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Abstract. Mean dimension is an invariant which makes it possible to distinguish between
topological dynamical systems with infinite entropy. Extending in part the work of
Lindenstrauss we show that if (X, Zk) has a free zero-dimensional factor then it can
be embedded in the Zk-shift on ([0, 1]d)Z

k
, where d = [C(k) mdim(X, Zk)] + 1 for

some universal constant C(k), and a topological version of the Rokhlin lemma holds.
Furthermore, under the same assumptions, if mdim(X, Zk)= 0, then (X, Zk) has the small
boundary property. One of the applications of this theory is related to Downarowicz’s
entropy structure, a master invariant for entropy theory, which captures the emergence of
entropy on different scales. Indeed, we generalize this invariant and prove the Boyle–
Downarowicz symbolic extension entropy theorem in the setting of Zk-actions. This
theorem describes what entropies are achievable in symbolic extensions.

1. Introduction
1.1. Zk-Actions. Throughout this paper we denote a topological dynamical system by
(X, Zk). The action is denoted by T gx for g ∈ Zk . We call a Zk-dynamical system free if,
for every x ∈ X and every E0 6= g ∈ Zk , it holds that T gx 6= x .

1.2. Dimension. Let X be a compact metric space. The Lebesgue covering dimension
(or simply topological dimension) is an important invariant of topological spaces. Given
a cover α of a space X consisting of open sets U1,U2 . . . ,Un , define its order by
ord(α)=maxx∈X

∑
U∈α 1U (x)− 1. Next let D(α) stand for the minimum order with

respect to all covers β refining α (denoted by β � α), i.e. D(α)=minβ�α ord(β). This
enables us to present the definition of topological dimension:

dim(X)= sup
α

D(α).
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1.3. Mean dimension. Let α, β be open covers of X . The join of α and β is the open
cover by all sets of the form A ∩ B where A ∈ α, B ∈ β. Similarly we can define the
join

∨n
i=1 αi of any finite collection of open covers of X . Write Fn = {−n, . . . , n}k and

define [Gro99]

mdim(X, Zk)= sup
α

lim
n→∞

D(
∨

g∈Fn
T gα)

|Fn|
.

One can show that the limit exists (see [LW00, Theorem 6.1]). In [LW00] Lindenstrauss
and Weiss showed that mdim(([0, 1]d)Z, shift)= d. In addition they constructed minimal
systems of arbitrary large mean dimension. For some time it was believed that any
Z-minimal system is embeddable in ([0, 1]Z, shift). However their work showed this to be
false. As embeddings do not raise mean dimension, it is clear that a dynamical system of
mean dimension greater than one cannot be embedded in ([0, 1]Z, shift).

1.4. Embedding-dimension. Define

edim(X, Zk)=min{n ∈ N ∪ {∞} | ∃θ : (X, Zk) ↪→ (([0, 1]n)Z
k
, shift)}.

This is the minimal n such that there is a continuous equivariant embedding of (X, Zk)

into the shift on the n-cube. Notice that any compact metric space can be embedded in
[0, 1]N which implies that (X, Zk) is naturally embedded in (([0, 1]N)Z

k
, shift), hence

edim(X, Zk) is well defined. In an ingenious article [Lin99] Lindenstrauss proved that
edim(X, Z)≤ 36 mdim(X, Z)+ 1 for extensions of non-trivial minimal Z-systems.

1.5. Dense embedding. As Baire category theorem plays a crucial role in the various
proofs of this work, it is convenient to introduce the following definitions. To any mapping
f ∈ C(X, [0, 1]d) we associate I f . This is the continuous Zk-equivariant mapping I f :

(X, Zk)→ (([0, 1]d)Z
k
, shift) given by I f (x)= ( f (T gx))g∈Zk . Write

Er
= { f ∈ C(X, [0, 1]r ) | I f : (X, Zk) ↪→ (([, 1]r )Z

k
, shift) is an embedding}.

One says edim(X, Zk)≤ d densely if Er is dense in C(X, [0, 1]r ), for some r ≤ d (in
‖ · ‖∞ topology).

1.6. Locally finite tilings. Let F be the collection consisting of all compact convex
polytopes of Rk with non-empty interiors. Denote by 8 the space of tilings by polytopes
in F , i.e. ν ∈8 if and only if ν = {Vn}n∈N where the Vn ∈ F have pairwise disjoint
interiors and their union equals Rk . We also require the tilings ν ∈8 to be locally finite in
the sense that any compact region of Rk intersects only a finite number of members of ν.
We introduce a topology for 8. First notice that one can consider 8 to be a subset of 2F ,
where 2• denotes power set. Given A ⊂ Rk , define the restriction operator |A :8→ 2F

by ν|A = {V ∈ ν | V ⊂ A}. Equip 8 with the topology generated by the basis consisting
of all

U(ν, ε)= {τ ∈8 | ∀V ∈ ν|B1/ε(E0)
∃V ′ ∈ τ s.t. dH (V, V ′) < ε},
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where B1/ε(E0) denotes the open ball of radius 1/ε around the origin of Rk and

dH (V, V ′)= inf{ε > 0 | V ⊂ Bε(V
′) ∧ V ′ ⊂ Bε(V )}

is the Hausdorff distance defined for pairs of closed sets (see the definition of Bε(V ) in
§1.13).

There is a natural continuous action of Rk on 8 by translations. Indeed if ν = {Vi }i∈N
then T gν = {g + Vi }i∈N.

1.7. Intersection property. In order to tackle the Zk-case we introduce a new definition.
Let θk =

√
k/2 and for A ⊂ Rk define A−r = {x ∈ Rk

| d(x, Ac)≥ r}.

Definition 1.7.1. A continuous Zk-equivariant mapping φ : (X, Zk)→ (8, Zk) is called
an (r, µ)-intersection function if for all x, y ∈ X there exist V x

∈ φ(x) and V y
∈ φ(y)

with V x , V y
⊂ Br/2(E0) such that

|V x
−θk
∩ V y
−θk
∩ Zk
| ≥ µ(2r + 1)k .

(X, Zk) has the intersection property (IP) if there exists a constant 0< µ< 1, so that
for any N ∈ N there exists n ≥ N and a continuous Zk-equivariant mapping φ : (X, Zk)→

(8, Zk) which is a (n, µ)-intersection function. The constant µ is referred to as the
intersection ratio.

In this work we extend the techniques of Lindenstrauss in order to prove the following
theorem.

THEOREM 1.7.2. If (X, Zk) has the intersection property with intersection ratio 0<
µ< 1 then there exists C = C(k, µ) > 0 such that edim(X, Zk)≤ [C mdim(X, Zk)] + 1
densely.

Examples of spaces with the intersection property are provided by the following
theorem.

THEOREM 1.7.3. There exists 0< µ= µ(k) < 1 such that if (X, Zk) is an extension of a
free zero-dimensional system then it has the intersection property with intersection ratio µ.

1.8. A lower bound for embedding-dimension. Theorem 1.7.2 gives an upper bound
for edim in certain cases. With respect to the question of finding a lower bound for
edim, one can show that there exist dynamical systems (X, Zk) such that edim(X, Zk)≥

2 mdim(X, Zk)+ 1. Here is an instructive example for k = 1. Let X = K5 be the
complete graph on five points, formed by taking five points in R3 in general position
and joining all points by line segments. Notice dim(K )= 1 and therefore by [LW00,
Proposition 3.1] mdim(K Z, shift)≤ 1. As [0, 1] ↪→ K we have mdim(K Z, shift)≥ 1 and
thus mdim(K Z, shift)= 1. We claim edim(K Z, shift)= 3. Assume for a contradiction
that edim(K Z, shift)= 2, i.e. there exists f : (K Z, shift)→ (([0, 1]2)Z, shift). Let π :
([0, 1]2)Z→ [0, 1]2 be the projection on the zeroth coordinate and i : K → K Z be the
natural embedding given by i(x)= (. . . , x, x, x, . . .). Conclude that the composition
π ◦ f ◦ i : K → [0, 1]2 is one-to-one. This contradicts the known fact that K5 is not a
planar graph.
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The last example can be generalized to Zk-systems with arbitrary large mean dimension.
Flores (see [Flo35], a more accessible source is [Eng78, §1.11F]) proved that Cn , the
union of all faces of dimension less than or equal to n of the simplex generated by 2n + 3
points in general position in R2n+2, cannot be embedded in R2n . As dim(Cn)= n and
[0, 1]n ↪→ Cn we conclude similarly to the case k = 1 that edim(CZk

n , shift)= 2n + 1

whereas mdim(CZk

n , shift)= n.

1.9. Topological Rokhlin property. The classical Rokhlin lemma states that, given a free
invertible measure-preserving system (X, T, µ) and given ε > 0 and n ∈ N, one can find
A ⊂ X such that A, T A, . . . , T n−1 A are disjoint and

µ

(n−1⋃
k=0

T k A

)
> 1− ε.

It easily follows that given a free invertible measure-preserving system (X, T, µ) and
given ε > 0, one can find a measurable mapping f : X→ {0, 1, . . . , n − 1} so that if we
define the exceptional set E f = {x ∈ X | f (T x) 6= f (x)+ 1}, then µ(E) < ε. The new
formulation allows us to generalize to the topological category. Indeed following [SW91],
given a dynamical system (X, Zk) and a set E ⊂ X , we define the orbit-capacity of a set E
in the following manner:

ocap(E)= lim
n→∞

sup
x∈X

1
|Fn|

∑
f ∈Fn

1E (T
f x).

One can show that the limit exists. Denote by {e j }
k
j=1 the standard unit vectors of Zk . We

say that a free dynamical system (X, Zk) has the topological Rokhlin property (TRP) if and
only if for every ε > 0 there exists a continuous function f : X→ Rk so that if we define
the exceptional set

E f = {x ∈ X | ∃1≤ j ≤ k f (T e j x) 6= f (x)+ e j },

then ocap(E f ) < ε.

1.10. Small boundary property. Following [SW91] we call E ⊂ X small if ocap(E)=
0. For closed sets this has a simple interpretation. Indeed a closed set A ⊂ X is small
if and only if for any Zk-invariant measure of X , µ, one has µ(A)= 0. When X has
a basis of open sets with small boundaries, (X, Zk) is said to have the small boundary
property (SBP). The topological Rokhlin property and the small boundary property are
related by the following theorem.

THEOREM 1.10.1. If (X, Zk) is an extension of a free dynamical system with the small
boundary property, then it has the topological Rokhlin property.

As a zero-dimensional space has a basis consisting of open sets with empty boundaries,
it has SBP and we conclude the following theorem.

THEOREM 1.10.2. If (X, Zk) is an extension of a free zero-dimensional system, then it
has the topological Rokhlin property.
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In [Lin99] Lindenstrauss proved that a Z-system with mean dimension zero admitting a
non-trivial minimal factor has the small boundary property. Partially extending this result
we show the following.

THEOREM 1.10.3. If mdim(X, Zk)= 0, edim(X, Zk)≤ l densely for some l ∈ N and
(X, Zk) has the topological Rokhlin property then (X, Zk) has the small boundary
property.

Notice that a partial converse stating that if (X, Zk) has the small boundary property,
then it has mean dimension zero, follows from an easy generalization of the case k = 1
stated in [LW00].

1.11. Summary of results. We state a theorem that combines theorems that were
mentioned in previous subsections.

THEOREM 1.11.1. If (X, Zk) is an extension of a free zero-dimensional system,
then it has the topological Rokhlin property. Moreover there exists C = C(k) > 0
such that edim(X, Zk)≤ [C mdim(X, Zk)] + 1. Under the same assumptions, when
mdim(X, Zk)= 0, (X, Zk) has the small boundary property.

For the convenience of the reader we include a diagram summarizing the results
appearing in §§1.7–1.10:

FZDF FSBPF

IP mdim= 0 SBP

enum≤ [1+ Cmdim] mdim= 0 and
enum≤ L densely

TRP

where FZDF = free zero-dimensional factor, TRP = topological Rokhlin property,
SBP = small boundary property, and FSBPF = free factor with SBP.

1.12. The Zk-symbolic extension entropy theorem. In [BD04] Boyle and Downarowicz
introduced entropy structure and prove the symbolic extension entropy theorem for
Z-actions. In [Dow05] Downarowicz replaced the definition of entropy structure by a
new one, making it a topological invariant. In §5 we generalize the latter notion of entropy
structure and prove the symbolic extension theorem for Zk-actions. In order to state the
theorem we introduce the following definitions.

Definition 1.12.1. (Y, Zk)→ (X, Zk) is called a symbolic extension of (X, Zk) if (Y, Zk)

is a subshift over some finite alphabet A.
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Finite entropy is a necessary condition for the existence of a symbolic extension. However
it is not a sufficient condition (see [BFF02, §3] for an example where k = 1). We introduce
some definitions while using the convention that functions (e.g. the entropy function h =
h(µ), µ ∈ PZk (X), where PZk (X) denotes the set of Zk-invariant probability measures of
(X, Zk)) appear in regular font, whereas constants (e.g. htop) appear in boldface.

For a given symbolic extension π : (Y, Zk)→ (X, Zk) define

hπext(µ)= sup
ν∈π−1(µ)

h(ν).

The symbolic extension entropy is given by (symb. ext. is an abbreviation of symbolic
extension)

hsex = hsex(X, Zk)= inf
π :Y→X

symb. ext.

htop(Y, Zk).

The residual entropy is given by

hres = hres(X, Zk)= hsex(X, Zk)− htop(X, Zk).

The importance of residual entropy is discussed in the introduction of [Dow01].
Following [Dow05, §2.1] we give the following definition.

Definition 1.12.2. Let f be a bounded function. Define the upper-semi-continuous
envelope of f :

f̃ (x)=max
{

f (x), lim sup
x ′→x

f (x ′)

}
.

Define the defect of upper semicontinuity:

···

f= f̃ − f.

Definition 1.12.3. Let H= (hk) be an entropy structure for (X, Zk) (see §5.2). A function
E : PZk (X)→ R is a superenvelope if and only if E ≥ h (h is the entropy function) and
for every µ ∈ P(X)Zk one has

lim
k→∞

···············

E − hk= 0.

One also allows the constant ∞ function as a superenvelope of H. Denote by E H the
infimum of all superenvelopes of H. It is easy to see that E H is also a superenvelope of
H [Dow05, Lemma 2.1.5, p. 63].

In the celebrated symbolic extension entropy theorem [Dow05, Theorem 5.1.1, p. 76]
Downarowicz characterized the existence of symbolic extensions in terms of the entropy
structure. We state the generalization to the Zk setting.

THEOREM 1.12.4. (The Zk-symbolic extension entropy theorem) Let (X, Zk) be a
dynamical system with finite topological entropy. A function E : PZk (X)→ R equals
hπext for some symbolic extension π of (X, Zk) if and only if E is a bounded, affine
superenvelope of the entropy structure H of (X, Zk). In particular hsex(X, Zk)= sup E H.
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1.13. Conventions. We use d(·, ·) to denote distance in various spaces, e.g. distance
in the underlying space X or in Euclidean space Rk . Given A ⊂ X , x ∈ X we define
d(x, V )= infv∈V d(x, v) and the open and close δ-fattening around V respectively,
Bδ(V )= {x ∈ X | d(x, V ) < δ}, Bδ(V )= Bδ(V ). Bδ(x), Bδ(x) denote the open and
closed ball of radius δ around x ∈ X respectively. Bδ(E0) is the open ball of radius δ
around the origin in Euclidean space. v(·) denotes volume in Euclidean space and dv
is the standard volume element. ‖ · ‖∞ denotes the L∞ norm both in C(X, R) and in
Rn , i.e. for f ∈ C(X, R), ‖ f ‖∞ = supx∈X | f (x)| and for v ∈ Rn

‖Ev‖ =maxi=1,...,n |vi |.
For r ∈ R, [r ] = brc =max{n ∈ Z | n ≤ r} denotes the floor function. dre =min{n ∈ Z |
n ≥ r} denotes the ceiling function. πq : ([0, 1]d)Fn → [0, 1]d for q ∈ Fn denotes the
natural projection (xg)g∈Fn 7→ xq . Given H : X→ ([0, 1]d)Fn and T ⊂ Fn we use the
notation H(x)|T = (πq ◦ H(x))q∈T . P(X) denotes the set of probability measures of X
whereas PZk (X) denotes the set of Zk-invariant probability measures of (X, Zk).

2. Embedding in cubical shifts
2.1. Regular Voronoi tilings. The following definition is based on [Lig03, Defini-
tion 3.1].

Definition 2.1.1. Let A ⊂ Zk , seen as a discrete subset of Rk . For each a ∈ A define
V (a)= {x ∈ Rk

| d(x, a)≤ d(x, A)}. One can easily show that V (a) is a convex polytope.
V = V(A)= {V (a)}a∈A is called a Voronoi tiling of Rk . The point a is called the Voronoi
center of V (a). If for all z ∈ Zk there is a ∈ A so that d(a, z)≤ m and for all a, b ∈ A,
a 6= b, d(a, b) > m then A is called an m-regular subset of Rk . A Voronoi tiling induced
by an m-regular subset is called an m-regular Voronoi tiling. The collection of m-regular
Voronoi tilings is denoted by Mm . Its topology is induced by the inclusion Mm ⊂8. The
natural action of Zk on 8 induces an action of Zk on Mm . One can easily prove from the
above definition that for each a ∈ A (θk =

√
k/2)

Bm/2(a)⊂ V (a)⊂ Bm+θk (a). (2.1)

2.2. The standard tiling. The Voronoi tiling induced by Zk is called the standard tiling
of Rk and is denoted by Z k . The tiles of Z k consist of

V(a1,...,ak ) = [a1 −
1
2 , a1 +

1
2 ] × · · · [ak −

1
2 , ak +

1
2 ] where (a1, . . . , ak) ∈ Zk .

Given a compact set A ⊂ Rk we can cover it by a finite number of tiles from Z k . Using such
covers one can easily show that v(A)≤ |Aθk ∩ Zk

| where v(·) denotes the (k-dimensional)
volume in Rk and Aθk = {x ∈ Rk

| d(x, A)≤ θk}.

2.3. Intersection property. We prove Theorem 1.7.3.

Proof. From the definition of the intersection property it is clear that if (X, Zk) is an
extension of a system having the intersection property then (X, Zk) has the intersection
property too. In order to prove the theorem it is therefore enough to prove that any free
zero-dimensional system has the intersection property.
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Let n ∈ N be large enough as specified later. Let n′ = bn/10c. We will construct a
continuous Zk-equivariant mapping φ = φ(n′) : X→8. Given x ∈ X and P= {Pi }

M
i=1 a

partition of X let P(x) denote the index of the element of P to which x belongs, i.e. P(x)=
j if and only if x ∈ Pj . Using the fact that the action is free, one can choose a clopen finite
partition of X , P= {Pi }

M
i=1, so that P(x)= i implies that P(T gx) 6= i for all g ∈ F∗n′ =

Fn′\{E0}. Denote by α : X→ {1, . . . , M}Z
k

the factor mapping α(x)= (P(T gx))g∈Zk

and let S = α(X). To each s ∈ S one can associate an n′-regular set of elements in Zk

that serve as Voronoi centers for an n′-regular Voronoi tiling. By [Lig03, Lemma 4.4]
this can be done in a continuous Zk-invariant manner. In other words there exists a
continuous Zk-equivariant mapping ψ : S→Mn′ . Define φ = ψ ◦ α. Let x, y ∈ X .
Define Vx = Vx (a) ∈ φ(x) (a is the Voronoi center of Vx ) to be one of the polytopes
in φ(x) having the property E0 ∈ Vx . By (2.1) we have d(E0, a)≤ n′ + θk . This and a
second application of (2.1) implies that Vx ⊂ B2(n′+θk )(

E0). Thus if n is large enough we
have Vx ∈ φ(x)|Bn/2(E0)

. Denote A = {W ∈ φ(y) |W ∩ Vx 6= ∅} and l = |A |. As for all

W ∈A , W ⊂ B2(n′+θk )(V )⊂ B4(n′+θk )(
E0) one has that l · v(Bn′/2(E0))≤ B4(n′+θk )(

E0), i.e.
there exists a constant C1 = C1(k) > 0 (C1 does not depend on n′) such that l ≤ C1.
Choose Vy ∈ φ(y) any of the polytopes having the property v(Vy ∩ Vx )=maxQ∈A

v(Q ∩ Vx ). Notice that Vy ∈ φ(y)|B5n′ (
E0) ⊂ φ(y)|B(1/2)n(E0) and that

v(Vx ∩ Vy)≥
1
l
v(Bn′/2(E0))=

1
l

C2(k)n
′k .

By the discussion in the previous subsection we know that

|(Vx )−θk ∩ (Vy)−θk ∩ Zk
| ≥ v((Vx )−2θk ∩ (Vy)−2θk ).

Clearly

v((Vx )−2θk ∩ (Vy)−2θk )≥ v(Vx ∩ Vy)− v(B2θk (∂Vx ))− v(B2θk (∂Vy)).

It is easy to show that there exist C3(k) > 0 and m0 ∈ N so that if m ≥ m0 and V ⊂ Rk is
a polytope with Bm(E0)⊂ V then v(Bθk (∂V ))≤ Cθkv(∂V ), where we let v(·) denote both
(k − 1)-dimensional and k-dimensional volume according to context. In particular for n
large enough, v(B2θk (∂Vx ))≤ θkC3(k)v(∂Vx ) and similarly for Vy . Conclude that

v(Vx ∩ Vy)− v(B2θk (∂Vx ))− v(B2θk (∂Vy))

≥
1
l

C2(k)n
′k
− θkC3(k)max{v(∂Vx ), v(∂Vy)}.

By the isodiametric inequality (this is a special case of [Grü67, Theorem 2, p. 417]) there
exists a constant C4 = C4(k) such that

v(∂Vx )≤ C4(k) diam(Vx )
k−1
≤ C4(k)(4(n′ + θk))

k−1

(and similarly for Vy). Putting all these inequalities together we get

|(Vx )−θk ∩ (Vy)−θk ∩ Zk
| ≥

1
l

C2(k)n
′k
− θk(k)C3(k)C4(k)(4(n′ + θk))

k−1.

For n′ large enough one can find 0< µ= µ(k) < 1 so that |(Vx )−θk ∩ (Vy)−θk ∩ Zk
| ≥

µ(2n + 1)k (µ < 1 because Vx , Vy ⊂ B(1/2)n(E0)). 2
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2.4. IP implies embedding. We start by some definitions that will be used in what
follows.

Definition 2.4.1. For k = 1, 2, 3 . . . define ok
: Rk
→ P(Zk), s = (s1, . . . , sk) 7→ ok

s
inductively by

o1
s = (s − bsc)δdse + (1− (s − bsc))δbsc

and for k ≥ 2 by
ok

s = o1
s1
× o1

s2
× · · · × o1

sk
.

When clear from the context the superscript k may be omitted.

Definition 2.4.2. For s ∈ Rk let

Q(s)= {v ∈ Zk
| ‖s − v‖∞ < 1}.

Q(s) consists of at most 2k lattice points and is contained in a unit cube.

LEMMA 2.4.3. ok is continuous and Zk-equivariant and if s ∈ Rk then supp ok
s ⊆ Q(s).

Proof. For general k this follows from the case k = 1, which is verified directly. 2

For a topological space Y denote by P(Y ) the space of Borel probability measures on Y .
Let ν ∈8 be a tiling. For a tile V ∈ ν define its barycenter by c(V )=

∫
V Ex dv where dv

is the standard volume element in Rk . Notice that as V is convex with non-empty interior

one has c(V ) ∈
◦

V .

THEOREM 2.4.4. There exists a continuous map

τ :8→ P(Zk),

φ 7→ τφ

such that if V ∈ φ and Bθk (
E0)⊆ V then

supp τφ ⊆ Q(c(V ))

and if additionally s ∈ Zd and Bθk (
E0)⊆ V + s, then τT sφ = T sτφ , where T sτφ(A),

τφ(A − s) for all Borel sets A ⊆ Rk .

Proof. We start by constructing a continuous function ρ :8→ P(Rk) assigning to each
tiling ν ∈8 a measure ρν(·) supported on a finite set of c(ν), {c(V ) | V ∈ ν} with the
additional property that Bθk (

E0)⊂ Vs ∈ ν implies that ρν(s)= 1 where s = c(Vs) (here we
use the convention ρν(s), ρν({s})).

Indeed fix ν ∈8. To each s ∈ c(ν) associate e(s)= v(Vs ∩ Bθk (
E0)). As ν is locally

finite e is supported on a finite set of c(ν). As E0 ∈ V for some V ∈ ν we have e(c(V )) > 0.
Define

ρν(s)=
e(s)∑

s′∈c(ν) e(s′)
.

It is easy to see ρν has the desired properties mentioned above.
We now show that ρ is continuous at ν. Fix an open set O of ρν , where

O =O(g, ε)=
{

m ∈ P(Rk)

∣∣∣∣ ∣∣∣∣∫ g dm −
∫

g dρν

∣∣∣∣< ε}

http://www.journals.cambridge.org


http://journals.cambridge.org Downloaded: 18 Mar 2011 IP address: 79.178.9.250

392 Y. Gutman

for some g ∈ Cc(Rk) and ε > 0. Let C be a finite collection of polytopes in ν so that
Bθk (
E0)⊂

⋃
C . This implies that ρν is supported on the barycenters of the polytopes of C .

One chooses δ > 0 so that for any

τ ∈ U(ν, δ)= {τ ∈8 | ∀V ∈ ν|B1/δ(E0)
∃V ′ ∈ τ s.t. dH (V, V ′) < δ}

there exists a mapping iτ : C → τ , so that both

|c(V )− c(iτ (V ))| =

∣∣∣∣∫
V

dv −
∫

iτ (V )
dv

∣∣∣∣
and

|e(V )− e(iτ (V ))| =

∣∣∣∣∫
V∩Bθk (

E0)
dv −

∫
iτ (V )∩Bθk (

E0)
dv

∣∣∣∣
are small enough for all V ∈ C so that |

∫
g dρτ −

∫
g dρν |< ε holds. Indeed δ > 0 is

chosen in such a way that dH (V, iτ (V )) is small enough (uniformly for all τ ∈ U(ν, δ)
and V ∈ C ) for this to hold.

Lastly, we define τφ as the distribution obtained by choosing s ∈ Rk according to ρφ
and then u ∈ Zk according to os . Formally,

τφ(A)=
∫

os(A) dρφ(s)

for all Borel sets A ⊂ Rk . It is straightforward to deduce the properties of τ from those of
ρ and o. 2

We define several notions that will appear in the proof of the main theorem of this
section. Suppose that α is an open finite cover of our compact metric space (X, d). Denote
by mesh(α)=maxU∈α diam(U ). Suppose further that a continuous mapping h : X→ Y
is given where Y is a topological space. h is said to be α compatible if for any y ∈ Y ,
h−1(y) is a subset of some U ∈ α and one writes h � α. We are ready to present the proof
of Theorem 1.7.2.

Proof. Let (X, Zk) be a dynamical system admitting the intersection property with
intersection ratio 0< µ< 1. Write M =mdim(X, Zk). Assume that M <∞. We
will embed (X, Zk) in (([0, 1]d)Z

k
, shift) where d = 1 when M = 0, and d = dC Me =

d((2k+1
+ 1)/µ)Me otherwise (for M > 0). This proof basically follows the strategy

of [Lin99, proof of Theorem 5.1]. First we need to set up an abstract framework for
applying the Baire category theorem. Suppose that f ∈ C(X, [0, 1]d). Recall the definition
of I f in §1.5. For I f to be an embedding it is necessary that the inverse of every point in
I f is a point. Thus I f must be compatible with every open cover α. Conversely if I f is
compatible with any sequence of open covers with mesh tending to zero then I f will be an
embedding. Write

Fα = { f ∈ C(X, [0, 1]d) | I f � α}. 2

We adapt [Lin99, Lemma 5.3].

LEMMA 2.4.5. Let (X, Zk) be a dynamical system, α(i) be some sequence of open covers
of X with mesh(α(i))→ 0. Then the set of all f ∈ C(X, [0, 1]) such that I f is an
embedding is equal to

⋂
∞

i=1 Fα(i), and every Fα(i) is open in C(X, [0, 1]d) (in the uniform
convergence topology).
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Continuation of proof of Theorem 1.7.2. Notice that if we can show that Fα(i) is dense for

all i , then by the Baire category theorem
⋂
∞

i=1 Fi is dense in C(X, ([0, 1]d)Z
k
). This

implies that one can Zk-equivariantly embed X in ([0, 1]d)Z
k

(in fact Ed is dense). It turns
out we can prove Fα is dense for any finite open cover α of X , so from now on we will
drop the index i .

Suppose that f̃ : X→ [0, 1]d is a continuous function and fix some ε > 0. We will
show that there exists a continuous function f : X→ [0, 1]d such that ‖ f − f̃ ‖∞ =
supx∈X | f (x)− f̃ (x)|< ε and I f is α-compatible (as ε > 0 is arbitrary this will imply
that Fα is dense). We start by a general construction and then relate it to f̃ . Let β � α with
maxU∈β diam( f̃ (U )) < ε. Clearly one can find r0 ∈ N such that for all n ≥ r0 it holds that

1
|Fr |

D(βFn ) < M + 1 if M > 0

and
1
|Fn|

D(βFn ) <
µ

2k+2 if M = 0.

Using the intersection property for (X, Zk) let φ : X→8 be an (n, µ)-intersection
function for some n ≥ r0, let γ � βFn be an open cover so that D(βFn )= ord(γ ). Let
( fU )U∈γ be a fixed vector, where fU ∈ [0, 1]d for all U ∈ γ . Let (ψU )U∈γ be a partition
of unity subordinate to γ . Define H : X→ ([0, 1]d)Fn by

H(x)=
∑
U∈γ

fUψU (x).

For brevity write τx = τφ(x). Let pn : Zk
→ Fn = [−n, n]k be given by pn(z1, . . . , zk)=

(z1 mod(−n, n), . . . , zk mod (−n, n)). Define (we use pn because τx is not necessarily
supported in Fn)

f (x)=
∫
(H(T−pn(v)x)pn(v)) dτx (v).

PROPOSITION 2.4.6. f is continuous.

Proof. Define

ν : X → P(X × Zk),

x 7→ νx = δx × τx .

x 7→ νx is continuous because x 7→ δx , x 7→ τx are. Let H̃(y, u)= H(T−pn(u)y)pn(u).
Then H̃ : X × Zk

→ [0, 1]d is continuous, so the map R : P(X × Zk)→ R defined by
R(µ)=

∫
H̃ dµ is continuous. Since f (x)= R(νx ) is the composition of two continuous

functions, f is continuous. 2

For each U ∈ γ choose qU ∈U and define vU = ( f̃ (T gqU ))g∈Fn . What remains to be
shown is the following proposition.

PROPOSITION 2.4.7. Given f̃ : X→ [0, 1]d and ε > 0, if we choose, for every U ∈ γ , a
value fU ∈ ([0, 1]d)Fn such that ‖ fU − vU‖∞ < ε, then the following hold.
(1) ‖ f − f̃ ‖∞ < 2ε.
(2) For Lebesgue-almost every such choice, the corresponding f is α-compatible.
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We start by proving (2). We will need a definition and a proposition.

Definition 2.4.8. For x ∈ X and u ∈ Zk let Hu(x) : Fn + u→ [0, 1]d denote the function
(Hu(x))v = H(T−u x)u−v .

PROPOSITION 2.4.9. For almost every choice of fU the following holds. Let x, y ∈ X
and suppose that V x

∈ φ(x), V y
∈ φ(y) have the following property.

(1) V x , V y
⊆ Bn/2(E0).

(2) The set S = V x
−θk
∩ V y
−θk

satisfies |S| ≥ µ · |Fn|.
Suppose that (attention: the integration is over vector-valued functions with values in
[0, 1]d ) ∫

Hu(x)|S dox (u)=
∫

Hu(y)|S doy(u) (2.2)

where ox = oc(Vx ) and oy = oc(Vy), then there exist u, v ∈ Fn and W ∈ γ such that
T u x, T v y ∈W .

In order not to interfere with the flow of the proof, we give the proof of the proposition
below. Assume that f (T gx)= f (T g y) for all g ∈ Zk for some x, y ∈ X . Notice that by
the intersection property we have V x

∈ φ(x), V y
∈ φ(y)which have properties (1) and (2)

of the proposition. Let s ∈ S. Notice τT−s x is supported in Q(c(V x )− s) and therefore

f (T−s x)=
∫
(H(T−u x)u) dτT−s x (u)=

∫
(H(T−u x)u−s) dox (u).

This can be written concisely as

f (T−s x)=
∫
(Hu(x)s) dox (u).

Repeating the calculation for y and all s ∈ S gives (2.2). We therefore conclude that there
exist u, v ∈ Fn and W ∈ γ such that T u x, T v y ∈W . As γ � βFn we conclude that there
exist some V ∈ β such that x, y ∈ V . As β � α there exists U ∈ α such that x, y ∈U . This
proves (2).

In order to prove (1) notice that from the definition of f it is clear that

f (x) ∈ co{H(T−pn(s)x)|pn(s) | s ∈ Q(c(φ(x)))}.

From the definition of H one concludes that, for all x̃ ∈ X , H(x̃) ∈ co{H(qU ) | x̃ ∈
U ∈ γ }. Combined with the previous equation one has

f (x) ∈ co{H(qU )|l | l ∈ Fn, T−l x ∈U ∈ γ }. (2.3)

We claim that each element in the right side of equation (2.3) is within 2ε of f̃ . Indeed,

‖H(qU )|l − f̃ (x)‖∞ ≤ ‖H(qU )|l − vU |l‖∞ + ‖vU |l − f̃ (x)‖∞.

By the choice of fU the first summand on the right-hand side is smaller than ε. As vU =

( f̃ (T l ′qU ))l ′∈Fn the second summand equals ‖ f̃ (T lqU )− f̃ (x)‖∞. Notice x, T lqU ∈

T lU . We conclude that ‖ f̃ (T lqU )− f̃ (x)‖∞ ≤ diam f̃ (T lU ). As U ∈ γ � βFn we
can find Vl ∈ β so that U ⊂ T−l Vl , i.e T lU ⊂ Vl . We conclude that diam f̃ (T lU )≤
diam f̃ (Vl)≤ ε which gives us the desired result. 2
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Proof of Proposition 2.4.9. For x ∈ X define γx = {U ∈ γ | ψU (x) > 0}. Write

ox =

2k∑
j=1

λ jδu j and oy =

2k∑
j=1

η jδv j ,

where u j = ux + σ j , ux ∈ Fn and v j = vy + σ j , vy ∈ Fn with u j , v j ∈ Fn and σ j ∈

{0, 1}k for j = 1, . . . , 2k . We write (2.2) explicitly as:

2k∑
j=1

∑
U∈γ

T
−u j x

λ jψU (T
−u j x) fU |u j−g

−

2k∑
j=1

∑
U∈γ

T
−v j y

λ jψU (T
−v j y) fU |v j−g = 0, g ∈ S. (2.4)

Consider this equality as a symbolic equality in the (vector) symbols fU , i.e. let γT−u j x =

{U j
1 , . . . ,U j

m j } and γT−v j y = {V
j

1 , . . . , V j
t j
} with m j , t j ≤ ord(γ )+ 1 and represent f

U j
i

as a vector composed of |Fn|d symbols: f
U j

i
= ( f r,g

U j
i

)r∈{1,...,d}, g∈Fn . It is assumed that

if two identical (symbolic) vectors appear in (2.4) then one regroups their coefficients
so that the vector appears only once. This procedure is referred to as cancelation. We
denote by M the matrix consisting of all different (symbolic) vectors appearing in (2.4)
after cancelation, see an explicit example in the sequel. A specific substitution of values
into the symbolic vectors will be called a realization. Our goal is to show that for almost
all realizations ux = vy and γT−ui x = γT−vi y for i = 1, . . . , 2k . This implies that there is a
U ∈ γ such that both T−ui x, T−vi y ∈U . We start by assuming that ux − vy 6= σi − σ j for
all i, j ∈ {1, . . . , 2k

} and arrive at a contradiction. In this case M takes the form (through
lack of space, two lines of vectors appear but actually we mean a one-dimensional array of
vectors)

M =

[ fU 1
1
|u1−S, . . . , fU 1

m1
|u1−S, f

U 2k
1
|u2k−S, . . . , f

U 2k
m

2k
|u2k−S, . . .

fV 1
1
|v1−S, . . . , fV 1

m1
|v1−S, . . . , f

V 2k
1
|v2k−S, . . . , f

V 2k
m

2k
|v2k−S].

The matrix has d|S| rows. The number of columns of the matrix is bounded by 2(ord(γ )+
1)2k . By assumption this implies that the number of rows is bigger or equal to the number
of columns. Moreover each column contains distinct elements. The same is true for any
particular row (here we use the fact that ux − vy 6= σi − σ j for all i, j ∈ {1, . . . , 2k

} to
conclude that no cancelation took place). Recall that we are free to change the exact values
of fU as long as ‖ fU − vU‖∞ < ε holds. We invoke [Lin99, Lemma 5.5] to conclude that
for almost all realizations for the (column) vectors, these vectors are linearly independent.
This constitutes the contradiction. Now assume that ux − vy = σi − σ j for some i 6= j .
We claim that γT−u j x = γT−vi y . First notice that if U ∈ γT−u j x ∩ γT−vi y , i.e. U =

U k
j = V k′

i for some k, k′, then vg , fU k
j
|u j−g = fV k′

i
|vi−g and one can regroup the

coefficients appearing before these vectors so that (vg) appears only once. Assume
that γT−u j x 6= γT−vi y . This means that in M we have representatives from the non-
empty set γT−u j x4γT−vi y . Notice that the number of rows in M is bigger or equal to
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the number of columns as cancelation decreases the number of columns. Each column
contains distinct elements and this is also true for any particular row (here we use the
fact that we performed cancelation). As before we arrive at a contradiction. In order
to avoid the contradiction there must exist a bijective correspondence i→ b(i) so that
γT−ui x = γT−vb(i) y . Moreover the cancelation in (2.4) must result in the equation 0= 0,
which corresponds to an empty M . However if ux 6= vy this is impossible. Indeed there
must be some i ∈ {1, . . . , 2k

} so that for all j , ux − vy 6= σi − σ j (assume without loss of
generality that (ux − vy)1 > 0 and let i be such that (σi )1 = 0). We conclude that ux = vy

and b(i)= i for all i , i.e γT−ui x = γT−vi y for i = 1, . . . , 2k . 2

3. Systems with TRP
3.1. SBP implies TRP. In this section we prove Theorem 1.10.1.

LEMMA 3.1.1. Let f̃ : X→ K be a Borel function into a finite subset K ⊂ Rk . Denote
by D f̃ the set of discontinuity points of f̃ and assume that ocap(D f̃ )= 0. Then, given

ε > 0, there exists a continuous function f : X→ co(K )⊂ Rk so that ocap(S f, f̃ )≤ ε

where S f, f̃ = {x ∈ X | f (x) 6= f̃ (x)} and co(K ) denotes the convex hull of K .

Proof. For any δ > 0 define the compact set Aδ = {x ∈ X | d(x, D f̃ )≥ δ}. Notice Ac
δ =

{x ∈ X | d(x, D f̃ ) < δ}. By assumption ocap(D f̃ )= 0. Moreover as K is finite D f̃ =⋃
k∈K ∂ f̃ −1(k) is closed. According to [Lin99, Lemma 6.3] a small enough fattening of

a closed set of zero orbit-capacity has arbitrary small orbit-capacity, i.e. one can choose
δ0 > 0 so that ocap(Ac

2δ0
)≤ ε. On Aδ0 , f̃ is continuous. Therefore one can cover Aδ0 with

the disjoint relatively open sets C = { f̃ |−1
Aδ0
(k) | k ∈ K }. Let 0< ρ < δ0 be a Lebesgue

number for C. Let k : X × X→ R be the ‘kernel function’ given by k(x, y)= ρ − d(x, y)
for x, y ∈ X with d(x, y)≤ ρ and k(x, y)= 0 otherwise. Let µ be a measure of full
support on X. Define

f (x)=

∫
k(x, y) f̃ (y) dµ(y)∫

k(x, y) dµ(y)
.

It is easy to see that f is well defined and continuous. Suppose that x ∈ A2δ0 . As
ρ < δ0, Bρ(x)⊂ Aδ0 . As ρ is a Lebesgue number for C we conclude that f̃ |Bρ (x) is
constant. Therefore f̃ (x)= f (x), i.e. S f, f̃ = {x ∈ X | f (x) 6= f̃ (x)} ⊂ Ac

2δ0
. This implies

that ocap(S f, f̃ )≤ ε. 2

Proof of Theorem 1.10.1. From the definition of the topological Rokhlin property it is clear
that if (X, Zk) is an extension of a system having the topological Rokhlin property then
(X, Zk) has the topological Rokhlin property too. Therefore we can assume without loss
of generality that (X, Zk) is free and has the SBP. We will use a construction which is
similar but not identical to the beginning of the proof of Theorem 1.7.3. Fix n ∈ N. Let
P= {Pi }

M
i=1 be a partition so that ocap(∂Pi )= 0 for all i and so that P(x)= i implies that

P(T gx) 6= i for all g ∈ F∗n = Fn\{E0} (P(x) denotes the index of the element of P to which

x belongs, i.e. P(x)= j if and only if x ∈ Pj ). Let α : X→ {1, . . . , M}Z
k

denote the
(Zk-equivariant) factor mapping given by α(x)= (P(T gx))g∈Zk and let S = α(X). Unlike
the situation in Theorem 1.7.3, α is not necessarily continuous.
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Lemma 4.4 of [Lig03] enables us to associate to each element in S (in an Zk-equivariant
and continuous manner) an n-regular set of elements in Zk that serves as Voronoi centers
for an n-regular Voronoi tiling. Denote this mapping by ψ : S→ 2Zk

, s ∈ S 7→ ψ(s)⊂ Zk .
We have that for any v ∈ S, r ∈ N and any sufficiently small neighborhood U of v, if q ∈ U
then ψ(v) ∩ Fr = ψ(q) ∩ Fr (Fr = {−r, . . . , r}k). In other words the associated Voronoi
centers sets are identical on a (as large as we wish) finite portion of the lattice Zk . Define
φ : S→Mn by s ∈ S 7→ V(ψ(s)) ∈Mn . This continuous and Zk-equivariant mapping
associates to each set ψ(s) its induced Voronoi tiling. Notice that for any x ∈ X , r ∈ N and
any sufficiently small neighborhood U of x , if y ∈ U then φ(x) ∩ Br (E0)= φ(y) ∩ Br (E0).

We are ready to introduce our main object of study, namely the function f̃ : X→ F2n ⊂

Rk given by

x 7→

{
a ∈ Zk there existsV (a) ∈ φ(α(x)) such that E0 ∈

◦

V (a),
E0 otherwise.

This function associates to x ∈ X the Voronoi center a of the Voronoi tile that contains the
origin in its interior. In case the origin is contained in several tiles (i.e. it is on the boundary
of several tiles) then f̃ (x)= E0. Since, for all x ∈ X , φ(α(x)) is an n-regular Voronoi tiling,
then for V (a) ∈ φ(α(x))with E0 ∈ V (a)we do indeed have a ∈ F2n . Notice that if the origin
is far enough from the boundary of the tile that contains it, specifically if E0 ∈ V ∈ φ(α(x))
and moreover d(E0, ∂V ) > 1 then f̃ (T e j x)= f̃ (x)+ e j for j = 1, . . . , k. The last fact
and similar techniques to the ones use in the proof of Theorem 1.7.3 make it possible to
prove that for all x ∈ X , ocap(E f̃ )= o(1/n), where

E f̃ = {x ∈ X | ∃1≤ j ≤ k f̃ (T e j x) 6= f̃ (x)+ e j }.

Up to now we have not proven (X, Zk) has the topological Rokhlin property as f̃ is
not necessarily continuous. However, we claim that the set of discontinuity points of f̃ ,
which we denote by D f̃ , has orbit-capacity zero. Indeed by continuity arguments the value

of f̃ (x) is determined by knowing a finite set of coordinates of α(x). In other words
there exist r ∈ N and a (trivially) continuous function h : {1, . . . , M}Fr → F2n so that
f̃ (x)= h((P(T gx))g∈Fr ). From this representation it is clear that D f̃ is contained in the

discontinuity set of that mapping x→ (P(T gx))g∈Fr , which equals
⋃

g∈Fr

⋃M
i=1 T g∂Pi

(the discontinuity set of x→ P(x) is
⋃M

i=1 ∂Pi ). By assumption
⋃M

i=1 ∂Pi has orbit
capacity zero. As ocap(·) is a sub-additive set function, D f̃ has orbit-capacity zero.

We can therefore invoke Lemma 3.1.1 and obtain f : X→ Rr = co(Fr )⊂ Rk so that
ocap(S f, f̃ )≤ 1/n where S f, f̃ = {x ∈ X | f (x) 6= f̃ (x)}. Let

E f = {x ∈ X | ∃1≤ j ≤ k f (T e j x) 6= f (x)+ e j }.

Notice that

E f ⊂ E f̃ ∪ S f, f̃ ∪

k⋃
j=1

T−e j S f, f̃ .

We conclude that ocap(E f )= O(1/n). This proves (X, Zk) has the topological Rokhlin
property. 2

http://www.journals.cambridge.org


http://journals.cambridge.org Downloaded: 18 Mar 2011 IP address: 79.178.9.250

398 Y. Gutman

4. Systems with SBP
4.1. Sufficient conditions for SBP. In the previous section we introduced the small
boundary property. In this section we give sufficient conditions for a system to have
the small boundary property. The reader is advised to look up the definition of
‘edim(X, Zk)≤ l densely’ in §1.5.

LEMMA 4.1.1. If (X, Zk) has the topological Rokhlin property then for every δ > 0 there
exists a continuous function f̃ : X→ Rk so that ocap(Ẽ f̃ ) < δ where

Ẽ f̃ = {x ∈ X | f̃ (x) /∈ Zk
∨ ∃1≤ j ≤ k f̃ (T e j x) 6= f̃ (x)+ e j }.

Proof. Without loss of generality we give the proof for the case k = 1. The general case
is similar. Let a ∈ (1− (δ/5), 1) be irrational. By unique ergodicity we find M ∈ N such
that

∀r ∈ R
1
M

∣∣∣∣{ j ∈ {0, 1 . . . , M − 1}

∣∣∣∣ (r + ja)mod 1 /∈
(
δ

5
, 1−

δ

5

)}∣∣∣∣< δ. (4.1)

Choose ε > 0 so that Mε < δ. Using the topological Rokhlin property we obtain f : X→
Rk so that the exceptional set E f = {x ∈ X | f (T x) 6= f (x)+ 1} is of orbit-capacity less
than ε. This enables us to choose N ∈ N with M |N such that,

for all x ∈ X
1
N

N−1∑
i=0

1E f (T
i x) < ε. (4.2)

For 0< η < 1 define the ‘η-floor-function’ (recall {c} = c − bcc):

gη(c)=

bcc 0≤ {c} ≤ 1− η,

bcc +
{c} − (1− η)

η
otherwise.

We can now define f̃ (x)= gδ/5(a f (x)). Fix x0 ∈ X . We call { j, j + 1, . . . , j + M − 1}
a good (x0, M)-segment if {T j x0, T j+1x0, . . . , T j+M−1x0} ∩ E f = ∅, otherwise we
call it a bad (x0, M)-segment. We tile {0, 1, . . . , N − 1} with the N/M disjoint segments
{k M, k M + 1, . . . , (k + 1)M − 1}. By (4.2) at most ((εN )/(N/M))= εM < δ fraction
of them are bad (x0, M)-segments. By condition (4.1), in a good (x0, M)-segment
S = { j0, j0 + 1, . . . , j0 + M − 1}, for more than 1− δ fraction of j ∈ S one has (say
j = j0 + l for some l ∈ N)

{a f (T j x0)} = {a f (T j0 x0)+ al} ∈ (δ/5, 1− (δ/5)).

For such j this implies that

f̃ (T j x0)= gδ/5(a f (T j x0)) ∈ Z

and
f̃ (T j+1x0)= gδ/5(a f (T j x0)+ a)= f̃ (T j x0)+ 1

where we used f (T j+1x0)= f (T j x0)+ 1. By discarding the elements of the bad
(x0, M)-segments we arrive at the conclusion,

1
N
|{ j ∈ {0, 1 . . . , N − 1} | f̃ (T j x0) /∈ Z ∨ f̃ (T j+1x0) 6= f̃ (T j x0)+ 1}|< δ + δ.

From here it is easy to conclude that ocap(E f̃ ) < 3δ. 2
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We prove Theorem 1.10.3.

Proof. By assumption edim(X, Zk)≤ l densely which implies that there exists s ≤ l such
that for a dense Gδ subset A of all continuous f : X→ ([0, 1]s)Z

k
, I f is an embedding.

We follow the strategy of [Lin99, §6] by showing that there exists a dense Gδ subset B
of functions f such that I f has the small boundary property. As the intersection of A
and B is not empty (X, Zk) has the small boundary property. Notice that in [Lin99] the
author (tacitly) assumes that s = 1. This assumption can be avoided as we will see in what
follows. The idea of the proof is to show that for a dense Gδ subset of functions f , the
intersection of I f (X) with the boundaries of the members of the basis consisting of the
cylindrical sets,

C̃ Fn

({ s∏
i=1

(bi
g, q i

g)

}
g∈Fn

)
=

{
x ∈ ([0, 1]s)Z

k
∣∣∣∣ ∀g ∈ Fn xg ∈

s∏
i=1

(bi
g, q i

g)

}
,

for all n ∈ N and rational bi
g < q i

g , g ∈ Fn , i = 1, . . . , s are small sets. Clearly it is
sufficient to show that for any t ∈ [0, 1] ∩Q and m ∈ {1, . . . , s} there is a dense Gδ subset
of functions f for which (we denote by (y)m the mth coordinate of y ∈ [0, 1]s)

I f (X) ∩ {x ∈ [0, 1]Z
k
| (xE0)m = t}

is a small set.
Write

Om
n,t =

{
f

∣∣∣∣ ocap({( f (x))m = t}) <
1
n

}
.

Notice that

{ f |{( f (x))m = t} is small} =
∞⋂

n=1

Om
n,t .

Using [Lin99, proof of Lemma 6.4] we see Om
n,t are open for all n, m ∈ {1, . . . , s} and

t ∈ [0, 1]. We complement this by showing that Om
n,t are dense in C(X, [0, 1]) for all

n, m ∈ {1, . . . , s} and t ∈ [0, 1]. We proceed in a similar fashion to Theorem 1.7.2.
Fix m ∈ {1, . . . , s}. Let f̃ ∈ C(X, [0, 1]s), t ∈ [0, 1] and ε > 0. We will find f ∈
C(X, [0, 1]s) so that ‖ f − f̃ ‖∞ < ε and ocap({x ∈ X | ( f (x))m = t}) < ε. Let α be a
finite open cover of X with diam( f̃ (U )) < ε/2 for all U ∈ α. Let n be large enough so that
D(αFn ) < (ε|Fn|)/4 and let β � αFn be a cover of X such that ord(β)= D(αFn ). For each
U ∈ β choose qU ∈U and define vU = ( f̃ (T gqU ))g∈Fn . We quote [Lin99, Lemma 6.5,
p. 28].

LEMMA 4.1.2. Let β be a cover of X with ord(β) < 1 for some 1 ∈ N. Suppose that
t ∈ [0, 1], and for every U ∈ β we are given points qU ∈U and vU ∈ [0, 1]Fn . Then it is
possible to find a continuous function H : X→ [0, 1]Fn with the following properties.
(1) ‖H(qU )− vU‖∞ < ε.
(2) For all x ∈ X, H(x) ∈ co({H(xU ) | x ∈U ∈ β}).
(3) For every x ∈ X, no more than 1 of the coordinates of H(x) are equal to t .
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Continuation of proof of Theorem 1.10.3. Let H : X→ [0, 1]Fn be given by the lemma for
1= (|Fn|ε)/4. By assumption (X, Zk) has the topological Rokhlin property. Therefore
by Lemma 4.1.1 one can find a continuous function ψ : X→ Rk such that

Ẽ = {x ∈ X | ψ(x) /∈ Zk
∨ ∃1≤ j ≤ k ψ(T e j x) 6= ψ(x)+ e j }

satisfies ocap(Ẽ) < ε/(4|Fn|). Define

( f (x))r =


∫

H(T−pn(v)x) doψ(x)(v) r = m,

( f̃ )r r 6= m.

• By Lemma 2.4.3, f is continuous.
• The proof that ‖ f − f̃ ‖∞ = |( f )m − ( f̃ )m |∞ < ε is identical to the proof given in

Theorem 1.7.2.
• The proof that ocap{x ∈ X | ( f (x))m = t}< ε: apart from some obvious changes

relating to the fact that we are dealing with higher dimensions, the proof is identical
to the last part of the [Lin99, proof of Lemma 6.6]. 2

5. The Zk-symbolic extension entropy theorem
5.1. Principal extensions. We start by introducing some definitions (if not stated
otherwise all definitions, lemmas and theorems borrow heavily from [Dow05]). We denote
by PZk (X) the space of Zk-invariant probability measures on X .

Definition 5.1.1. ψ : (X, Zk)→ (Y, Zk) a topological factor map is a principal extension
if the entropy h(µ)= h(ψµ) for all µ ∈ PZk (X).

Definition 5.1.2. A partition A of X is essential if its elements have boundaries of measure
zero for all invariant measures.

LEMMA 5.1.3. Let (X, Zk) be a dynamical system with mdim(X, Zk)= 0, then it admits
a principal extension by a dynamical system with the small boundary property.

Proof. Let O = {0, 1}N be the 2-adic odometer. Recall O is a topological abelian group,
generated by the element e = (1, 0, 0, . . .); that is, O = {ek

}k∈Z, where

ek
= e + e + · · · + e︸ ︷︷ ︸

k times

.

Define the natural Z action on O by T z x = x + ek , z ∈ Z, x ∈O. Let (Oi , Z), i =
1, 2, . . . , k, be k copies of (O, Z). Denote by the ‘product 2-adic odometer’ (A, Zk)=∏k

i=1(Oi , Z) the Zk-dynamical system (and topological group) constructed from the
product of the Oi . This system has topological entropy zero. We conclude that ψ :
X × A→ X is a principal extension. Notice mdim(X × A, Zk)= 0 and (X × A, Zk) is
an extension of (A, Zk) which is zero-dimensional and free. We conclude by the last part
of Theorem 1.11.1 that (X × A, Zk) has the small boundary property. 2

Using the construction of [Dow05, p. 73] we have the following lemma.

LEMMA 5.1.4. If (X, Zk) has the small boundary property then it has a zero-dimensional
principal extension.
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The last two lemmas enable us to conclude a theorem interesting by its own right.

THEOREM 5.1.5. Any dynamical system (X, Zk) with mdim(X, Zk)= 0 admits a zero-
dimensional principal extension.

5.2. Entropy structure. Let µ ∈ PZk (X). Given a continuous function f : X→ [0, 1]
denote by

A f = {{(x, t) ∈ X × [0, 1] | t ≤ f (x)}, {(x, t) ∈ X × [0, 1] | t > f (x)}}

the two-element partition of X × [0, 1]. Let F , G be finite families of functions, define

AF =
∨
f ∈F

A f , AG =
∨
f ∈G

A f

and
H fun(µ, F)= H(µ× γ, AF ), H fun(µ, F |G)= H(µ× γ, AF |AG),

where H is the standard entropy function of a measure with respect to a partition and γ
denotes the Lebesgue measure on the interval. Notice that both H fun(·, F) : PZk (X)→ R
and H fun(·, F |G) : PZk (X)→ R are continuous, where G is another finite family of
functions. We recall the definition of hfun, entropy with respect to a family of functions, as
it appears in [Dow05, §6.2, p. 79] (where, F Fn = { f (T g

·) : X→ [0, 1] | f ∈ F , g ∈ Fn}):

hfun(µ, F)= lim
n→∞

1
|Fn|

H fun(µ, F Fn ).

Two increasing sequences of functions on a compact domain H= (hk) and H′ = (h′k) are
called uniformly equivalent if for every index k and every γ > 0 there exists two indices
m, m′ so that h′m′ > hk − γ and (symmetrically) hm > h′k − γ . We can now present the
definition of entropy structure such as it appears in [Dow05, p. 74].

Definition 5.2.1. An entropy structure of a finite topological entropy dynamical system
(X, Zk) is any increasing sequence H= (hk) of functions defined on PZk (X) such that for
any choice of a zero-dimensional principal extension (X ′, Zk) and any choice of refining
clopen partitions C′k in X ′, k ∈ N, the lift of H to PZk (X ′) is uniformly equivalent to
the sequence of entropies with respect to partitions Href

= (h(·, C′k))k∈N. Notice that by
Theorem 5.1.5 the condition in the definition is never void.

Definition 5.2.2. Let A, B be partitions of X . Let µ ∈ PZk (X). Define the Zk-entropy of
A with respect to B as

hµ(A|B)= lim
n→∞

1
|Fn|

Hµ(A Fn |B Fn ).

One can show that the limit always exists. Similarly one defines hfun(µ, F | G) for two
families of functions F , G. Let P = {z ∈ Zk

| z < E0}, where < is the lexicographic order.
A P
=
∨

z∈P T z A is referred to as the past σ -algebra of A. It is a well-known fact that

hµ(A|B)= Hµ(A|A P
∨ BZk

).
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In particular we conclude that hfun(µ, F |G) is an infimum of continuous functions and
therefore upper semi-continuous. The following lemma is a generalization of [Dow05,
Lemma 7.1.2, p. 89] (where it is assumed that htop(X) <∞) even in the case k = 1.

LEMMA 5.2.3. Let Fk and F ′k be two refining increasing (by inclusion) sequences of finite
families of continuous functions from X into [0, 1] such that

lim
k→∞

hfun(·, Fk)= lim
k→∞

hfun(·, F ′k).

Then the sequences H= (hfun(·, Fk)) and H= (hfun(·, F ′k)) are uniformly equivalent.

Proof. Fix k. Notice that, as F ′k is a refining sequence,

lim
k′→∞

hfun(·, Fk |F ′k′)= lim
k′→∞

H fun(·, Fk |F P
k ∨ F

′Zk

k′ )= 0.

We recognize a sequence of upper semi-continuous functions decreasing to a continuous
limit. This implies that the limit is uniform. As

hfun(·, F ′k)= hfun(·, F ′k ∪ Fk)− hfun(·, Fk |F ′k′)

we conclude that for any γ > 0 there exists k′ such that

hfun(·, F ′k)≥ hfun(·, F ′k ∪ Fk)− γ ≥ hfun(·, F ′k)− γ.

The inequality where the roles of Fk and F ′k are reversed follows by symmetry. 2

The following theorem’s proof follows verbatim from the first paragraph of [Dow05,
proof of Theorem 7.0.1, p. 95]. Notice one uses Lemma 5.2.3 in the proof.

THEOREM 5.2.4. Let (X, Zk) be a dynamical system with mdim(X, Zk)= 0, then it has
an entropy structure.

Notice that entropy structure is a topological invariant [Dow05, p. 75, Theorem 5.0.2].
We now prove Theorem 1.12.4.

Proof. Given that zero-dimensional principal Zk-extensions exist for finite entropy
dynamical systems (Theorem 5.1.5), the proof is the same as that of [Dow05,
Theorem 5.1.1]. The verification of this claim is straightforward and is left to the reader. 2
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