk+1
(mk+1) and (3.2).
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(3) {T i(Uk+1)}ni=1 are pairwise disjoint. Indeed it is enough to show

T i1Uk ∩ T i2Brk+1
(mk+1) = ∅ for all 1 ≤ i1, i2 ≤ n. This follows from

(3.1).

Finally we de�ne U =
⋃∞
k=1 Uk. As U1 ⊂ U2 ⊂ · · · , it holds that {T i(U)}ni=1

are pairwise disjoint. Clearly for any i ∈ N there exists j = j(i) ∈ Z so that

U ∩ T jMi 6= ∅. As U is open and Mi is compact this implies there exists

m(i) ∈ N so that Mi ⊂
⋃m(i)
l=0 T lU . Fix x ∈ X. There exists i ∈ N so that

orb(x) ∩Mi 6= ∅. Conclude there exists k ∈ Z, so that T kx ∈
⋃m(i)
l=0 T lU .

By a simple compactness argument we deduce the existence of m ∈ N so

that{T i(U)}mi=1 cover X. �

Example 3.6. Clearly the previous theorem applies to every t.d.s which

consists of a �nite union of minimal systems. We now present a simple

example of an aperiodic t.d.s with an in�nite countable number of minimal

systems. Let Cr = {(x, y)|x2 + y2 = r} ⊂ R2, be a circle of radius r

around the origin. Select a strictly decreasing sequence of positive numbers

r1 > r2 > · · · with ri → r0 > 0. Let X =
⋃∞
i=0Cri ⊂ R2 and de�ne

T : X → X by rotating by α on each circle where α is some irrational

number.

Example 3.7. Not every aperiodic system has a countable number of mini-

mal subsystems. Indeed considerX = T2, the two-dimensional torus equipped

with T (x, y) = (x+ α, y) for some α irrational number.

De�nition 3.8. Let (X,T ) be a t.d.s and denote byM the collection of all

minimal subspaces of (X,T ). (X,T ) has a compact minimal subsystems

selector if there exists a compact L so that for every M ∈M, |L∩M | = 1

and L ⊂
⋃
M.

Theorem 3.9. (Downarowicz) If (X,T ) is an extension of an aperiodic t.d.s

with a compact minimal subsystems selector than it has the marker property.
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Proof. We may assume w.l.o.g that (X,T ) has a compact minimal subsys-

tems selector L. Denote by M the collection of all minimal subspaces of

(X,T ). If x, y ∈ L, x 6= y, then there exists distinct Mx,My ∈ M so that

x ∈Mx and y ∈My. This implies orb(x)∩orb(y) = ∅. As (X,T ) is aperiodic

conclude the closed sets {T iL}∞i=−∞ are pairwise disjoint. Let n ∈ N. There

exists ε > 0 so that T iBε(L) (1 ≤ i ≤ n) are pairwise disjoint. For every

M ∈M there exists by minimality m = m(M) so that:

M ⊂
m⋃
i=0

T iBε(L)

For every z ∈ X, there existsMz ∈M so that orb(z)∩Mz 6= ∅. We conclude

by a compactness argument that Bε(L), T 1Bε(L), T 2Bε(L), . . ., eventually

cover X. �

Example 3.10. A simple example of an aperiodic system with a compact

minimal subsystems selector is given by Example 3.7. A selector is given by

{0} × T. An aperiodic system with a compact minimal subsystems selector

without a non trivial minimal factor is given by taking a disjoint union of the

previous example X with a circle, Y = X
◦
∪ T where the circle is equipped

with a rotation by β, such that α and β are incommensurable.

Example 3.11. Not all aperiodic t.d.s have a compact minimal subsystems

selector. Indeed let X = T2 be the two-dimensional torus and T : X → X be

given by T (x, y) = (x+ 1
2 , y+α) for some α irrational. LetM the collection

of all minimal subspaces of (X,T ). Note M = {{t, t + 1
2} × T| t ∈ [0, 1

2)}.

Assume for a contradiction (X,T ) has a compact minimal selector L. Let

L2 be the projection of L on the �rst coordinate. L2 is a closed set so that

T = L2
◦
∪ (L2 + 1

2). Contradiction.
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4. The Local Marker Property

De�nition 4.1. Let Z,W be closed sets with Z ×W ⊂ (X × X) \ (4 ∪

(X×P )∪ (P ×X)). A subset F of a t.d.s (X,T ) is called a local n-marker

(n ∈ N) for Z ×W if:

(1) F ∩ T i(F ) = ∅ for i = 1, 2, . . . , n− 1.

(2) The sets {T i(F )}mi=1, i = 0, 1, . . . ,m− 1, cover Z ∪W for some m.

We say Z ×W has local markers if it has open n-markers for all n ∈ N.

We say that a cover of Y ⊂ (X × X) \ (4 ∪ (X × P ) ∪ (P × X)) by a

countable collection of products of closed sets {Zi ×Wi}∞i=1 has the local

marker property relatively to Y if for every i, Zi×Wi has local markers.

We say (X,T ) has the local marker property if there is a cover with the

local marker property relatively to (X ×X) \ (4∪ (X × P ) ∪ (P ×X)).

Remark 4.2. If (X,T ) has the marker property than it has the local marker

property.

Remark 4.3. Just as in the case of the marker property, Z ×W has local

markers i� it has closed n-markers for all n ∈ N.

Theorem 4.4. If dim(X) < ∞ and P is closed, then (X,T ) has the local

marker property.

Proof. The proof follows closely the proof of Theorem 6.1 of [Gut15] where it

is shown that an aperiodic �nite dimensional t.d.s has the marker property.

Theorem 6.1 of [Gut15] is based on a certain generalization of Lemma 3.7

of [BC04] which is one of the building blocks in the proof of the Bonatti-

Crovisier Tower Theorem for C1-di�eomorphisms on manifolds [BC04, The-

orem 3.1]. Let {Zi × Vi}∞i=1 be an arbitrary countable cover of (X × X) \

(4 ∪ (X × P ) ∪ (P × X)) by a countable collection of products of closed

sets so that for every i, Zi ∩ P = ∅ and Vi ∩ P = ∅ (here we use that P
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is closed) and Zi ∩ Vi = ∅. Fix n, k ∈ N. For every x ∈ Zk ∪ Vk choose

an open set Ux so that x ∈ Ux, Ux ⊂ X \ P and Ux ∩ T iUx = ∅ for

i = 1, 2, . . . ,m = (2dim(X) + 2)n − 1. Let Ux1 , Ux2 , . . . , Uxs be a �nite

cover of Zk ∪ Vk. We now continue exactly as in the proof of Theorem 6.1

of [Gut15], to �nd a W , so that W ∩ T iW = ∅, i = 1, 2, . . . , n − 1 and

Zk ∪Vk ⊂
⋃s
i=1 Uxi ⊂

⋃m
i=0 T

i(W ) (we use the fact that P is closed in order

to invoke Lemma 6.2 of [Gut15]). The existence of an open n-marker for

Zk ∪ Vk follows easily. �

Proposition 4.5. If (Ω(X), T ) has the local marker property then (X,T )

has the local marker property.

Proof. We will show there is a closed countable cover which has the local

marker property relatively to S = (X ×X) \ (4 ∪ (X × P ) ∪ (P ×X)) by

de�ning S1, S2, S3 ⊂ X × X so that S = S1 ∪ S2 ∪ S∗2 ∪ S3 where S∗2 =

{(y, x)| (x, y) ∈ S2}, and exhibiting 3 closed countable covers which have the

local marker property relatively to S1, S2 and S3 respectively (the case of S∗2

will follow from the case of S2). As (Ω(X), T ) has the local marker property,

there exists a a countable cover {Zi ×Wi}∞i=1 which has the local marker

property relatively to (Ω(X) × Ω(X)) \ (4 ∪ (Ω(X) × P ) ∪ (P × Ω(X))),

however it is important to note this is w.r.t the topology induced by Ω(X).

Also note that for all i, Zi ∪Wi ⊂ Ω(X). We now de�ne S1, S2, S3:

(1) S1 = (Ω(X) × Ω(X)) ∩ S = (Ω(X) × Ω(X)) \ (4 ∪ (Ω(X) × P ) ∪

(P × Ω(X))). We claim {Zi ×Wi}∞i=1 has the local marker property

relatively to S1 (w.r.t the topology induced by X). Indeed �x k. Let

F be a closed (in Ω(X) and therefore in X) n-marker for Zk×Wk in

Ω(X). Clearly one can �nd an ε > 0 so that Bε(F ) ⊂ X is an open

n-marker for Zk ×Wk in X.
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(2) S2 = ((X \ Ω(X)) × Ω(X)) ∩ S. As X × X is second-countable,

every subspace is Lindelöf, i.e. every open cover has a countable

subcover. Let {Ui}∞i=1 be an open cover ofX\Ω(X) such that for each

i there is an εi > 0 so that {T kBεi(Ui)}k∈Z are pairwise disjoint. We

claim the countable closed cover {U i ×Wk}∞i,k=1 has the local marker

property relatively to S2. First observe that as Bεi(Ui) ⊂ X \Ω(X),

U i∩Wk = ∅. Now �x i, k, n. Let F ⊂ Ω(X) be a closed n-marker for

Zk×Wk. Let 0 < δ < d(
⋃n−1
j=−(n−1) T

jBεi/2(Ui),Ω(X)) so that Bδ(F )

is still an open n-marker for Zk×Wk. We claim Bδ(F )∪Bεi/2(Ui) is

an open n-marker for U i ×Wk. Indeed as F ⊂ Ω(X), the choice of

δ guarantees T j1Bδ(F ) ∩ T j2Bεi/2(Ui) = ∅ for all 0 ≤ j1, j2 ≤ n− 1.

(3) S3 = (X \ Ω(X))2 ∩ S. Let {Ui}∞i=1 be the open cover of the previ-

ous case. We can assume w.l.o.g that for each x, y ∈ (X \ Ω(X))2

with x 6= y there are i 6= k so that x ∈ Ui and y ∈ Uk and

Ui ∩ Uk = ∅. Note C = {U i × Uk|i, k ∈ Z, Ui ∩ Uk = ∅} is a closed

cover of (X \ Ω(X))2 ∩ S. A countable closed cover which has the

local marker property relatively to S3, will be achieved by splitting

each member of the cover C to an union of at most a countable num-

ber of closed products. Fix i 6= k so that U i × Uk ∈ C. If for all

j ∈ Z, T jBεi(Ui) ∩ Bεk(Uk) = ∅, then Bεi(Ui) ∪ Bεk(Uk) is an open

n-marker of U i × Uk for all n. Assume this is not the case. Note

that {U i× (Uk ∩T jBεi/2(Ui))}j∈Z ∪{U i× (Uk \
⋃
j∈Z T

jBεi/2(Ui))}

is a countable closed cover of U i × Uk. Let j ∈ Z. Note that

Bεi(Ui) is an open n-marker of U i × (Uk ∩ T jBεi/2(Ui)) for all n.

Fix n. As d(
⋃n−1
j=−(n−1)

⋃
T k(U i), Uk \

⋃
j∈Z T

jBεi/2(Ui)) > 0, there

is δ > 0 so that T j1Bδ(U i) ∩ T j2Bδ(Uk \
⋃
j∈Z T

jBεi/2(Ui)) = ∅

for all 0 ≤ j1, j2 ≤ n − 1. Taking δ < min{εi, εk}, guarantees
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that Bδ(U i) ∪ Bδ(Uk \
⋃
j∈Z T

jBεi/2(Ui)) is an open n-marker for

U i × Uk \
⋃
j∈Z T

jBεi/2(Ui).

�

5. The Strong Topological Rokhlin Property

In [Gut11, Subsection 1.9] the topological Rokhlin property was intro-

duced (see also Subsection 2.7). Here is a stronger variant, originating in

[Lin99]:

De�nition 5.1. We say that (X,T ) has the (global) strong topological

Rokhlin property if for every n ∈ N there exists a continuous function

f : X → R so that if we de�ne the exceptional set Ef = {x ∈ X | f(Tx) 6=

f(x) + 1}, then T−i(Ef ), i = 0, 1, . . . , n− 1, are pairwise disjoint.

Remark 5.2. Assume b − a ≤ n − 1. Under the above conditions consider

x ∈ X. Then there exists at most one index a ≤ l ≤ b so that f(T l+1x) 6=

f(T lx)+1. Indeed if T lx, T l
′
x ∈ Ef for a ≤ l < l′ ≤ b, then Ef∩T l−l

′
Ef 6= ∅

contradicting the de�nition.

De�nition 5.3. We say that (X,T ) has the local strong topological

Rokhlin property if one can cover (X × X) \ (4 ∪ (X × P ) ∪ (P × X))

by a countable collection of products of closed sets {Zi ×Wi}∞k=1, where for

every k, Zk ∩Wk = ∅ and for every m ∈ N and a, b ∈ Z with a < b there

exists a continuous function f :
⋃b
i=a T

i(Zk ∪Wk) → R so that if we de�ne

the exceptional set Ef = {x ∈
⋃b−1
i=a T

i(Zk ∪Wk) | f(Tx) 6= f(x) + 1}, then

T−i(Ef ), i = 0, . . . ,m− 1, are pairwise disjoint (note x ∈
⋃b−1
i=a T

i(Zk ∪Wk)

implies that both f(x) and f(Tx) are de�ned). In this context {Zi ×Wi}∞k=1

is also said to have the local strong topological Rokhlin property.

Remark 5.4. Assume m ≥ b − a − 2. Under the above conditions consider

x ∈ (Zk ∪Wk). Then there exists at most one index a ≤ l ≤ b − 1 so that
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f(T l+1x) 6= f(T lx) + 1. Indeed T lx ∈
⋃b−1
i=a T

i(Zk ∪Wk) and f(T l+1x)) 6=

f(T lx) + 1 imply T lx ∈ Ef . If T lx, T l
′
x ∈ Ef for a ≤ l < l′ ≤ b − 1, then

Ef ∩ T l−l
′
Ef 6= ∅ contradicting the de�nition.

The following proposition is based on Lemma 3.3 of [Lin99], which is the

statement that a system with an aperiodic minimal factor has the strong

topological Rokhlin property:

Proposition 5.5. If (X,T ) has the local marker property then (X,T ) has

the local strong topological Rokhlin property.

Proof. By assumption one can cover (X × X) \ (4 ∪ (X × P ) ∪ (P × X))

by a countable collection of products of closed sets {Zi ×Wi}∞i=1, with the

local marker property. We will now show that {Zi ×Wi}∞i=1 has the local

strong topological Rokhlin property. Fix m, k ∈ N and a, b ∈ Z with a < b.

Let F be an open m marker for Zk ∪ Wk. It will be convenient to write

Zk ∪Wk ⊂
⋃q−b
i=−a T

i(F ) for some q > b− a. Choose a closed R ⊂ F so that

Zk ∪Wk ⊂
⋃q−b
i=−a T

iR. Conclude:

(5.1)
b⋃
i=a

T i(Zk ∪Wk) ⊂
q⋃
i=0

T iR

Let ω : X → [0, 1] be a continuous function so that ω|R ≡ 1 and ω|F c ≡ 0.

We de�ne a random walk for z ∈ X. At any point p we arrive during the

random walk, the walk terminates with probability ω(p) and moves to T−1p

with probability 1−ω(p). Notice that for every point z ∈
⋃b
i=a T

i(Zk ∪Wk)

the random walk will terminate after a �nite number of steps. Indeed by

(5.1) there is an i ∈ {0, . . . , q} so that z ∈ T iR, which implies the walk

terminates in at most q steps (when the point hits R). Conclude there is

a �nite number of possible walks starting at z and we denote by f(z) the

expected length of the walk starting at z. As there is a uniform bound
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on the length of walks, f :
⋃b
i=a T

i(Zk ∪ Wk) → R+ is continuous. Note

that if y /∈ F and y ∈
⋃b
i=a+1 T

i(Zk ∪ Wk) , then f(T−1y) = f(y) − 1.

Notice that x ∈
⋃b−1
i=a T

i(Zk ∪Wk) and f(Tx) 6= f(x) + 1 implies y , Tx ∈⋃b
i=a+1 T

i(Zk ∪ Wk) and f(T−1y) = f(TT−1x) = f(x) 6= f(Tx) − 1 =

f(y) − 1. Therefore in such a case one must have Tx = y ∈ F . Conclude

Ef = {x ∈
⋃b−1
i=a T

i(U ∪ V ) | f(Tx) 6= f(x) + 1} ⊂ T−1F . We therefore have

T−i(Ef ) ∩ Ef = ∅ i = 1, . . . ,m− 1.

�

The following question is interesting:

Problem 5.6. Does the the local strong topological Rokhlin property imply

the local marker property?

The question can be answered assuming the global strong topological

Rokhlin property:

Theorem 5.7. (X,T ) has the strong topological Rokhlin property i� (X,T )

has the marker property.

Proof. The fact that the marker property implies the strong topological

Rokhlin property follows by a similar argument to the proof of Proposition

5.5. To prove the other direction assume (X,T ) has the strong topolog-

ical Rokhlin property. Fix n ∈ N and let f : X → R be a continuous

function such that for the open set Ef = {x ∈ X | f(Tx) 6= f(x) + 1},

T−i(Ef ), i = 0, 1, . . . , n−1, are pairwise disjoint. We claim that the iterates

Ef ,T−1Ef , . . . eventually cover X. Indeed as f is bounded from above for

any x ∈ X, the series f(T ix), i = 1, 2, . . . cannot increase inde�nitely.

�
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6. An Embedding Theorem for systems with the local marker

property

6.1. The Embedding Theorem. We now state our main embedding theo-

rem. The proof has two parts. The �rst part (Proposition 6.3) deals with the

non-periodic points whereas the second part deals with the periodic points

(Proposition 6.4). Both parts are based on a highly technical extension of

the proof of Theorem 5.1 of [Lin99].

Theorem 6.1. Assume (X,T ) has the local marker property. Let d ∈ N be

such that mdim(X,T ) < d
36 and perdim(X,T ) < d

2 , then the collection of

continuous functions f : X → [0, 1]d so that If : (X,T ) ↪→ (([0, 1]d)Z, shift)

is an embedding is comeagre in C(X, [0, 1]n).

Proof. As explained in Subsection 2.10 we need to exhibit a closed countable

cover C of (X×X)\∆ so that DC is dense for all C ∈ C. By Proposition 5.5

(X,T ) has the local strong topological Rokhlin property. By Proposition 6.3

below one can cover X×X \
(
4∪ (X×P )∪ (P ×X)

)
by a closed countable

cover W so that for all W ∈ W, DW is dense in C(X, [0, 1]d). Let Pn denote

the set of points of period ≤ n and de�ne Hn = Pn \ Pn−1. By Proposition

6.4 below for every n ∈ N there is a countable closed cover Kn of
(
(X \P )×

Hn

)
∪
(
Hn × (X \ P )

)
so that for all K ∈ Kn, DK is dense in C(X, [0, 1]d).

By the proof of Theorem 4.1 of [Gut15] there is closed countable cover P of

(P × P ) \∆ so that DK is dense for all K ∈ K. Let C = W ∪ P ∪
⋃
nKn.

As (X × X) \ ∆ is the union of (X × X) \
(
4 ∪ (X × P ) ∪ (P × X)

)
,⋃

n

(
(X \ P ) × Hn

)
∪
(
Hn × (X \ P )

)
=
(
(X \ P ) × P

)
∪
(
P × (X \ P )

)
and (P × P ) \∆, clearly C has the desired properties. We now proceed to

prove Proposition 6.3 and Proposition 6.4. Throughout, it turns out to be

convenient to de�ne:
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mdim =


1
72 mdim(X,T ) = 0

mdim(X,T ) otherwise

Notice it holds 36mdim < d. �

We start with an auxiliary lemma:

Lemma 6.2. Let A ⊂ X, M ∈ N be an even integer and n :
⋃M

2
−1

i=−4M T iA→

R a function. Assume there are x1, x2 ∈ A so that for each xi, i = 1, 2

there is at most one index (depending on xi) −4M ≤ ji ≤ M
2 − 2 for which

n(T ji+1xi) 6= n(T jixi) + 1. Then one can �nd an index −4M ≤ r ≤ 0 so

that bn(T rxi)c mod M ≤ M
2 and for r ≤ s ≤ r + M

2 − 2, i = 1, 2:

(6.1) (dn(T sxi)e mod M) = (dn(T rxj)e mod M) + s− r

(6.2) (bn(T sxi)c mod M) = (bn(T rxj)c mod M) + s− r

Proof. By the proof of Lemma 5.7 of [Lin99] one can �nd an index −4M ≤

r ≤ 0 so that for r ≤ s ≤ r + M
2 − 1 one has for i = 1, 2:

(n(T sxi) mod M) = (n(T rxj) mod M) + s− r

In particular for r ≤ s ≤ r+ M
2 −2, (n(T sxi) mod M) ∈ [0, M2 +s−r+1) ⊂

[0,M − 1) and (bn(T rxi)c mod M) ≤ M
2 . We therefore conclude (6.1) and

(6.2) hold for this range of indices. �

Proposition 6.3. Let K be a countable closed cover of X ×X \
(
4∪ (X ×

P )∪ (P ×X)
)
which has the local marker property, then for all K ∈ K, DK

is dense in C(X, [0, 1]d).
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Proof. This proof is heavily in�uenced by the proof of Theorem 5.1 of [Lin99].

Fix K ∈ K with K = Z ×W with Z,W closed and Z ∩W = ∅. Fix ε > 0.

Let f̃ : X → [0, 1]d be a continuous function. We will show that there exists

a continuous function f : X → [0, 1]d so that ‖f − f̃‖∞ < ε and If is K-

compatible. We start by a general construction and then relate it to f̃ . Let

δ = dist(Z,W ) > 0. Let α be a cover of X with maxU∈α diam(f̃(U)) < ε
2

and maxU∈α diam(U) < δ. Let ε′ > 0 be such that 36mdim(1 + 2ε′) < d. Let

N ∈ N be such that it holds 1
ND(αN+1) < (1+ε′)mdim (here we usemdim > 0

and Remark 2.5.1 of [Gut15]), 36(1 + 2ε′) < ε′N and N is divisible by 36.

Let γ � αN+1 be an open cover so that D(αN+1) = ord(γ). We have thus

ord(γ) < N(1 + ε′)mdim. Let M = 2
9N and ∆ = M

8 − 1. Notice M,∆ ∈ N.

Notice ∆d > (N36 − 1)36mdim(1 + 2ε′) = Nmdim(1 + ε′) +mdim(Nε′− 36(1 +

2ε′)) > Nmdim(1 + ε′). Conclude:

ord(γ) < ∆d

For each U ∈ γ choose qU ∈ U so that {qU}U∈γ is a collection of distinct

points in X, and de�ne ṽU = (f̃(T iqU ))N−1
i=0 . According to Lemma 5.6 of

[Lin99], one can �nd a continuous function F : X → ([0, 1]d)N , with the

following properties:

(1) ∀U ∈ γ, ||F (qU )− ṽU ||∞ < ε
2 ,

(2) ∀x ∈ X, F (x) ∈ co{F (qU )|x ∈ U ∈ γ},

(3) If for some 0 ≤ l, j < N − 4∆ and λ, λ′ ∈ (0, 1] and x, y, x′, y′ ∈ X

so that:

λF (x)|l+4∆−1
l + (1− λ)F (y)|l+4∆

l+1 = λ′F (x′)|j+4∆−1
j + (1− λ′)F (y′)|j+4∆

j+1

then there exist U ∈ γ so that x, x′ ∈ U and l = j (note the statement l = j

is missing from Lemma 5.6 of [Lin99] but follows from the proof).

By Proposition 5.5, (X,T ) has the local strong topological Rokhlin prop-

erty. By De�nition 5.3 one can �nd a continuous function n :
⋃M

2
−1

−4M T i(Z ∪
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W ) → R so that for En = {x ∈
⋃M

2
−2

−4M T i(Z ∪ W ) |n(Tx) 6= n(x) + 1}

one has En ∩ T i(En) = ∅ for 1 ≤ i ≤ 9
2M − 1. Let n(x) = bn(x)c mod M ,

n(x) = dn(x)e mod M , n′(x) = {n(x)}. Let A =
⋃M

2
−1

−4M T i(Z∪W ). De�ne:

(6.3) f ′(x) = (1− n′(x)F (T−n(x)x)|n(x) + n′(x)F (T−n(x)x)|n(x) x ∈ A

f ′ is continuous by the argument appearing on p. 241 of [Lin99]. By the

argument of Claim 1 on p. 241 of [Lin99], as maxU∈α diam(f̃(U)) < ε
2 and

maxU∈γ ||F (qU ) − vU ||∞ < ε
2 we have ||f̃|A − f ′||A,∞ < ε. By Lemma A.5

of [Gut15] there is f : X → [0, 1]d so that f |A = f ′|A and ||f − f̃ ||∞ < ε.

We now show that f ∈ DK . Fix x′ ∈ Z and y′ ∈ W . Assume for a

contradiction f(T ax′) = f(T ay′) for all a ∈ Z. Notice that by Remark 5.4

for both x′, y′ there is at most one index −4M ≤ jx′ , jy′ ≤ M
2 − 2 for which

n(T jx′+1x′) 6= n(T jx′x′) + 1, n(T jy′+1y′) 6= n(T jy′y′) + 1 respectively. By

Lemma 6.2 one can �nd an index −4M ≤ r ≤ 0 so that for r ≤ s ≤ r+M
2 −2,

for z′ = x′, y′, n(T sz′) = n(T rz′) + s − r, n(T sz′) = n(T rz′) + s − r and

n(T rz′) ≤ M
2 . Denote λ = n′(T rx′), λ′ = n′(T ry′), a = n(T rx′) ≤ M

2

and a′ = n(T ry′). Substituting T sx′, T sy′ for r ≤ s ≤ r + 4∆ − 1 =

r + M
2 − 5 in equation (6.3) (note T sx′, T sy′ ∈ A), we conclude from the

equality If (x′)|r+
M
2
−5

r = If (y′)|r+
M
2
−5

r :

(1−λ)F (T r−ax′)|a+4∆−1
a +λF (T r−a−1x′)|a+4∆

a+1 = (1−λ′)F (T r−a
′
y′)|a′+4∆−1

a′ +λ′F (T r−a
′−1y′)|a′+4∆

a′+1

E.g. notice that for 0 ≤ i ≤ M
2 − 5 it holds that T−n(T r+ix′)T r+ix′ =

T−(a+i)+r+ix′ = T r−ax′. As the conditions of Lemma 5.6 of [Lin99] are

ful�lled then by condition (3), one has that a = a′ and that there exist

U ∈ γ � αN+1 so that T r−ax′, T r−ay′ ∈ U . As N = −4M − M
2 ≤ r −
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a ≤ 0 we can �nd V ∈ α, so that x′, y′ ∈ V . This is a contradiction to

maxU∈α diam(U) < dist(Z,W ) = δ.

�

Proposition 6.4. Assume (X,T ) has the local strong topological Rokhlin

property and let n ∈ N, then there is a countable closed cover K of (X \P )×

Hn so that for K ∈ K, DK is dense in C(X, [0, 1]d).

Proof. Let C be a cover of (X×X) \ (4∪ (X×P )∪ (P ×X)) with the local

strong topological Rokhlin property. CoverHn by a countable collection. Let

W be an open set in Hn (not necessarily open in X) with y ∈W ⊂W ⊂ Hn.

Let Z × R ∈ C. Fix ε > 0. Let f̃ : X → [0, 1]d be a continuous function.

We will show that there exists a continuous function f : X → [0, 1]d so that

‖f − f̃‖∞ < ε and If is K-compatible for K = Z ×W . Let α be a cover of

X with maxU∈α diam(f̃(U)) < ε
2 . Let ε

′ > 0 be such that 36mdim(1+2ε′) <

d. We will see it is enough to assume 18mdim(1 + 2ε′) < d (actually it is

enough to assume 8mdim(1 + 2ε′) < d but we will not use this fact). Let

N ∈ N, divisible by 18, be such that it holds 1
ND(αN ) < (1 + ε′)mdim and

Nε′ − 9n(1 + 2ε′) > 1
mdim

. Let γ � αN be an open cover so that D(αN ) =

ord(γ). Let M = 2
9N and S = M

4 . Notice (S − n
2 )d > (N18 −

n
2 )18mdim(1 +

2ε′) = Nmdim(1 + ε′) + mdim(Nε′ − 9n(1 + 2ε′)) > 1 + Nmdim(1 + ε′). As

ord(γ) < N(1 + ε′)mdim, conclude:

ord(γ) + 1 < (S − n

2
)d

For each U ∈ γ choose qU ∈ U so that {qU}U∈γ is a collection of distinct

points in X, and de�ne ṽU = (f̃(T iqU ))N−1
i=0 . According to Lemma 6.5 one

can �nd a continuous function F : X → ([0, 1]d)N , with the following prop-

erties:

(1) ∀U ∈ γ, ||F (qU )− ṽU ||∞ < ε
2 ,
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(2) ∀x ∈ X, F (x) ∈ co{F (qU )|x ∈ U ∈ γ},

(3) For any 0 ≤ l, j < N − 2S, and λ ∈ (0, 1] and x, y ∈ X it holds:

(1− λ)F (x)|l+2S−1
l + λF (y)|l+2S

l+1 /∈ V n
2S

where,

V n
2S , {w = (w0, . . . , w2∆−1) ∈ ([0, 1]d)2S |∀0 ≤ a, b ≤ 2S−1, a = b mod n→ wa = wb}.

By De�nition 5.3 one can �nd a continuous function n :
⋃M

2
−1

−4M T iZ → R so

that for En = {x ∈
⋃M

2
−2

−4M T iZ |n(Tx) 6= n(x) + 1} one has En ∩T i(En) = ∅

for 1 ≤ i ≤ 9
2M − 1. Let n(x) = bn(x)c mod M , n(x) = dn(x)e mod M ,

n′(x) = {n(x)}. Let A =
⋃M

2
−1

−4M T iZ. De�ne:

(6.4) f ′(x) = (1− n′(x)F (T−n(x)x)|n(x) + n′(x)F (T−n(x)x)|n(x) x ∈ A

f ′ is continuous by the argument appearing on p. 241 of [Lin99]. By the

argument of Claim 1 on p. 241 of [Lin99], as maxU∈α diam(f̃(U)) < ε
2 and

maxU∈γ ||F (qU ) − ṽU ||∞ < ε
2 we have ||f ′ − f̃|A||∞ < ε. By Lemma A.5 of

[Gut15] there is f : X → [0, 1]d so that f |A = f ′|A and ||f − f̃ ||∞ < ε. We

now show that f ∈ DK . Fix x′ ∈ Z and y′ ∈W . Assume for a contradiction

f(T ax′) = f(T ay′) for all a ∈ Z. Notice that by Remark 5.4 there is at

most one index −4M ≤ jx′ ≤ M
2 − 2 for which n(T jx′+1x′) 6= n(T jx′x′) + 1.

By Lemma 6.2 one can �nd an index −4M ≤ r ≤ 0 so that for r ≤ s ≤

r+ M
2 −1, n(T sx′) = n(T rx′) + s− r and n(T sx′) = n(T rx′) + s− r. Denote

λ = n′(T rx′) and a = n(T rx′). Substituting T sx′ for r ≤ s ≤ r + 2S − 1 =

r + M
2 − 1 in equation (6.4) (note T sx′ ∈ A), we conclude from the equality

If (x′)|r+
M
2
−1

r = If (y′)|r+
M
2
−1

r (compare with the analogue part in the proof

of Proposition 6.3):
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(1− λ)F (T r−ax′)|a+2S−1
a + λF (T r−a−1x′)|a+2S

a+1 = If (y′)|r+2S−1
r

As y′ ∈W ⊂ Hn, one clearly has If (y′)|r+2S−1
r ∈ V n

2S . This is a contradiction

to property (3).

�

Lemma 6.5. Let ε > 0. Let N,n, d, S ∈ N with N > 2S. Let γ be an open

cover of R with ord(γ) + 1 ≤ (S − n
2 )d. Assume {qU}U∈γ is a collection of

distinct points in R and ṽU ∈ ([0, 1]d)N for every U ∈ γ, then there exists a

continuous function F : R→ ([0, 1]d)N , with the following properties:

(1) ∀U ∈ γ, ||F (qU )− ṽU ||∞ < ε
2 ,

(2) ∀x ∈ R, F (x) ∈ co{F (qU )|x ∈ U ∈ γ},

(3) For any 0 ≤ l < N − 2S, and λ ∈ [0, 1] and x0, x1 ∈ R it holds:

(6.5) (1− λ)F (x0)|l+2S−1
l + λF (x1)|l+2S

l+1 /∈ V n
2S

where V n
2S , {y = (y0, . . . , y2S−1) ∈ ([0, 1]d)2S | ∀0 ≤ a, b ≤ 2S − 1, (a = b

mod n)→ ya = yb}.

Proof. Let {ψU}U∈γ be a partition of unity subordinate to γ so that ψU (qU ) =

1. Let ~vU ∈ ([0, 1]d)N , U ∈ γ be vectors that will be speci�ed later. De�ne:

F (x) =
∑
U∈γ

ψU (x)~vU

For x ∈ R de�ne γx = {U ∈ γ|ψU (x) > 0}. Let λ0 = 1 − λ, λ1 = λ. Write

(6.5) explicitly as:

(6.6)
1∑
j=0

∑
U∈γxj

λjψU (xj)~vU |l+2S−1+j
l+j /∈ V n

2S
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Note that dim(V n
2S) = nd and nd+|γx1 |+|γx2 | ≤ nd+2(ord(γ)+1) ≤ 2Sd

which will be used repeatedly. DenoteW = V n
2S+span

(
{~vU |l+2S−1

l }U∈γx0\γx1∪

{~vU |l+2S
l+1 }U∈γx1\γx0

)
. By Lemma A.6 of [Gut15], almost surely in

(
[0, 1]d)2S

)|γx14γx2 |,
dim(W ) = nd+ |γx14γx2 |. Let U ∈ γx0 ∩ γx1 . In equation (6.6) we �nd an

expression of the form λ0ψU (x0)~vU |l+2S−1
l +λ1ψU (x1)~vU |l+2S

l+1 . Using Lemma

6.6 repeatedly (exactly |γx0 ∩ γx1 | times) we conclude that for any �xed W

(i.e where we have chosen the parameters de�ning W ), almost surely in(
[0, 1]d)2S

)|γx0∩γx1 |, dim(W + span
(
{~vU |l+2S−1

l , ~vU |l+2S
l+1 }U∈γx0∩γx1

)
) = nd+

|γx14γx2 | + 2|γx1 ∩ γx2 | = nd + |γx1 | + |γx2 |. As the left-hand side of (6.6)

is a convex combination of almost surely independent vectors belonging to

a linear subspace which intersects V n
2S trivially , we conclude Equation (6.6)

holds almost surely in the parameters involved. As there is a �nite number of

constraints of the form (6.6), we can therefore choose ~vU ∈ ([0, 1]d)N , U ∈ γ

so that properties (1) and (3) hold. Finally property (2) holds trivially as

F (qU ) = ~vU . �

Lemma 6.6. Let m, r ∈ N with r < m. Let V ⊂ Rm be a linear sub-

space with dim(V ) ≤ m− 2. Then almost surely w.r.t Lebesgue measure for

(x1, x2, . . . xr+m) ∈ [0, 1]r+m,

W (x1, x2, . . . xr+m) = span{(x1, . . . xm), (xr+1, xr+2, . . . xr+m)} ⊂ Rm

is a linear subspace such that dim(V +W ) = dim(V ) + 2.

Proof. Clearly one can assume w.l.o.g dim(V ) = m− 2. Choose a basis for

V , v1, . . . vm−2 and consider the square m×m matrix

M = [(x1, . . . xm), (xr+1, xr+2, . . . xr+m), v1, . . . vm−2]

where the vectors should be understood as the columns of M . Let ctl,

t < l denote the determinant of the submatrix corresponding to erasing
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the �rst two columns and rows t and l. Note it is not possible that all

ctl = 0. Indeed as v1, . . . vm−2 are linearly independent we can add vec-

tors vm−1, vm so that v1, . . . vm spans Rm. Using Leibniz formula for the

determinant of [vm−1, vm, v1, . . . vm−2] we see that not all ctl = 0. Order

{ctl}tl lexigoraphically and let cij be the minimal non-zero element. Notice

det(M) = ±xi(xj+rcij + f) + g where f does not depend on xi, xj+r and g

does not depend on xi. The crucial fact that f does not depend on xi, xj+r

follows from the minimality of cij . We now derive conditions which guaran-

tee det(M) 6= 0. We impose no conditions on {x1, x2, . . . xr+m} \ {xi, xj+r}.

For a �xed choice of values for {x1, x2, . . . xr+m} \ {xi, xj+r} which deter-

mines f we require xj+r 6= f
cij
. Fixing additionally xj+r according to this

condition g is determined and we require xi 6= g
xj+rcij+f . By Fubini's The-

orem we conclude det(M) 6= 0 almost surely w.r.t Lebesgue measure for

(x1, x2, . . . xr+m) ∈ [0, 1]r+m.

�

7. Applications of the embedding theorem

In this section we present two general applications of Theorem 6.1. Recall

that Lindenstrauss proved in [Lin99] that an extension of an aperiodic min-

imal system with mdim(X,T ) < d
36 is embeddable in (([0, 1]d)Z, shift). In

Theorem 7.1 we replace the condition of being an extension of an aperiodic

minimal system by being an extension of an aperiodic t.d.s which either is

�nite-dimensional or has a countable number of minimal subsystems or has

a compact minimal subsystems selector. These classes correspond exactly

to the classes where we have proved the marker property to hold. Although

establishing the marker property in these cases is far from trivial, we believe

this theorem is an indication of the usefulness of the marker property point

of view.
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The second application of Theorem 6.1, Theorem 7.3, di�ers qualitatively

from 7.1. According to this theorem a t.d.s with a �nite dimensional non-

wondering set and a closed set of periodic points such that perdim(X,T ) <

d
2 is embeddable in (([0, 1]d)Z, shift). The theorem has several striking

qualities. Firstly it is a true example of embedding in the presence of periodic

points, which is the the title of this work. Secondly it does not involve the

notion of mean dimension due to an application of a highly non-trivial �mean-

dimension addition formula� due to Tsukamoto. Finally, as will be discussed

in the next section, it can be applied in the realm of �uid mechanics.

Theorem 7.1. Assume (X,T ) is an extension of an aperiodic t.d.s which

either is �nite-dimensional or has a countable number of minimal subsystems

or has a compact minimal subsystems selector. Then (X,T ) has the strong

Rokhlin property. If in addition d ∈ N is such that mdim(X,T ) < d
36 , then

the collection of continuous functions f : X → [0, 1]d so that If : (X,T ) ↪→

(([0, 1]d)Z, shift) is an embedding is comeagre in C(X, [0, 1]d).

Proof. In those cases, by Theorems 3.5, 3.9 as well as Theorem 6.1 of [Gut15],

(X,T ) has the marker property. We can therefore conclude by Theorem 5.7

that (X,T ) has the strong Rokhlin property. By Theorem 6.1 , as (X,T ) is

aperiodic the second part of the theorem holds. �

Lemma 7.2. mdim(X,T ) = mdim(Ω(X), T )

Proof. Clearly mdim(X,T ) ≥ mdim(Ω(X), T ). To see the reversed inequal-

ity let Y = X/Ω(X) (i.e. the quotient space where the closed and T -invariant

subspace Ω(X) is identi�ed with a point) and let π : (X,T )→ (Y, T ′) be the

quotient map, where T ′ is the induced transformation. Note that πX\Ω(X)

is injective. We can therefore use the remarkable �mean-dimension addi-

tion formula� [Tsu08, Theorem 4.6] in order to conclude mdim(X,T ) ≤
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mdim(Y, T ′)+mdim(Ω(X), T ). As π(Ω(X)) ' {•} is the only closed invari-

ant subsystem of Y , it holds htop(Y, T ′) = 0 which implies mdim(Y, T ′) = 0

(see Subsection 2.9). We therefore conclude mdim(X,T ) ≤ mdim(Ω(X), T )

as desired.

�

Theorem 7.3. Let (X,T ) be a t.d.s so that Ω(X) is �nite dimensional, the

set of periodic points P (X,T ) is closed and perdim(X,T ) < d
2 . Then the

collection of continuous functions f : X → [0, 1]d so that If : (X,T ) ↪→

(([0, 1]d)Z, shift) is an embedding is comeagre in C(X, [0, 1]d).

Proof. By Lemma 7.2 as Ω(X) is �nite dimensional,mdim(X,T ) = mdim(Ω(X), T ) =

0. By Theorem 4.4 (Ω(X), T ) has the local marker property. By Propo-

sition 4.5 (X,T ) has the local marker property. Combining all of these

facts, we conclude by Theorem 6.1 that the collection of continuous func-

tions f : X → [0, 1]d so that If : (X,T ) ↪→ (([0, 1]d)Z, shift) is an embedding

is comeagre in C(X, [0, 1]d). �

Remark 7.4. Note that the statement of Theorem 7.3 does not involve mean-

dimension but its proof does. It would be interesting to �nd a direct proof.

Recall the Lindenstrauss-Tsukamoto Conjecture from the Introduction.

Corollary 7.5. Let (X,T ) be a t.d.s so that Ω(X) is �nite dimensional

and the set of periodic points P (X,T ) is closed, then the Lindenstrauss-

Tsukamoto Conjecture holds for (X,T ).

Proof. It is su�cient to notice that mdim(X,T ) = 0 (as pointed out in the

proof of Theorem 7.3) and apply Theorem 7.3.

�

Example 7.6. We now construct a family of examples for which the previous

theorem is applicable. Let R : [0, 1]→ [0, 1] be a continuous invertible map
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such that R(0) = 0, R(1) = 1 and such there are no other �xed points. It

easily follows that for all 0 < x < 1, limn→∞R
n(x) = 1, limn→−∞R

n(x) = 0

or limn→∞R
n(x) = 0, limn→−∞R

n(x) = 1, e.g. R(x) =
√
x, x2. Let Q =

[0, 1]N, be the Hilbert cube, equipped with the product topology. De�ne R :

Q → Q, by R((xi)
∞
i=1) = (R(xi))

∞
i=1. It is easy to see Ω(Q,R) = {0, 1}N.

Let (Y, S) be a �nite dimensional t.d.s with a closed set of periodic points. It

follows easily that Ω(Y ×Q,S×R) = Ω(Y, S)×Ω(Q,R) = Ω(Y, S)×{0, 1}N.

As {0, 1}N is zero-dimensional and Ω(Y, S) ⊂ Y , we conclude Ω(Y ×Q,S×R)

is �nite-dimensional. Moreover P (Y ×Q,S×R) = P (Y, S)×{0, 1}N, which

is closed. We have thus veri�ed all prerequisites that enable us to apply

the previous theorem for the in�nite-dimensional system (Y × Q,S × R).

Additionally notice that as {0, 1}N consists of �xed points of (Q,R) and is

zero-dimensional,
−−−−→
perdim(Y ×Q,S ×R) =

−−−−→
perdim(Y, S).

8. The two-dimensional Navier-Stokes Equations

8.1. Overview of the Section. Theorem 7.3 is closely related to a situa-

tion not uncommon in dynamical systems arising in physics - the existence of

a �nite dimensional global attractor (see de�nition below). Good references

to this and related subjects are [Hal88, Lad91, Tem97]. A case in point are

the Navier-Stokes equations which describe the motion of �uid. We will con-

centrate on the case where the �ow is con�ned to a two-dimensional domain

as it is much better understood than the general three-dimensional case. Two

dimensional models for �ows may sound unrealistic but actually bear some

importance both as an approximation to certain real life phenomena and as a

gateway to the three dimensional case (see p. 13 of Chapter I of [FMRT01]).

Our goal is to embed a discrete model of the Navier-Stokes equations into

a cubical shift. In Subsection 8.2 we introduce the Navier-Stokes equations
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and an associated (Hilbert) space of solutions. In Subsection 8.3 we intro-

duce a discrete model on a compact set which is absorbing. This means that

every initial state will end up in this set after �nite time. The discrete model

which we obtain is not invertible. In Subsection 8.4 we embed the discrete

model inside an invertible t.d.s. In Subsection 8.5 we verify that that the

non-wandering set of this invertible t.d.s is �nite dimensional. In Subsection

8.6 we apply Theorem 7.3 to the invertible system and obtain as a conse-

quence su�cient conditions for embedding of the discrete model in a cubical

Z-shift. These conditions include the requirement that the set of periodic

points is closed. In Subsection 8.7 we improve the embedding theorem by

removing this condition.

8.2. Background. Following [Rob11, Rob13], consider the Navier-Stokes

equations for a two-dimensional incompressible viscous �ow:



∂u
∂t − ν∆u+ (u · ∇)u+∇p = f(x)

∇u = 0∫
Ω u dx = 0 ,

∫
Ω f(x) dx = 0

u(x, 0) = u0(x),

subject to periodic boundary conditions with basic domain Ω = [0, L]2, L >

0. The velocity �eld, u = (u′, u′′), and the pressure, p, are the unknown

functions, while f(x) is a given forcing term and ν > 0 is a given constant

viscosity.

Let us denote by

V = {u ∈ [C∞per(Ω)]2| ∇ · u = 0 and
∫

Ω
u dx = 0},

Here:
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C∞per(Ω) = {u ∈ C∞(R2)| ∀x ∈ R2 u(x+ Lei) = u(x) i = 1, 2}

where {e1, e2} is the standard orthonormal basis of R2.

Denote by H the Hilbert space which is the closure of V in [L2
per(Ω)]2

and denote the induced norm by || · ||. The so called functional equation for

the Navier-Stokes equations can be written as an evolution equation in the

Hilbert space H as:

(8.1)


du
dt + νAu(t) +B(u(t), u(t)) = f, for t > 0,

u(0) = u0

where A is a certain linear operator and B is a certain bi-linear form and

f ∈ H. It can be shown that given u0 ∈ H, there is a unique solution u =

uu0(x, t) ∈ C0([0,∞), H). We de�ne a semigroup of solution operators

(also known as a transformation monoid), S ={S(t)}t≥0 by S(t) : H → H

for t ≥ 0 by:

S(t)u0 = uu0(·, t)

Fixing T = S(t) for some t > 0, we get a continuous map N×H → H given

by (n, u0) 7→ Tnu0. One of the remarkable properties of S is the existence of

a �nite-dimensional global attractor as de�ned next:

De�nition 8.1. A ⊂ H is a called a global attractor for S(t0) for some

t0 > 0 if

(1) A is compact,

(2) S(t0)(A) = A; and



DYNAMICAL EMBEDDING IN CUBICAL SHIFTS 34

(3) A attracts bounded sets, i.e. for every bounded subset B of H,

(8.2) lim
n→∞

dist(S(nt0)(B), A) = 0,

where dist(C,D) = supc∈C infd∈D ‖c − d‖ is the Hausdor� semidis-

tance.

A ⊂ H is a called a global attractor for S if A is a global attractor for

S(t0) for all t0 > 02. Notice that if a global attractor exists then it is unique.

In [Rob11, Subsection 11.4] the existence of the global attractor is proven

by showing the existence of a compact absorbing set for S as de�ned next:

De�nition 8.2. X is called absorbing for S if for every bounded subset B

of E there exists tB ≥ 0 such that,

(8.3) ∀t ≥ tB S(t)B ⊂ X

Moreover it is shown that if B = BM (0) (the closed ball of radiusM around

the origin) then it is su�cient to take tB = max{0,− log ||f ||
2

M2 }+1 in order to

guarantee 8.3. This means that in practice (i.e. in a real experiment) we may

guarantee that after a certain calculable time the system is in an absorbing

compact set. Whereas the system tends to the global attractor as time tends

to in�nity, it is guaranteed to belong to an absorbing compact set after a

�nite time. Thus understanding absorbing compact sets is interesting.

8.3. A discrete model. In order to align ourselves with the material de-

veloped in previous chapters we proceed to discretize the action speci�ed by

S. Let X be a compact absorbing set. As X is bounded, by Equation (8.3)

there exists tX ≥ 0 such that:

(8.4) ∀t ≥ tX S(t)X ⊂ X
2[Rob11, Rob13] use an a priori stronger de�nition but for our purposes the given

de�nition is su�cient.
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Thus if we choose any t ≥ tX and de�ne T = S(t) then T : X → X de�nes

a t.d.s3. However as will be seen in Remark 8.13, it sometime desirable to

be able to choose t > 0 as small as we wish. The next lemma show how to

modify X so that this is possible.

Lemma 8.3. Suppose X is a compact absorbing set and tX ≥ 0 such that for

all t ≥ tX , S(t)X ⊂ X. Let t > 0 and denote T = S(t) and n = d tXt e. De�ne

X ′ =
⋃n
k=0 T

kX, then X ′ is a compact absorbing set such that TX ′ ⊂ X ′.

Proof. As X ′ is a �nite union of continuous images of X, X ′ is compact. As

X ′ contains X, it is absorbing. Finally TX ′ =
⋃n
k=0 T

k+1X ⊂ X ′ ∪ Tn+1X.

However by Equation (8.4), Tn+1X ⊂ X ⊂ X ′. �

From now on we assume tX = 0. We choose some t > 0 that will be

speci�ed later and consider the t.d.s (X,T ) where T = S(t).

8.4. An invertible model. As pointed out before the continuous map

T : X → X is not necessarily invertible. However by subsection 2.5 of

[Rob13], T is injective. In order to align ourselves with the material de-

veloped in previous chapters we proceed to equivariantly embed (X,T ) in-

side an invertible t.d.s with almost unchanged non-wandering and periodic

points sets. In Subsection 8.7, we exhibit a di�erent approach which yields

a stronger result. As a consequence we leave some of the topological details

of the argument in this section to the interested reader.

Lemma 8.4. Let (X,T ) be a t.d.s consisting of a metric compact space X

and a continuous injective map T : X → X. Then there exists an invertible

t.d.s (X∞, T∞) consisting of a metric compact space X∞ and a continuous

invertible map T∞ : X∞ → X∞, as well as an equivariant embedding φ :

3In this section a topological dynamical system (t.d.s) (X,T ) consists of a compact

metric space X and a continuous (not necessarily invertible) transformation T : X → X.
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(X,T ) ↪→ (X∞, T∞), i.e. an embedding φ : X ↪→ X∞ such that T∞φ = φT ,

with the following properties:

(1) There exists an element ∞ ∈ X∞ \X such that T∞∞ =∞ (∞ is a

�xed point).

(2) P (X∞, T∞) = φ(P (X,T )) ∪ {∞}.

(3) Ω(X∞, T∞) = φ(Ω(X,T )) ∪ {∞}.

Proof. The proof of the lemma is straightforward. Inductively one adds to

X preimages of order 1, 2, . . . for those points of X which do not have a

preimage to start with. Finally one takes the one-point compacti�cation of

the resulting locally compact space. We assume w.l.o.g that X \ TX 6= ∅

as otherwise the lemma is trivial. Let us now describe the proof in several

steps:

Constructing an increasing chain of embeddings: In this step we

construct injective but not invertible t.d.s (X,T ) = (X1, T1), (X2, T2), . . .

and equivariant embeddings φi : (Xi, Ti) ↪→ (Xi+1, Ti+1) (Ti+1φi = φiTi)

for i = 1, 2, . . .. Assume we have constructed (Xn, Tn). Let us construct

(Xn+1, Tn+1). De�ne L1
n = Xn \ TnXn. This is the closure of the set of

points which do not have a preimage under Tn. De�ne D1
n = L1

n ∩ TnXn

and C1
n = T−1D1

n. Trivially D1
n ⊂ L1

n. Let L2
n be a (homeomorphic and

disjoint) copy of L1
n with D2

n a copy of D1
n. Denote the natural isomorphism

in : L2
n ↔ L1

n. Notice Tn|C1
n

: C1
n → D1

n induces a homeomorphism T ′n : C1
n →

D2
n by T ′n = in ◦ Tn|C1

n
. De�ne Xn+1 as the adjunction space

(
Xn

◦
∪ L2

n

)
/ ∼

where ∼ is the closed equivalence relation induced by the identi�cation map

T ′n. One now checks Xn+1 is compact and metric and a natural embedding

φn : Xn ↪→ Xn+1 is induced. Abusing notation we write Xn ⊂ Xn+1.

We now de�ne the continuous map Tn+1 : Xn+1 → Xn+1 such that

Tn+1|Xn
= Tn by the the following:
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Tn+1x =


Tnx x ∈ Xn

in(x) x /∈ Xn

Note that Tn+1 is well de�ned as if [x]∼ ∈ Xn ∩ L2
n with [x] = {x1, x2}

with x1 ∈ C1
n and x2 ∈ D2

n, then by de�nition of the adjunction space

in(x2) = Tnx1.

Embedding the original system inside a locally compact space

equipped with a homeomorphism: De�ne Y as the direct limit of the

Xi, Y = lim−→Xi. One checks that Y is locally compact and natural embed-

dings jn : Xn ↪→ Y are induced. Abusing notation we write Y =
⋃
Xi. We

now de�ne the map S : Y → Y by Sy = Tnx if y ∈ Xn. One checks this is

well de�ned and that the resulting map S is a homeomorphism. Moreover

j1 : (X,T ) ↪→ (Y, S) is an equivariant embedding, i.e. S ◦ j1 = j1 ◦ T .

One-point compacti�cation of the locally compact space: De�ne

X∞ = Y ∪ {∞} to be the one-point compacti�cation of Y . De�ne the

homeomorphism T∞ : X∞ → X∞ by T∞x = Sx if x 6= ∞ and T∞∞ = ∞.

(X∞, T∞) is the invertible t.d.s described in the statement of the lemma.

As Y embeds in X∞, we have an equivariant embedding φ : (X,T ) ↪→

(X∞, T∞). Abusing notation we will write X = X1 ⊂ X2 ⊂ · · ·X∞ and

identify T and T∞ on X. It is easy to see P (X∞, T∞) = P (X,T ) ∪ {∞}.

Notice that for all n ∈ N, Tn−1
∞ Xn ⊂ X. Let x ∈ X∞ \ (X ∪{∞}). As X∞ is

regular andX∪{∞} is closed we may �nd an open set U such that x ∈ U ⊂ U

and U ∩ (X ∪ {∞}) = ∅. As U is compact we conclude there exists N ∈ N

so that U ⊂ XN . This implies that for all k ≥ N − 1, T kU ∩ U = ∅ which

implies in turn x /∈ Ω(X∞, T∞) (recall the de�nition of the non-wandering

set in Subsection 2.2). We thus conclude Ω(X∞, T∞) = φ(Ω(X,T )) ∪ {∞}

as desired. �
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8.5. Veri�cation that the non-wandering set is �nite-dimensional.

A remarkable property of S is the fact that the global attractor has �nite

upper box-counting dimension (see [Rob11, Subsection 12.4]). This certainly

implies that the global attractor has �nite Lebesgue covering dimension4. Let

us denote the global attractor by A. Clearly A ⊂ X. Our next goal is to

show Ω(X,T ) ⊂ A which will imply Ω(X,T ) is �nite dimensional. To do so

we introduce a variant of the classical notion of an omega-limit of a point:

De�nition 8.5. Let (X,T ) be a t.d.s and let C ⊂ X. The omega-limit of

C is de�ned by:

ω(C) ,
⋂
k≥0

⋃
n≥k

Tn(C) = {x ∈ X|x = lim
j→∞

Tnj (bj), nj →∞, bj ∈ C}

Lemma 8.6. Ω(X,T ) ⊂ A.

Proof. By Theorem 11.3 of [Rob11] slightly adapted to the case of T = S(t)

we have A = ω(X). Assume x ∈ Ω(X,T ). For any open set U such that

x ∈ U we may �nd n as a large as we wish so that T−nU ∩ U 6= ∅. This

implies one may �nd a sequence kn →∞ and bn ∈ X, such that Tnbn → x.

Conclude that x ∈ ω(X) = A. �

8.6. A conditional embedding theorem. As a result of the previous sub-

sections and Theorem 7.3 we have the following theorem:

Theorem 8.7. Let S be a semigroup of solutions operators associated with

Equation (8.1). Let X be a compact absorbing set for S. Let T = S(t) such

that (X,T ) is a t.d.s. Let (X∞, T∞) be the invertible model constructed in

Subsection 8.4 in which (X,T ) equivariantly embeds. If the set of periodic

points P (X,T ) is closed and perdim(A, T ) < d
2 for some d ∈ N, then the

4The Lebesgue covering dimension of a compact metric space is less or equal its upper

box-counting dimension ([Rob11, p. 85]).
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collection of continuous functions f : X∞ → [0, 1]d so that If : (X∞, T∞) ↪→

(([0, 1]d)Z, shift) is an embedding is comeagre in C(X, [0, 1]d).

Proof. According to Lemma 8.6, Ω(X,T ) is �nite dimensional. According

to Lemma 8.4 we may embed (X,T ) inside an invertible t.d.s (X∞, T∞) such

that P (X∞, T∞) is closed, Ω(X∞, T∞) is �nite dimensional and perdim(X∞, T∞) =

perdim(X,T ) = perdim(A, T ). The last equality holds as P (X,T ) ⊂ Ω(X,T ) ⊂

A by Lemma 8.6. We now apply Theorem 7.3. �

The previous theorem is conditional in the sense that for given f ∈ H and

ν > 0, one has to verify that the set of periodic points P (X,T ) is closed. As

far as the author is aware of this has not been veri�ed or invalidated in the

literature on the Navier-Stokes equations. It is therefore desirable to prove

a similar theorem which does not require this condition. This is the subject

of the next subsection.

8.7. An unconditional embedding theorem. Recall that in [Gut15] it

was proven that if (X,T ) is a �nite dimensional t.d.s with perdim(X,T ) < d
2 ,

then (X,T ) is embeddable in (([0, 1]d)Z, shift) comeagrely. Moreover as X

is �nite dimensional, the inequality perdim(X,T ) < d
2 can be veri�ed even if

one can only control a �nite number of quantities of the form dim(Pk(X,T ))

and in particular if d ≥ 2 dim(X) + 1. In this subsection we show that

the same is true for (X,T ), where T = S(t), due to existence of a �nite

dimensional global attractor. We start with a simple lemma:

Lemma 8.8. Let S be a semigroup of solutions operators associated with

Equation (8.1). Let t > 0 and suppose X is a compact absorbing set for

T = S(t), and A is a �nite dimensional global attractor for T . Let U be an

open set such that A ⊂ U then there exists N ∈ N such that for all n ≥ N ,

Tn(X) ⊂ U .
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Proof. One can assume w.l.o.g U 6= X. As X is compact it is bounded in H.

Therefore by De�nition 8.1 limn→∞ dist(TnX,A) = 0, where dist(TnX,A) =

supc∈TnX infa∈A ‖c − a‖. It is therefore enough to show that there exists

ε > 0 such that for any c ∈ U c, infa∈A ‖c− a‖ > ε. Assume this is not true.

Choose a sequence cn ∈ U c with dist(cn, A) ≤ 1
n . Assume w.l.o.g cε → c.

Then c ∈ U c ∩A which is a contradition. �

Lemma 8.9. Let F ⊂ X be a closed set and n ∈ N. Let α′ = {A′j}j∈J be

a �nite open cover of X. Let β = {Bi}i∈I be a �nite re�nement of α′|F =

{A′j ∩ F}j∈J such that ord(β) ≤ n. Then there exists a �nite collection τ ,

of open sets in X, such that τ re�nes α′, covers F and ord(τ) ≤ n.

Proof. As β is a re�nement of α′, we may �nd a mapping i 7→ ji such that

Bi ⊂ A′ji for all i ∈ I. By [Dug66, Theorem 6.1 of Chapter VII] the normality

of X implies we may �nd a closed cover of F , γ = {Ci}i∈I (for all i, Ci ⊂ F ),

such that Ci ⊂ Bi ⊂ A′ji|F . Let 0 < ε = min{i|A′
ji
6=X} d(Ci, A

′c
ji

) (this

distance is measured in X). As ord(β) ≤ n, for any distinct i1, i2, . . . in+2,

one has
⋂n+2
k=1 Cik = ∅. We claim there exists 0 < δ < ε such that for any

distinct i1, i2, . . . in+2,
⋂n+2
k=1 Bδ(Cik) = ∅. Indeed if such a δ > 0 does not

exist one can �nd speci�c i1, i2, . . . in+2 and xm ∈ B 1
m

(Cik) for k = 1, . . . n+2

and m ∈ N. Assume w.l.o.g xm → x to conclude x ∈
⋂n+2
k=1 Cik which is a

contradiction. We �nally de�ne a cover of F , τ = {Bδ(Ci)}i∈I . Clearly τ

re�nes β and therefore re�nes α′ and has ord(τ) ≤ n. �

Theorem 8.10. Let S be a semigroup of solutions operators associated with

Equation (8.1). Let t > 0 and suppose X is a compact absorbing set for T =

S(t), and A is a �nite dimensional global attractor for T . If perdim(A, T ) <

d
2 for some d ∈ N, then the collection of continuous functions f : X → [0, 1]d

so that If : (X,T ) ↪→ (([0, 1]d)N,N− shift) is an embedding is comeagre in

C(X, [0, 1]d).
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Proof. The proof is achieved by adapting the proof of Theorem 8.1 in [Gut15]

which uses the Baire category theorem framework (see Subsection 2.10). Just

as in [Gut15, Theorem 8.1 ], we will use the following representation (X ×

X)\(4∪(P×P )) = D1∪D2 whereD1 = (X×X)\(4∪(P6n×X)∪(X×P6n))

and D2 = (P6n× (X \P ))∪ ((X \P )×P6n). The case of D2 is similar to the

case of D1 so we give the details only for this case. This amounts to adopting

Lemma 8.2 of [Gut15]. Let (x, y) ∈ D1. We may �nd open sets Ux, Uy ⊂ X

so that x ∈ Ux, y ∈ Uy and so that {T ikUx, T ikV y}2nk=0 are pairwise disjoint

for 0 = i0 < i < · · · < i2n. De�ne K(x,y) = Ux× V y. Let ε > 0. Let f̃ : X →

[0, 1]d be a continuous function. We will show that there exists a continuous

function f : X → [0, 1]d so that ‖f−f̃‖∞ < ε and If is N−K(x,y)-compatible.

Let α be an open cover of X with maxW∈α,k∈{0,1,...,2n} diam(f̃(T ikW )) < ε
2 ,

maxW∈α diam(W ) < ε. Denote dim(A) = n. By Lemma 8.9, one may

�nd a a �nite collection τ , of open sets in X, [Gut15] such that τ re�nes

α, covers A and ord(τ) ≤ n. Denote A ⊂
⋃
τ , U . By Lemma 8.8,

there is an N ∈ N, such that TNK(x,y) ⊂ U × U . We now continue by

applying the proof of Proposition 8.2 of [Gut15] verbatim to TNK(x,y) with

one caveat. Indeed observe that although Proposition 8.2 of [Gut15] is stated

for invertible T : X → X, the proof only uses the fact T is injective. �

Remark 8.11. Note that the previous theorem used essentially the fact that

a global �nite dimensional attractor exists. Trying to remove the condition

of a closed set of periodic points from the statement of Theorem 7.3 seems

harder.

The next two remarks shows how the condition perdim(A, T ) < d
2 can be

dealt with.

Remark 8.12. Let dim(A) = n. As n
b 2n

d
c+1

< d
2 , in order to verify perdim(A, T ) <

d
2 , it is enough to verify for all m ≤ m0 , b2n

d c+ 1:
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dim(Pm(A, T ) <
dm

2

Note this constitutes a �nite number of inequalities. Moreover if d > 2n the

condition perdim(A, T ) < d
2 is void.

Remark 8.13. According to [Kuk94] under certain conditions on the param-

eters, if t > 0 is small enough, it is possible to show that P1(X,S(t)) =

P2(X,S(t)) = · · · = Pm0(X,S(t)). In a similar (but not identical) set-up to

the one used here, [Tem80] shows that generically P1(X,S(t)) is �nite, in

particular zero-dimensional. One wonders if the same is true here.
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Appendix A. The Equivalence of SBP and Vanishing Mean

Dimension Under the Marker Property

Recall the de�nition of mdimd(X,T ) in Subsection 2.9.

Theorem A.1. If (X,T ) has the marker property then there is a compatible

metric d′ such that mdim(X,T ) = mdimd′(X,T ).

Proof. This is a straightforward generalization of Theorem 4.3 of [Lin99],

which is the statement that the conclusion of the theorem holds if the system

has an aperiodic minimal factor. �
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As a corollary of the previous theorem we have the following theorem:

Theorem A.2. Assume (X,T ) is an extension of an aperiodic t.d.s which

either is �nite dimensional or has a countable number of minimal subsystems

or has a compact minimal subsystems selector then there is a compatible

metric d′ such that mdim(X,T ) = mdimd′(X,T ).

Theorem A.3. If (X,T ) has the marker property then the following condi-

tions are equivalent:

(a) mdim(X,T ) = 0

(b) (X,T ) has the small boundary property (SBP)

(c)(X,T ) = lim←−
i∈N

(Xi, Ti) where htop(Xi, Ti) <∞ for i ∈ N.

Proof. (a)⇒ (b) is straightforward generalization of Theorem 6.2 of [Lin99],

which is the statement that (a) ⇒ (b) holds if the system has an aperiodic

minimal factor. (c) ⇒ (a) follows from Proposition 2.8 of [LW00] (this im-

plication is true for any system). (b) ⇒ (a) is Theorem 5.4 of [LW00] (this

implication is true for any system). (a)⇒ (c) is straightforward generaliza-

tion of Proposition 6.14 of [Lin99], which is the statement that (a) ⇔ (c)

holds if the system has an aperiodic minimal factor. �

As a corollary of the previous theorem we have the following theorem:

Theorem A.4. Assume (X,T ) is an extension of an aperiodic t.d.s which

either is �nite dimensional or has a countable number of minimal subsystems

or has a compact minimal subsystems selector then then mdim(X,T ) = 0

i� (X,T ) has the small boundary property i� (X,T ) = lim←−
i∈N

(Xi, Ti) where

htop(Xi, Ti) <∞ for i ∈ N.
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