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Abstract. The goal of the Arbeitsgemeinschaft is to review current progress
in the study of very large structures. The main emphasis is on the analytic
approach that considers large structures as approximations of infinite analytic
objects. This approach enables one to study graphs, hypergraphs, permuta-
tions, subsets of groups and many other fundamental structures.
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Introduction by the Organisers

Built on decades of research in ergodic theory, Szemerédi’s regularity theory and
statistical physics, a new subject is emerging that considers very large finite struc-
tures as approximations of infinite analytic objects. More precisely, one can intro-
duce various convergence notions and limit objects for growing sequences of graphs,
hypergraphs, permutations, and for several kinds of other important structures.
Many properties of these structures are easier to study in the limiting setting
since powerful tools from analysis become available. This approach creates new
connections between analysis, combinatorics and group theory. The goal of the
Arbeitsgemeinschaft is to present a landscape of beautiful ideas developed by re-
searchers from diverse fields. The subject is very rich and many of its aspects are
covered in the recent book [1] by L. Lovász.

The presentations at the workshop discussed a number of applications in ex-
tremal combinatorics, Fourier analysis (also in a higher order version of it), group
theory, ergodic theory, topology and probability. The workshop was well attended
with over 40 participants. It brought together researchers with backgrounds in
Probability, Combinatorics, Ergodic theory, group theory and logic. Besides talks
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there was a problem session and an informal discussion of recent progress in ran-
dom regular graphs.
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Nilmanifolds and nilspaces

Yonatan Gutman

Recently Camarena and Szegedy have developed a beautiful theory of nilspaces -
a certain generalization of nilmanifolds. The goal of this report is to present very
succinctly, the elements of a new proof of the main case of a fundamental theorem
appearing in [1], about the relation between nilmanifolds and nilspaces. I would
like to thank Freddie Manners and Péter Varjú who worked with me on the new
proof. I am grateful to Ben Green, Bernard Host and Balázs Szegedy for helpful
discussions.

1. The prenilspace and k-step nilspace axioms

Define the functions ρi : {0, 1} → {0, 1}, i = 0, 1, 2, 3, by ρ0(x) ≡ 0 , ρ1(x) ≡
1 , ρ2(x) = x , ρ3(x) = 1− x. Let m,n ∈ N. A map f : {0, 1}m → {0, 1}n between
discrete cubes is called a discrete cube morphism if for every 1 ≤ i ≤ n
there exist 1 ≤ j ≤ m and k ∈ {0, 1, 2, 3} (depending on i) so that for any
(x1, . . . , xm) ∈ {0, 1}m, f(x1, . . . , xm)|i = ρk(xj). Observe that discrete cube
morphisms are closed under composition. Let (X, d) be a compact metric space.
Let Cn(X) ⊂ X{0,1}n , n ∈ Z+ be closed sets. The elements of Cn(X) are referred
to as the (n)-cubes. X is referred to as the base space. We define the following
axioms (n, k ∈ Z+): n-Cube invariance (I)n: For any m ∈ Z+, f ∈ Cm({0, 1}n)
and c ∈ Cn(X) c ◦ f ∈ Cm(X). k-Ergodicity (E)k: Ck(X) = X{0,1}k . n-

Completion (C)n: If f̃ : {0, 1}n\{~1} → X has the property that for every 1 ≤ i ≤
n, f̃|Fi ∈ Cn−1(X) where Fi = {~x ∈ {0, 1}n|xi = 0}, then there exists c ∈ Cn(X)

with c∗ := c|{0,1}n\{~1} = f̃ . c is referred to as a completion of f̃ . n-Uniqueness

(U)n: If h, f ∈ Cn(X) and h∗ = f∗ then h = f . Let X = (X, {Cn(X)}∞n=0).
Define the following objects: Prenilspace: [(I)n for all n ∈ Z+], (E)1, [(C)n for
all n ∈ N]. k-step Nilspace: [(I)n for all n ∈ Z+], (E)1, [(C)n for all n ∈ N],
(U)k+1. A morphism between two prenilspaces f : X → Y consists of a continuous
mapping f : X → Y such that f(Cn(X)) ⊂ Cn(Y ) for all n ∈ N.
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2. The structure of k-step nilspaces

Let X be a 1-step nilspace. Fix an arbitrary element e ∈ X and let a, b ∈ X
arbitrary. Taking advantage of the fact that ã : {0, 1}2 \ {~1} → X given by
ã(0, 0) = e, ã(1, 0) = a, ã(0, 1) = b has a unique completion, one obtains a
continuous binary operation on X . It is not hard to show, using the axioms, this
binary operation turn X into a compact Abelian group. For k-step nilspaces with
k > 1 the situation is more complicated. Define a principal bundle to be a
quadruple E = (E,B, π,G), where E,B are topological spaces, G is a topological
group acting continuously on E and π : E → B a is continuous surjection such
that, G preserves the fibers π−1(b), b ∈ B and acts freely and transitively on each
one of them. A (G)-bundle map φ : E → E is a continuous G-equivariant map.

The Camarena–Szegedy Structure Theorem. Given a k-step nilspace Xk,
there is a finite series of finite-step nilspaces Xk−1, . . .X0 = {•} and compact

Abelian groups Ak, . . . A1 as well as continuous prenilspace epimorphisms Xk πk→
Xk−1

πk−1→ Xk−2 → · · · π1→ X0 such that (Xj , Xj−1, πj , Aj) is a Aj -principal bundle
for j = 1, . . . , k. �

Xk is said to be toral if all structure groups A1, . . . Ak are tori (of various di-
mensions). Recall that a nilmanifold X is a quotient X = G/Γ where G is a
finite-step nilpotent Lie group and Γ a cocompact discrete subgroup. Our goal is
to prove the following theorem:

Theorem 1. The base space of a toral k-step nilspace is a nilmanifold.

Proof. (Sketch.) The result is proven by induction. The base case k = 1: From
the Camarena–Szegedy Structure Theorem it follows X1 = A1 is a torus. Assume
the theorem has been established for k − 1. Let Xk = (Xk, {Cn(Xk)}∞n=0) be a
k-step compact nilspace. We call a homeomorphism α : Xk → Xk a translation
if for any c ∈ Ck(Xk), [c, α(c)] ∈ Ck+1(Xk) and [c, α−1(c)] ∈ Ck+1(Xk) where
the concatenation [c0, c1] : {0, 1}k+1 → Xk is given by [c0, c1](v, 0) = c0(v) and
[c0, c1](v, 1) = c1(v) for all v ∈ {0, 1}k. Note that translations are Ak-bundle

maps. Let G̃k be the group of translations of Xk equipped with the supremum
metric d∞. Let Gk be the identity component of G̃k. Gk will turn out to be the
desired nilpotent Lie group for which Xk = Gk/Γk (for suitable cocompact discrete
Γk). Going through the proof of [1, Theorem 7] it is clear that the difficulty
lies in establishing that the natural projection πk : Gk → Gk−1 is onto. Let
αk−1 ∈ Gk−1. By the inductive assumption GXk−1

is a connected Lie group and
therefore path connected. As a consequence one can find a (continuous) homotopy
between Id and αk−1, H : Xk−1×I → Xk−1. By Gleason’s Theorem ([2, Theorem
3.3]), (Xk, Xk−1, πk, Ak) is a fiber bundle. Thus according to the First Covering
Homotopy Theorem ([3, §11.3]), as Xk−1 is compact, one can lift the homotopy
H to a homotopy which is a bundle map. In particular there is a bundle map lift
hk : Xk → Xk of αk−1 (πk ◦ hk(x) = αk−1 ◦ πk(x)). However hk may not be a
translation. We associate to hk the ”cocycle” ρk : Ck(Xk) → Ak, measuring its

deviation from being a translation, defined by ρk(c) = a iff [c, (hk(c
∗), hk(c(~1)) +
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a)] ∈ Ck+1(Xk), where (hk(c
∗), hk(c(~1)) + a) is the configuration achieved from

hk(c) by adding the element a to hk(c(~1)). Using the (C)k+1 and (U)k+1 axioms,
one can easily show that such an element a exists and that it is unique. This
implies ρk(c) is continuous. As ρk is constant on cubes with identical projection on
Ck(Xk−1), one obtains a map ρk : Ck(Xk−1) → Ak. It turns out that if d∞(Id, hk)
is small enough (which can be assumed w.l.o.g) then there exists a continuous
g : Xk−1 → Ak such that the αk−1-lift αk := hk + g : Xk → Xk is a translation
iff one can solve the equation ρk(c) = ∂k(g)(c) :=

∑
v∈{0,1}k g(c(v))(−1)

∑
i vi for

all c. This equation is indeed solvable following the procedure in [1, Lemma 3.19]
as one can explicitly write g as a certain average of ρk. Without getting into the
details let us point out that the continuity of g is a consequence of the continuity
of ρk.
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