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Abstract. Let X be a closed manifold of dimension 2 or higher or
the Hilbert cube. Following Uspenskij one can consider the action of

Homeo(X) equipped with the compact-open topology on Φ ⊂ 22
X

, the
space of maximal chains in 2X , equipped with the Vietoris topology. We
show that if one restricts the action to M ⊂ Φ, the space of maximal
chains of continua then the action is minimal but not transitive. Thus
one shows that the action of Homeo(X) on UHomeo(X), the universal
minimal space of Homeo(X) is not transitive (improving a result of Us-
penskij in [Usp00]). Additionally for X as above with dim(X) ≥ 3 we
characterize all the minimal subspaces of V (M), the space of closed sub-
sets of M , and show that M is the only minimal subspace of Φ. For
the case dim(X) ≥ 3, we also show that (M,Homeo(X)) is strongly
proximal.
2000 Mathematics Subject Classification: Primary 37B05; Secondary
54H15, 22F50.

1. Introduction

We consider here compact G–spaces with G a Polish group and the action
assumed to be continuous as a function of both variables. Such a G–space X
is said to be minimal if X and ∅ are the only G-invariant closed subsets of
X. By Zorn’s lemma each G–space contains a minimal G-subspace. These
minimal objects are in some sense the most basic ones in the category of
G–spaces. For various topological groups G they have been the object of
vast study. Given a topological group G one is naturally interested in trying
to describe all of them up to isomorphism. Such a description is given by
the following construction: one can show there exist a minimal G–space
UG unique up to isomorphism such that if X is a minimal G–space then
X is a factor of UG, i.e, there is a continuous G-equivariant mapping from
UG onto X. UG is called the universal minimal G–space (for existence
and uniqueness see [Usp00]). The task of calculating explicitly this minimal
universal space is very hard. For some groups the space itself is complicated,
e.g. by a known theorem the universal minimal flow of a non-compact locally
compact group is non-metrizable (see [KPT05], Theorem A2.2.).

This research was supported by the Israel Science Foundation (grant No. 1333/04).
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For non locally compact groups the universal minimal space may reduce
to one point. Such groups are called extremely amenable. Since every
G–space X contains a minimal G–space, these groups may be characterized
by a fixed point property, i.e. any G–space X has a G–fixed point. Using
novel and original techniques Pestov in [Pes98] showed that the following
groups had this property: the group of order preserving automorphisms of
the rational numbers, equipped with the topology in which a subbasis of
the identity consists of (all) stabilizers of a finite number of points, and the
groups Homeo+(I) and Homeo+(R) of orientation preserving homeomor-
phisms of the unit interval and of the real line, respectively, equipped with
the compact-open topology. The universal minimal space may be metriz-
able without being a single point, for example: the circle S1 is the universal
minimal space of the group Homeo+(S1) of its orientation preserving home-
omorphisms, equipped with the compact-open topology.

Motivated by the last result Pestov asked in the last section of [Pes98]
if the Hilbert cube Q = [−1, 1]N with the natural action of Homeo(Q),
equipped with the compact-open topology, is the universal minimal space
for Homeo(Q). In [Usp00] Uspenskij answered Pestov’s question in the
negative by showing that for every topological group G, the action of G on
the universal minimal space UG is not 3-transitive, i.e., there exist triples
(a1, a2, a3) and (b1, b2, b3) of distinct points of UG such that no g ∈ G satisfies
g(ai) = bi for i = 1, 2, 3. In order to do so Uspenskij introduced the space
of maximal chains of a given topological space. We now review this notion.
Given a compact space K, let V (K) be the space of all non-empty closed
subsets of K, equipped with the Vietoris topology (see definition 1.1 in
[IN99]). A subset C ⊂ V (K) is a chain in V (K) if for any E,F ∈ C either
E ⊂ F or F ⊂ E. A chain is maximal if it is maximal with respect to the
inclusion relation. One verifies easily that a maximal chain in V (K) is a
closed subset of V (K), and that Φ the space of all maximal chains in V (K)
is a closed subset of V (V (K)), i.e. Φ ⊂ V (V (K)) is a compact space. Note
that a G-action on K naturally induces a G-action on V (K) and Φ(K).
This is true in particular for K = UG. Therefore there is a continuous
G-equivariant mapping f : UG → Φ(UG). By cleverly investigating this
mapping Uspenskij achieved the aforementioned result.

Motivated by Uspenskij’s idea of looking on the maximal chains space
of the universal minimal space, Glasner and Weiss studied in [GW03] the
maximal chains space of the Cantor setK, and showed that it is the universal
minimal space for Homeo(K), equipped with the compact-open topology.
It is important to point out that whereas Uspenskij used the (abstract)
existence of the space of maximal chains in V (UG), Glasner and Weiss’
method is constructive. The first steps consist of constructing the maximal
chains space of the Cantor set and analyzing its properties.
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In a recent article Pestov asked (albeit while attributing the questions
to Uspenskij) for an explicit description of the universal minimal space of
the group of homeomorphisms Homeo(X) (equipped with the compact-open
topology), X being a closed manifold of dimension 2 or higher or the Hilbert
cube (see [Pes05] section 5.2, Open Questions 28 & 29). Here and elsewhere,
the term closed manifold refers to a compact manifold without boundary.
Motivated by these and similar questions (where X is allowed to be an even
more general topological space) we apply the constructive method to a large
class of groups of homeomorphisms of topological spaces (equipped with
the compact-open topology). This class includes in particular the group of
homeomorphisms of X, where X is any closed manifold of dimension 2 or
higher or the Hilbert cube.

It is important to note, that the specific ideas Glasner and Weiss used
in [GW03], heavily depend on the fact that K is zero-dimensional. For
higher dimensions new ideas are needed. The scheme we would ideally
like to use is to start with the given space X, then characterize all minimal
subspaces of V (X), next continue with characterizing the minimal subspaces
of the iteration V 2(X) = V (V (X)) and so on, characterizing the minimal
subspaces of V n(X) for each n ∈ N. This scheme would include the analysis
of the space of maximal chains in V (X) and much more, but unfortunately
it turns out to be very difficult to carry out.

We managed to obtain results for the ”first three levels”. It is easy to see
that the only minimal subspaces of V (X) are {X} and

{
{x} |x ∈ X}.

Characterizing all minimal subspaces of V 2(X) already turns out to be
rather hard. However one encounters a new and interesting phenomenon
involving continua, i.e. non-empty compact, metric and connected spaces.
Indeed Φ, the space of maximal chains in V (X), is not minimal, but rather
M ⊂ Φ, the space of maximal chains (consisting only) of continua of X.
This space can also be shown to coincide with the space of connected (w.r.t
V (X)) maximal chains (see Lemma 2.3). Put formally:

Theorem 1.1. If X is a closed manifold of dimension 2 or higher, or the
Hilbert cube, then M , the space of maximal chains of continua is minimal
under the action of Homeo(X) on Φ.

This theorem enables us to improve on Uspenskij’s result and we prove:

Theorem 1.2. If X is a closed manifold of dimension 2 or higher, or the
Hilbert cube, and G = Homeo(X), then the action of G on the universal
minimal G–space UG, is not transitive.

Interestingly for a large class of spaces X one has that M , the space of
maximal chains of continua, is the only minimal Homeo(X)-subspace of Φ.
In particular, we prove:
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Theorem 1.3. If X is a closed manifold of dimension 2 or higher, or the
Hilbert cube, then M , the space of maximal chains of continua, is the only
minimal subspace of the Homeo(X)-space Φ.

Analyzing all minimal subspaces of V 3(X) turned out to be rather dif-
ficult. However we managed to classify all minimal subspaces of V (M) ⊂
V 3(X):

Theorem 1.4. If X is a closed manifold of dimension 3 or higher, or the
Hilbert cube, then the action of Homeo(X) on V (M), the space of non-
empty closed subsets of the space of maximal chains of continua has exactly
the following minimal subspaces:

(1) {M}
(2) {Mx}x∈X , where Mx = {c ∈M(X) |

⋂
{cα | cα ∈ c} = {x}},

(3)
{
{c} | c ∈M}

M is said to be strongly proximal under G = Homeo(X) if for any
Borel probability measure µ on M , there exists a sequence (gn) of elements
of G such that [gn]∗(µ) converges to the measure concentrated at a singleton.
We prove:

Theorem 1.5. If X is a closed manifold of dimension 3 or higher, or the
Hilbert cube, then (M,Homeo(X)) is strongly proximal.

Acknowledgements: This paper is part of a PhD. thesis by the au-
thor under the supervision of Professor Benjamin Weiss. I would like to
thank Professor Benjamin Weiss for his support and advice. I would like to
thank the two referees for a careful reading of the paper and many useful
suggestions.
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2. Preliminaries

In this paper an effort is made to state theorems and lemmas in their
broadest generality. We use the symbol X to denote the space we are
working with. (X, d) is always assumed to be compact, metric, connected
and non-trivial (by which we mean it contains more than one point, hence
it contains infinitely many points). By an ε-net of a set D ⊂ X we mean
a finite collection A = {ai}Ki=1 ⊂ D such that for all p ∈ D, dist(p,A) =
mini=1,...,Kd(p, ai) < ε. Let V (X) denote the space of non-empty closed
subsets of X. We equip V (X) with the Hausdorff metric:
(2.1)
dV (X)(A1, A2) = d(A1, A2) = inf{ε > 0 | A2 ⊂ B(A1, ε) and A1 ⊂ B(A2, ε)}
where A1, A2 are two non-empty closed sets and B(A, ε) = {x ∈ X | ∃a ∈
A 3 d(x, a) < ε}. The Hausdorff metric induces the Vietoris topology on
V (X) (see Theorem 3.1 of [IN99]). We define V n(X) for all n ∈ N using
the natural definition V n(X) = V (V n−1(X)). A warning is due here: along
the paper the notation d(·, ·) will be used to denote distance in various
metric spaces. The reader should keep in mind that d(·, ·) denotes mostly
the distance of the underlying space X or the Hausdorff distance in V (X),
V 2(X) or V 3(X), where the choice should be clear from the context.

Let C(X) be the subspace of V (X) consisting of all subcontinua of X.
Here are two definitions that will play an important role in the paper:

Φ(X) = the collection of maximal chains in V (X)

M(X) = the collection of maximal chains in C(X)

If the underlying space X is clear from the context we write Φ,M respec-
tively. In Lemma 2.3 we show that M can be characterized as the space of
connected (w.r.t V (X)) maximal chains. If c ∈ M(X) and D ∈ c then we
define the initial segment of c ending at D to be c′ = {R ∈ c | R ⊂ D}.
Notice c′ ∈M(D). Let

r(c) =
⋂
{cα | cα ∈ c}

while the set of all chains rooted at {x} is denoted by Mx and Φx, respec-
tively:

Mx = {c ∈M | r(c) = {x}}, Φx = {c ∈ Φ | r(c) = {x}}.

Lemma 2.1. For c = {cα}α∈A ∈M and F ⊂ c one has ClX{
⋃
cα∈F cα} ∈ c

and
⋂
cα∈F cα ∈ c.
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Proof. This follows from the maximality of c as a subset of C(X). �

Given c = {cα}α∈A ∈ M and D ∈ V (X) with r(c) ⊂ D we call the set
cD =

⋃
{cα| cα ⊆ D} the maximal element of c inside D.

Lemma 2.2. We have the following:

(1) cD ⊆ D.
(2) If N is an open set so that r(c) ⊂ N and ∂N 6= ∅ then cN ∩ ∂N 6= ∅

Proof. (1) is a direct consequence of lemma 2.1 and the fact that D is closed.
(2) Let I =

⋂
{cα | cα ∩ ∂N 6= ∅}. By standard compactness arguments

I ∩ ∂N 6= ∅ and thus it is enough to show I ⊆ cN . Assume not. Then
cN ( I. According to Theorem 15.2 of [IN99] there exist F ∈ c so that
cN ( F ( I. Since F ∩ N ⊃ r(c) 6= ∅ and F is connected, it follows that
F ⊂ N and thus F ⊆ cN – a contradiction. �

Lemma 2.3. M = Φ ∩ C(V (X)).

Proof. Let c ∈M . According to Lemma 14.4 of [IN99] c is an order arc in
C(X), i.e there exists a homeomorphism i : [0, 1]→ C(X) so that i([0, 1]) =
c and 0 ≤ t1 < t2 ≤ 1 implies i(t1) ( i(t2). In particular one concludes c
is connected. Conclude M ⊂ Φ ∩ C(V (X)). In order to prove the opposite
inclusion assume c ∈ Φ ∩ C(V (X)) and some D ∈ c is not connected, i.e.
D = D1 ∪ D2, D1, D2 disjoint closed sets. Every member of c is either
contained in D1 or meets D2. This implies c is not connected, contradicting
the initial assumption. �

Lemma 2.1. {Mx}x∈X ∈ C(V (M)) and the function m : X → {Mx}x∈X
given by m(x) = Mx is a homeomorphism.

Proof. Recall that r is the continuous function r : M → X given by r(c) =⋂
cα∈c cα. Notice that for x ∈ X, Mx = r−1({x}) which implies Mx ∈ V (M)

and the functionm−1 : Z → X, where Z = {Mx}x∈X ⊂ V (M), is continuous
and 1-to-1. Now, the set Z is closed in V (M) and therefore is compact, and
thus this function is a homeomorphism. Hencem = r−1 is a homeomorphism
and X being connected, so is Z. �

3. Local Transitivity, Strong Arcwise-Inseparability &
Strong R-Inseparability

In this section we introduce important topological assumptions used through-
out the article and discuss some examples. Our actions of a group G on
X will always be induced by G being a subgroup of the group Homeo(X),
equipped with the compact–open topology (which is in this setting the same
as the uniform convergence topology, see [Mun75] p. 286). The action of
G on X induces a natural action on V n(X) for all n ∈ N. Given g ∈ G
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and A ∈ V (X) (i.e. A ⊂ X is a closed set) one defines gA = {ga| a ∈ A}.
The action of G on V n for general n is defined inductively, based on the
equality V n(X) = V (V n−1(X)). We assume that the group (or the action)
is locally transitive in the sense that for any open set U ⊂ X and x ∈ U
the set {gx | g ∈ GU} is a neighborhood of x, where

GU = {g ∈ G | gx = x forx /∈ U}.
For a compact interval I ⊂ R we denote by Cs(I,X) the collection of con-
tinuous simple (injective) paths p : I → X. We call such paths arcs. As it
is usually done in the literature, the images of arcs are called arcs as well. A
space X is called strongly arcwise-inseparable (SAI) iff any non-empty
open and connected set U ⊂ X and for any arc p ∈ Cs([a, b], U) the set
U \ p([a, b]) is connected and nonempty. A space X is called strongly R-
inseparable (SRI) iff for any non-empty open and connected set U ⊂ X
and any arc p ∈ Cs([a, b], X), the set U\p([a, b]) is connected and non-empty.
Notice property (SRI) implies property (SAI). Throughout the article X is
assumed to be either strongly arcwise-inseparable or strongly R-inseparable.
Here are the basic facts the reader should keep in mind. Closed manifolds
of dimension 2 are strongly arcwise-inseparable (see Theorem A.1). Closed
manifolds of dimension 3 or higher and the Hilbert Cube are R -inseparable
(see Theorem A.3). We present a list of locally transitive groups (except
the case when X is the Hilbert cube, which is proven in Lemma A.2, the
other examples are simple and therefore the proofs are omitted):

Examples of Locally transitive Groups 3.1. Let X be the Hilbert cube
or a closed manifold of dimension 2 or higher. Then, any group containing
one of the following groups is locally transitive:

(1) G = Homeo0(X), the arcwise connected component of the identity
in Homeo(X).

For X an orientable manifold:
(2) G = Homeo+(X), the group of orientation preserving

homeomorphisms.

For X a smooth manifold:
(3) G = Diffeo0(X), the arcwise connected component of the identity

in the group of diffeomorphisms of X.

4. The Minimal Subspaces of V (X)

Let X be a Peano continuum, (i.e. X is compact, metric, connected and
locally connected) with the property that the removal of a point from an
open and connected set does not affect its connectivity. In other words
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assume that if U ⊂ X is open and connected and p ∈ U then U \ {p} is
connected. We now characterize the minimal subspaces of V (X). Let us
recall that the action of G on X is called n-transitive if |X| ≥ n and for
any two n-tuples of distinct points (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ Xn ,
there exist g ∈ G so that g(ai) = bi for i = 1, 2, . . . , n.

Lemma 4.1 (Global Transitivity). Suppose X is a continuum such that for
each connected open set U ⊂ X and each p ∈ X the set U \{p} is connected.
If the action of G on X is locally transitive then for any open and connected
set U ⊂ X, the action of GU on U is n-transitive, for all n ∈ N.

Proof. By induction. The case n = 1 follows from the assumption, as given
x ∈ U the set {gx : g ∈ GU} is open and closed in U , and hence is equal
to U . Let now n > 1. Let (a1, . . . , an) and (b1, . . . , bn) be two n-tuples
of distinct points of U . By assumption there exists an f ∈ GU so that
f(ai) = bi for i = 1, . . . , n− 1. Let V = U \ f({a1, . . . , an−1}). Notice V is
open and connected. Apply the case n = 1 of the induction to find a g ∈ GV

so that g(f(an)) = bn. Define h = g ◦ f . Notice h ∈ GU and h(ai) = bi for
i = 1, . . . , n. �

Theorem 4.2. Under assumptions of the preceding lemma the only minimal
subspaces of V (X) are:

(1) {X}
(2)

{
{x} |x ∈ X}

Proof. It is clear that the two presented subspaces are minimal. To show
they are the only minimal subspaces it is enough to show that any element
of V (X) has the property that the closure of its orbit intersects one of these
subspaces. Let then A ∈ V (X). If |A| < ∞ then by Lemma 4.1 one can
find gn ∈ G, n ∈ N and z ∈ X so that gn(A) →n→∞ {z}. i.e. the closure
of the orbit of A intersects the second subspace. If |A| = ∞ we will show
that the closure of the orbit of A intersects the first subspace. Let ε > 0 be
given. Let {xi}li=1 ⊂ X be an ε-net of X. Find {yi}li=1 ⊂ A and g ∈ G so
that g(yi) = xi. Conclude that d(g(A), X) < ε. �

5. Approximation of M by Ray-induced Chains

From now onward we assume that X is a Peano continuum, (i.e. X is
compact, metric, connected and locally connected) which is strongly arcwise-
inseparable. In this section we will show that the chains in M can be
approximated by the so-called ray-induced chains.

Definition 5.1. We call the members of Cs([0,∞), X) rays. By an R+-
chain we mean any element c of M such that c = (ct)t∈[0,∞] and there exists
a ray γ with ct = γ([0, t]) for all t <∞. When the last condition is satisfied,
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we say that c is induced by the ray γ. Let us observe that then one has
c∞ = X (this follows from maximality of c) and thus the ray γ is dense in
X (in the sense that γ([0,∞)) is dense in X), again by the maximality of
c. We denote

R = {c ∈M | c is a R+−chain} and Rx = R ∩Mx (x ∈ X)

Lemma 5.2. Let γ ∈ Cs([0, k], U), where U is an open connected set in X.
Then given ε > 0 and x1, . . . , xl ∈ U there exists an arc γ′ ∈ Cs([0, k+ l], U)
such that γ′(t) = γ(t) for t ≤ k − 1, d(γ′(t), γ(t)) < ε for t ∈ [k − 1, k] and
x1, . . . , xl ∈ Bε(γ

′([k, k + l]).

Proof. An easy induction shows that it suffices to consider the case when
l = 1. If x1 ∈ γ([0, k]) we are done, so assume not. Pick s ∈ (k − 1, k)
with diam{γ([s, k])} < ε

2
, and using connectedness of the set U \ γ([0, s])

pick an arc p in it from γ(k) to x1. The desired arc γ′ is obtained by first
traveling along the arc γ until we hit p and from then on traveling along
p. (Parametrization needs to be adjusted so that γ′(t) = γ(t) for t ≤ s and
γ(t) stays close to the point γ(s) = γ′(s) for t ∈ [s, k]). �

Theorem 5.3. R = M (for X a Peano continuum which is SAI).

Proof. Let c ∈M and ε > 0 be given. By Lemma 14.4 of [IN99] there is an
embedding j of [0,∞] into C(X) such that c = j([0,∞]) and j(t1) ⊂ j(t2)
for t1 < t2. Subdivide [0,∞] into infinitely many intervals, each mapped
under j to a set of diameter < ε. By changing the units in the domain
one can assume for simplicity that the intervals have diameter less than
1 and thus that d(j(t), j(k)) < ε for all reals t ≥ 0 and integers k such
that k − 1 ≤ t ≤ k. Denote by Conε(j(k)) ⊂ Bε(j(k)) the connectivity
component of Bε(j(k)) which contains j(k), it is open in X by the local
connectedness of X. Inductively we construct arcs γk : [0, k]→ X such that:

(1) {γk(0)} = r(c), γk([k − 1, k]) ⊂ Conε(j(k)) and j(k) ⊂ B ε
k
(γk([k −

1, k])),
(2) γk(t) = γk−1(t) for t ∈ [0, k − 2],
(3) d(γk(t), γk−1(t)) < ε for t ∈ [k − 2, k − 1]

To this end suppose first that k ≥ 2 and γk has already been constructed.
Let U = Conε(j(k)). Let x1, . . . , xl be an ε

k
-net of j(k). Applying Lemma

5.2 with γ = γk and then changing the parameter set of γ′ from [0, k+ l] to
[0, k + 1] we get the desired arc γk+1. This takes care of the inductive step,
the case k = 1 is handled similarly. (Conditions (2) and (3) are then void.)
Put γ(t) = limk→∞ γk(t) and at = γ([0, t]) for t ≥ 0. Since

⋃
k j(k) = X we

infer from (1) that the image of γ is dense in X. Moreover ak = γk+1([0, k])
by (2), and thus from (1) , (3) and the monotonicity of the sequence (j(n))
it follows that ak is contained in the 2ε-neighborhood of j(k) and contains



MINIMAL ACTIONS OF HOMEOMORPHISM GROUPS 10

the set S = γk+1([k− 1, k]) such that j(k) ⊂ B2ε(S). Hence d(ak, j(k)) < 2ε
for all k. Now if t ≥ 0, say t ∈ [k, k + 1] for some integer k, then

at ⊂ ak+1 ⊂ B2ε(j(k+1)) ⊂ B3ε(j(t)) andB3ε(at)) ⊃ B3ε(ak) ⊃ Bε(j(k)) ⊃ j(t)

Thus the ray-induced chain {at}t≥0 ∪ {X} is 3ε-close to c, completing the
proof. �

Until now we assumed X was strongly arcwise-inseparable. Suppose X
is strongly R-inseparable. Under this assumption we first present a lemma
which is a generalization of Lemma 5.2, then a definition which is a gener-
alization of Definition 5.1. Finally we state Theorem 5.6 which generalizes
Theorem 5.3. The proof of Theorem 5.6 is omitted as it can be filled in by
a reader who understood the proof of Theorem 5.3.

Lemma 5.4. Let γ1, . . . , γN ∈ Cs([0, k], Ui) be disjoint arcs, where U1, . . . , UN
are open connected sets in X. Then, given numbers ε, δ > 0, there ex-
ist a > k and disjoint arcs γ′i ∈ Cs([0, a], Ui) such that γ′i(t) = γi(t) for
t ≤ k − δ, d(γ′i(t), γi(t)) < 2ε for t ∈ [k − δ, k] and each arc γ′i([0, a]) is
ε/2–dense in X.

Moreover, if for all i one has diamUi < ε and γi(k) ∈ Ui \ Fi for some
closed set Fi with Ui \ Fi connected, then the arcs γ′i can be constructed so
that γ′i(t) /∈ Fi for t ≥ k − δ.

Proof. (sketch) By considering the arcs t 7→ γi(Ct) for C large enough, and
eventually switching back to the original parametrization, one can assume
without loss of generality that δ = 1. The first part is then proved as in
Lemma 5.2, using the (SRI) property of X to make the approximating arcs
disjoint and taking for x1, . . . , xl an ε/2–net in X.

The idea of the proof of the ”moreover” part is first to use the above one
with ε replaced by ε/2 and then, for each i, to subdivide the segment [k−δ, a]
into finitely many segments, so small that they are mapped by γ′i into X \Fi
or into Ui. Then, possibly combining adjacent segments which are mapped
to Ui, one can assume that their endpoints are mapped to Ui \ Fi. The
connectivity of Ui \ Fi now allows to modify γ′i on such a segment so that
the altered γ′i takes values in Ui\Fi. Since diamUi < ε, the modifications will
stay ε-close to the unaltered γ′i’s, and hence 2ε–close to γi on [k − δ, k]. �

Definition 5.5 (The set RN
∗ ). Let N ∈ N. Equip MN with the product

topology. We define the subspace RN
∗ ⊂ MN as follows: (c1, . . . , cN) ∈ RN

∗
iff:

(1) ci = {γi([0, t])}t∈R+ ∪ {X} ∈ R, i = 1, . . . , n
(2) γi(R+) ∩ γj(R+) = ∅, 1 ≤ i < j ≤ n

Theorem 5.6. RN
∗ = MN (for X a Peano continuum which is SRI).
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6. The Minimality of M

Let X be a Peano continuum which is strongly arcwise-inseparable. Our
goal in this section is to show M is minimal under the action of G. We start
with a definition:

Definition 6.1. T is a δ-tube for p ∈ Cs([0, 1], X) iff for some 0 = t0 <
t1 < . . . < tl = 1 there exist open connected subsets U1, U2, . . . , Ul (the

”links” of the tube) such that T =
⋃l
i=1 Ui and

(1) diam{Ui} < δ and p([ti−1, ti]) ⊂ Ui for i = 1, . . . , l.
(2) ClX{Ui} ∩ ClX{Uj} 6= ∅ iff |i− j| ≤ 1.

Lemma 6.2. Let p ∈ Cs([0, 1], X), let δ > 0. Then p has a δ-tube contained
in a given neighbourhood U of p([0, 1]).

Proof. Using simplicity of p we may choose points 0 = t0 < · · · < tl = 1 such
that diamp([ti−1, ti]) < δ/2 for each i = 1, . . . , k. Then, there is a ρ < δ/2
such that for Bi = B(p([ti−1, ti]), ρ) we have Bi ∩ Bj = ∅ for |i − j| > 1.
We define Ui to be the connected component of p([ti−1, ti]) in Bi. By local
connectivity, each Ui is open and so T =

⋃
i Ui is a δ–tube for p. Also, if δ

is small enough then T ⊂ U . �

Introduce the notation:

dist(A,B) = inf
x∈A,y∈B

d(x, y) and dist(x,A) = dist({x}, A)

forA,B ⊂ X. Notice that in general dist(x,A) < d({x}, A) and dist(A,B) < d(A,B).

Lemma 6.3. Let T =
⋃n
i=1 Ui be an ε-tube around an arc p : [0, a] → X,

then:

(1) For every continuum K ⊂ T such that p(0) ∈ K there exists a
t ∈ [0, a] with d(K, p([0, t])) < ε.

(2) If q : [0, b]→ T is an arc satisfying q(0) = p(0) and q(b) belongs to
a sufficiently small neighborhood of p(a), then for each s ∈ [0, a]
there exists a t ∈ [0, b] with d(p([0, s]), q([0, t])) < ε.

(3) If a chain c ∈Mp(0) satisfies that p(a) belongs to a sufficiently small
neighborhood of C ⊂ T for some C ∈ c, then given s ∈ [0, a] there
exists a C ′ ∈ c such that d(p([0, s]), C ′) < 2ε.

Proof. (1) Let j = n if K ∩ Un 6= ∅ and j = min{i|K ∩ Ui = ∅}
otherwise. Then t = tj does the job.

(2) For the above mentioned sufficiently small neighborhood of p(a) we
take Un from the definition of a tube. Let first s = tj for some
j ≥ 1, then, with t = inf{t′ ∈ [0, b]| q(t′) /∈ Uj−1} it is easy to see
that d(q([0, t]), p([0, tj]) < ε. The general case follows similarly.
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(3) c) Let B2δ(p(a)) be sufficiently small neighborhood of p(a) as
desired in (2) for some 0 < δ < ε. By Theorem 5.3 there exists a
chain c′ ∈Mp(0) induced by a ray γ : [0, 1]→ X with dense image
and γ(0) = p(0), such that d(c, c′) < δ; here we request that
δ < dist(p([0, a]), X \ T ). Then for some q > 0 one has γ([0, q]) ⊂ T
and d(p(a), γ(q)) < 2δ. By (2), there exists a t ∈ [0, q] such that
d(p([0, s]), γ([0, t])) < ε. Thus it remains to take C ′ so that
d(γ([0, q]), C ′) < ε.

�

Recall Mx = {c ∈M | r(c) = {x}}.

Lemma 6.4. Let x ∈ X. Let ε > 0. Let c ∈ Mx. Let f = {γ([0, t])}t∈R+ ∪
{X} ∈ Rx. Let a ∈ R be such that d(X, γ([0, a]) < ε. Let U ⊂ X be an open
subset such that γ([0, a]) ⊂ U . Then there is g ∈ GU so that d(g(c), f) < 3ε.

Proof. As γ|[0,a] ⊂ U is a simple curve, Lemma 6.2 tells us γ|[0,a] has T , an
ε-tube in U . Using Lemma 2.2 one can choose C ∈ c so that C 6= {x}
and C ⊂ T . Choose q ∈ C \ r(c). Using Lemma 4.1 choose g ∈ G so
that g(q) = γ(a), g(γ(0)) = γ(0) and g|T c = Id, which implies g|Uc = Id.
In an unprecise manner one can say that g ”stretches” C along γ([0, a]).
Therefore it should not come as a surprise that we will now be able to show
that d(g(c), f) < 3ε. In fact, this inequality follows directly from parts (1)
and (3) of Lemma 6.3 if one takes into account that for s > a and D ∈ c with
C ⊂ D the sets γ([0, s]) and g(D) are 2ε-dense in X (The latter contains
g(C) which contains a set 3ε-close to γ([0, a]). �

Theorem 6.5. Let G act locally transitively on a Peano continuum X which
is strongly arcwise-inseparable. Then the action of G on M(X) is minimal.

Proof. Let c, f ∈ M and ε > 0. Using transitivity of G (Lemma 4.1) one
can assume without loss of generality {r} = r(c) = r(f). Using Theorem
5.3 one can assume f = {γ([0, t])}t∈R+ ∪ {X} ∈ R. Choose a > 0 so that
d(γ([0, a]), X) < ε. Now invoke Lemma 6.4 with U = X to conclude there
is a g ∈ G so that d(g(c), f) < 3ε. �

Corollary 6.6. Under assumptions of Theorem 6.5, the action of G on the
universal minimal G–space UG is not 1–transitive.

Proof. It is enough to show that the minimal G–space M is not 1-transitive.
Let c ∈ R. c is induced by some ray γ. Let r ∈ X. Define v = {B(r, t)}t∈R.
Since no arc is SAI it is easy to show one cannot map balls B(r, t) (home-
omorphically) onto arcs of the form γ([0, a]). This implies there does not
exits g ∈ G so that g(v) = c, from which we conclude the action of G on M
is not 1-transitive. Q.E.D. �
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7. The uniqueness of M as a minimal subspace of Φ.

Definition 7.1. Let x ∈ X. Let ε > 0. A sequence B of open sets
x ∈ B1 ⊂ B1 ⊂ B2 ⊂ . . . ⊂ BN−1 ⊂ BN is an (N, ε) annuli telescope
around x if there exist an open set U with BN ⊂ U ⊂ B(x, ε) so that
U \Bi is connected for i = 1, . . . , N . Notice that if V is open and connected
with U ⊂ V then V \Bi is connected for i = 1, . . . , N . For convenience one
defines A1 = B1 and Ai = Bi \ Bi−1, i = 2, . . . , N . {Ai}Ni=1 is called the
accompanying telescope decomposition.

Moreover, we say that c ∈ Φx is B-compatible iff there exist {Ci}Ni=1 ⊂ c
so that {x} = C1 ⊂ C2 ⊂ . . . ⊂ CN , Ci ⊂ Bi and Ci ∩ Ai 6= ∅ for
i = 1, . . . , N .

We say that X has the Telescoping Annuli Property if for any x ∈
X, ε > 0, N ∈ N, there is a (1, ε) annuli telescope around x, which implies
by a simple argument that for any ε > 0, N ∈ N there is an (N, ε) annuli
telescope around x.

Theorem 7.2. If X is a Peano continuum which is SAI and has the tele-
scoping annuli property, then the only minimal subspace of Φ(X) is M(X).

Proof. Let c ∈ Φ. Our goal will be to show that the closure of the orbit
of c intersects M . Let ε > 0. Let f = {γ([0, t])}t∈R+ ∪ {X} ∈ Rr(c). Let

a ∈ R so that d(X, γ([0, a]) < ε. Let T =
⋃N
i=1 Ui be an ε-tube of γ([0, a])

with diam{Ui} < ε and 0 = t0 < t1 < . . . < tl = a so that p([ti−1, ti]) ⊂
Ui. Denote Tk =

⋃k
i=1 Ui, k = 1, . . . , N . As X has the telescoping annuli

property one can choose BN = {Bi}Ni=1 to be an annuli telescope around
r(c) such that r(c) ⊂ B1 ⊂ B2 ⊂ . . . ⊂ BN ⊂ V ⊂ U1, with V an open
set so that V \ Bi is connected for i = 1, 2, . . . , N . Let {Ai}Ni=1 be its
accompanying telescope decomposition. Using induction we will find gN ∈ G
such that gN(c) is BN -compatible. Define Bk = {Bi}ki=1 for k = 1, . . . , N .
Notice that for g1 = Id, g1(c) is B1-compatible. This is the base step
of the induction. Assume we have found gk ∈ G, k < N so that gk(c) is
Bk-compatible. We will now construct gk+1 ∈ G so that gk+1(c) is Bk+1-
compatible. Let gk(C1) ⊂ gk(C2) ⊂ . . . ⊂ gk(Ck) ∈ gk(c) so that gk(Ci) ⊂ Bi

and gk(Ci) ∩ Ai 6= ∅ for i = 1, . . . , k. Let R = [gk(c)]Bk+1
. If R ∩ Ak+1 6=

∅, let gk+1 = gk and Ck+1 = g−1k+1(R). If R ∩ Ak+1 = ∅, define R+ =⋂
{gk(cα)| gk(cα) ∩ Bc

k+1 6= ∅}. As dist(Bc
k+1, Bk) > 0, the maximality of c

implies that R+ = R ∪ {p} for some p ∈ Bc
k+1. By Lemma 4.1 as X \ Bk

is connected one can find h ∈ G, y ∈ Ak+1 so that h(p) = y and h|Bk = Id.

Define gk+1 = h ◦ gk. Notice that gk+1(Ci) = gk(Ci) for i = 1, . . . , k.
Moreover gk+1 ◦ g−1k (R+) ⊂ Bk+1 and gk+1(R+) ∩ Ak+1 6= ∅. This finishes
the induction. We now choose distinct yi ∈ gN(Ci)∩Ai, zi ∈ Ui, i = 1, . . . N .
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Denote B0 = ∅. As Tk \Bk−1 is open and connected, using property (SAI),
one can choose disjoint arcs pk ∈ Cs([0, 1], Tk \ Bk−1) with pi(0) = yi and
pi(1) = zi. Conclude one can find disjoint open connected subsets pi([0, 1]) ⊂
Wi ⊂ Tk \ Bk−1 , i = 1, . . . , N and therefore by Lemma 4.1 we can find
qi ∈ G so that qi(yi) = zi and [qi]|W c

i
= Id. Let q = q1 ◦ · · · ◦ qN ◦ gN .

Notice q(Ci) ⊂ Ti ⊂ B(γ([0, ti]), ε) ⊂ B(q(Ci), 2ε) for i = 1, 2, . . . , N . We
claim this implies d(q(c), f) < 2ε. Indeed for D ∈ c with Ci ⊂ D ⊂ Ci+1

d(q(D), γ([0, ti]) < 2ε. For ti ≤ s ≤ ti+1 one has d(γ[0, s], q(Ci)) < 2ε. For
s ≥ a one has d(γ[0, s], X) < ε. Finally for CN ⊂ D for D ∈ c one has
d(γ([0, a], D) < 2ε. �

8. The Minimal Subspaces of V(M)

In this section we assume X is a Peano continuum which is strongly R-
inseparable. For Lemma 8.4, Corollary 8.5 and Theorem 8.6 we assume
(X,G) has the boundary shrinking property (to be defined in this section).
Our goal is to find all minimal subspaces of V (M). Three minimal subspaces
are evident. These are Ss = {M}, Sf = {Mx}x∈X and Sp =

{
{c} | c ∈ M}.

The surprising conclusion of this section is that these are the only minimal
subspaces of V (M). For F ∈ V (M) let

GF = {g(F ) | g ∈ G}

r(F ) = {r(c) | c ∈ F}
In order to facilitate the statement of various theorems we call F ∈ V (M)
space-like, fiber-like or point-like, iff respectively ClV (M)(GF )∩ Ss 6= ∅,
ClV (M)(GF ) ∩ Sf 6= ∅ or ClV (M)(GF ) ∩ Sf 6= ∅. We start with an easy
lemma:

Lemma 8.1. If |r(F )| =∞ then F is space-like.

Proof. Let F ⊂ V (M) be such that r(F ) =∞. Let ε > 0. Let {f i}Ni=1 ⊂M
be an ε-net of M . Using Lemma 2.1 and as X is non-trivial and connected,
one can assume without loss of generality that r(f 1), . . . , r(fN) are distinct.
Choose ci ∈ F, i = 1, . . . , N so that r(ci) = {ri}, i = 1, . . . , N are distinct.
Using the N -transitivity of G (Lemma 4.1) one can assume without loss of
generality r(f i) = {ri}. We will now find g ∈ G so that d(g(ci), f i) < 3ε
for i = 1, . . . , N . By Lemma 5.6 one can assume (f 1, . . . , fN) ∈ RN

∗ , in
particular: f i = {γi([0, t])}t∈R+ ∪ {X} ∈ R, i = 1, . . . , N, γi ∈ Cs(R+, X).
Let a ∈ R+ so that d(γi([0, a]), X) < ε, i = 1, . . . , N . Find disjoint open
sets U1, . . . , UN so that γi([0, a]) ⊂ U i. Using Lemma 6.4 conclude there are
gj ∈ GUj , j = 1, . . . , N so that d(gj(cj), f j) < 3ε. Define g = g1 ◦g2 ◦· · · gN .
Notice d(g(cj), f j) < 3ε, j = 1, . . . , N . We conclude dV (M)(G(F ),M) <
4ε. �
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Definition 8.2. Let ε > 0. A non-empty connected open set A is ε-
encircling a connected closed subset B ⊂ X if A ∩ B = ∅ and A ∪ B
is open and connected with diam{B ∪ A} < ε. Notice that the fact that
A ∪B is open implies ∂B ⊂ ∂A thus ”A is encircling B”.

Definition 8.3. Let ε > 0 and x ∈ X. An open connected subset A ⊂ X
has the (G, ε, x)-Boundary Shrinking Property if:

• The boundary ∂A is connected and has at least two points.
• For any closed W ( ∂A, δ > 0 and y ∈ A with y 6= x, there exists
h ∈ GB(A,δ) so that h(x) = x, h(W ) ⊂ B(y, δ).

• There exists an open connected set E which is ε-encircling A.

We say that the G–space X has the Boundary Shrinking Property
(BSP) if for any x ∈ X and ε > 0 there exists an open connected set A with
x ∈ A which has the (G,ε,x)-boundary shrinking property.

Lemma 8.4. Let the Peano continuum X be SRI and let (X,G) have the
boundary shrinking property. Suppose x ∈ X and F ∈ V (Mx). Then F is
either point-like or fiber-like.

Proof. Let ε > 0, e ∈M . We say F is (ε, e)-point-like if there exists g ∈ G
so that d(g(F ), {e}) < ε. We say F is ε-fiber-like if there exists g ∈ G so
that d(g(F ),Mx) < ε for some x ∈ X. We will prove that for a given ε > 0,
F is either 3ε-fiber-like or (2ε, e(ε))-point-like for some e(ε) ∈M . This will of
course imply the statement of the lemma. Let ε > 0. Using property (BSP)
of (X,G) choose B with the (G,ε,x)-boundary shrinking property. Let V be
an open connected set ε-encircling B. Choose Z with the (G, ε

2
, x)-boundary

shrinking property. Let A be an open connected set ε
2
-encircling Z. We

arrange so that ClX{Z ∪ A} ⊂ B, which implies there is δ1 > 0 so that
B(Z, δ1) ⊂ B. Let f = {fκ}κ∈K ∈ F . Recall fZ =

⋃
{fα| fα ⊂ Z}. Define

S(f) = fZ∩∂Z. By Lemma 2.2 S(f) 6= ∅. Define H = {f ∈ F | S(f) 6= ∂Z}.
We first assume H 6= ∅. Let f1, . . . , fN ∈ F . Define:

(8.1) I(f1, . . . , fN) = {f ∈ H| ∃i ∈ {1, . . . , N} S(fi) ∩ S(f) 6= ∅}

(8.2) Ic(f1, . . . , fN) = H \ I(f1, . . . , fN)

We are now going to choose a certain sequence of distinct elements {fi}i=Ni=1 ⊂
F where N ∈ N∪{∞}. Start by choosing an arbitrary f1 ∈ H. If Ic(f1) = ∅
stop. If not choose f2 ∈ Ic(f1). Clearly f2 6= f1. If Ic(f1, f2) = ∅ stop. If
not choose f3 ∈ Ic(f1, f2). Continue in this manner. The inductive process
results in one of the following two possibilities: (1)N ∈ N (2)N = ∞. In
case (1) we claim that F is (2ε, e(ε))-point-like for some e(ε) ∈ M . Let

W =
⋃N
i=1 S(fi) be a closed set. Notice that as ∂Z is connected and

S(fi) ∩ S(fj) = ∅ for 1 ≤ i < j ≤ N we have W ( ∂Z. As B ∪ V is
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open and connected, one can find ζ ∈ Cs([0, 1], B ∪ V ) with ζ(0) = x and
ζ(1) ∈ V (in particular ζ(1) /∈ B). Invoke Lemma 5.4 (one takes in the
lemma k = 1, F1 = B and U1 = B ∪ V ) to find ζ ∈ Cs(R+, X), a, δ > 0 so
that e(ε) = c = {ζ([0, t])}t∈R ∪ {X} ∈ Rx, ζ([0, 1 − δ]) ⊂ B ∪ V , ζ(t) /∈ B
for 1 − δ ≤ t ≤ a and d(ζ([0, a]), X) < ε. Let T =

⋃R
k=1 Uk be a ε-tube

of ζ |[0,a] so that U1 = B (this can be easily be arranged by redefining ζ

inside B∪V ). Using the boundary shrinking property one can find h ∈ GB,
y ∈ Z, δ0 > 0 so that h(W ) ⊂ B(y, δ0), h(x) = x. δ0 > 0 can be chosen
small enough so that Lemma 4.1 implies there is g1 ∈ GT with g1(x) = x
and g1(B(y, δ0)) is inside a sufficiently small neighborhood of ζ(a) (in the
sense of Lemma 6.3). Let g = g1◦h. We will now show that d(g(F ), c) < 2ε.
It is enough to show for all f ∈ F one has d(g(f), c) < 2ε. Let f ∈ F . If
f ∈ H then S(f) ∩ W 6= ∅. If f /∈ H, then clearly the same conclusion
holds. Notice h(f) ∈Mx, dist(h(fZ), y) < δ0 and h(fZ) ⊂ B. Finally notice
ζ(0) ∈ g(fZ) ⊂ T is sufficiently close to ζ(a) and therefore parts (1) & (3) of
Lemma 6.3 imply the desired conclusion. We now turn our attention to the
case N =∞. We claim that in this case F is 3ε-fiber-like. Let {ci}Li=1 ⊂Mx

be an ε-net of Mx. Choose fi ∈ F, i = 1, . . . , L so that S(fi)∩S(fj) = ∅ for

i 6= j. The idea now will be to approximate the cis by R+-chains sis and
then act on the fis with an element g ∈ G so that g(fi) will approximate
si. We will make an essential use of the fact that the fis intersect ∂Z in
disjoint locations in order to construct the above-mentioned g ∈ G. Choose
yi ∈ S(fi) and µ > 0 so that µ < min{d(S(fi), [fj]Z) | 1 ≤ i < j ≤ L }.
As X is locally connected one can choose open connected subsets Ci with
yi ∈ Ci ⊂ B(yi, µ) ∩ (A ∪ Z), i = 1, . . . , L, where we use the fact that
A ∪ Z is open. As Ci are open and connected one can find simple paths
γi ∈ Cs([0, 1], Ci), i = 1, . . . , L, so that γi(0) = yi and γi(1) ∈ A. Now
invoke Lemma 5.4 (one takes in the lemma k = 1, F1 = · · · = FL = Z and
U1 = · · · = UL = Z ∪ A) to find a > 0 and (s1, . . . , sL) ∈ RL

∗ with r(si) =
{yi}, i = 1, . . . , L represented as si = {ξi([0, t])}t∈R+ ∪ {X}, i = 1, . . . , L so

that there exist δ > 0 so that ξi([1 − δ, a] ∩ Z = ∅, [ξi]|[0,1−δ] = [γi]|[0,1−δ],
d(X, ξi([0, a]) < ε

2
for i = 1, . . . , L and

(8.3) d(ci, si) < ε i = 1, . . . , L

While defining the ξi one can construct disjoint ε-tubes Ti =
⋃qi
k=1 U

k
i , i =

1, . . . , L with U1
i = Z, U2

i = Ci and ζi([0, a]) ⊂ Ti. Notice that Qi =⋃qi
k=2 U

k
i is a ε-tube (for ζ|[1−δ,a]) so one can choose gi ∈ GQi so that g(yi) =

ξi(a). Let f ′i be the initial segment of fi ending at [fi]Z . By Lemma 6.3:

(8.4) d(gi(f
′
i), si) < 2ε, i = 1, . . . , L
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Define g = g1◦ . . .◦gL. As gi ∈ GQi we have [gi]|[fj ]Z = Id for 1 ≤ i < j ≤ L.
From this and conditions (8.3) and(8.4) conclude that d(ci, g(fi)) < 3ε for
i = 1, . . . , L. In particular d(g(F ),Mx) < 3ε. Finally if H = ∅ we choose
{∗} = W ( ∂Z and repeat the same construction used in the case H 6= ∅
and N = 1. �

Corollary 8.5. Under the assumptions of Lemma 8.4, if F ∈ V (Mx) and
|F | <∞, then F is point-like.

Theorem 8.6. Let the Peano continuum X be SRI and let (X,G) have the
boundary shrinking property. Then, the only minimal subspaces of V (M)
are:

(1) {M}
(2) {Mx}x∈X
(3)

{
{c} | c ∈M}

Proof. The G invariance of all three presented subspaces is clear. The fact
that {M} and

{
{c} | c ∈ M} are closed, is trivial. The fact that {Mx}x∈X

is closed is proven in Lemma 2.1. The minimality of {M} is trivial. The
minimality of {Mx}x∈X is a consequence of Lemma 2.1 and the transitivity
of the action of G on X (Lemma 4.1). The minimality of

{
{c} | c ∈M} is a

consequence of Theorem 6.5. To show that the presented subspaces are the
only minimal subspaces it is enough to show that any F ∈ V (M) is either
space-like, fiber-like or point-like. Let F ∈ V (M). If |r(F )| = ∞, then by
Lemma 8.1 F is space-like. If |r(F )| ∈ N one can assume without loss of
generality |r(F )| = 1. By Lemma 8.4 F is either point-like or fiber-like. �

9. The Strong Proximality of M

The goal of this section is to prove that M is proximal under the as-
sumption of the previous section and strongly proximal under additional
assumptions. Let us start with the definition of these two terms. M is said
to be proximal under G if for any c, f ∈ M one can find gn ∈ G so that
limn→∞ d(gn(c), d(gn(f)) = 0. M is said to be strongly proximal under
G if for any Borel probability measure µ on M , there exists a sequence (gn)
of elements of G such that [gn]∗(µ) converges to the measure concentrated
at a singleton.

Theorem 9.1. Let the Peano continuum X be SRI and let (X,G) have the
boundary shrinking property. Under these conditions (M,G) is proximal.

Proof. This theorem can be proven using only the assumptions of Section
6, but here we will use instead the method of Lemma 8.4. Let c, f ∈ M .
One can assume without loss of generality that c, f ∈ Mx for some x ∈ X.
Define F = {c, f} ∈ V (M). As |F | = 2, by Corollary 8.5 F is point-like,
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i.e., there exist gn ∈ G so that diam{gn(F )} →n→∞ 0, which is equivalent
to the proximality of the pair (c, f). �

Theorem 9.2. Let the Peano continuum X be SRI and let (X,G) have the
boundary shrinking property. If (X,G) is strongly proximal then (M,G) is
strongly proximal.

Proof. Let µ be a Borel probability measure on M . Let r∗(µ) be the pro-
jection of µ under the map r : M → X. Using the strong proximality of
(X,G) one can assume without loss of generality that r∗(µ)({x}) = 1 for
some x ∈ X. Let ε > 0. We will prove that one can find g ∈ G and
c ∈ M so that g∗(µ)(B(c, 2ε)) > 1 − ε. By standard compactness argu-
ments this will show (M,G) is strongly proximal. Using property (BSP) of
(X,G) choose Z with the (G, ε

2
, x)-boundary shrinking property such that

x ∈ Z ⊂ B(x, ε
2
). Let f ∈ Mx. Define S(f) = fZ ∩ ∂Z. Let W ( ∂Z

be a closed subset. Repeating an argument appearing in Lemma 8.4, we
can find c ∈ Rx and hW ∈ G so that f ∈ Mx with S(f) ∩ W 6= ∅ im-
plies d(hW (f), c) < 2ε. Define EW = {f ∈ Mx |S(f) ∩ W 6= ∅} and
FW = {f ∈ Mx | d(hW (f), c) < 2ε}. Notice FW is open in Mx and that
EW ⊂ FW . Another useful property is that if W0,W1 ( ∂Z are closed sub-
sets so that ∂Z \W0 and ∂Z \W1 are disjoint then Mx \FW0 and Mx \FW1

are also disjoint. Indeed if f ∈Mx \FWi
then S(f) ⊂ ∂Z \Wi. This implies

S(f)∩Wi 6= ∅, i.e. f ∈ EWi
⊂ FWi

, which implies f /∈Mx\FWi
(here we use

teh convention 0 = 1, 1 = 0). Let n ∈ N so that 1
n
≤ ε. As ∂Z is connected

and has at least two points one can choose n non-empty pairwise disjoint
open subsets O1, . . . , On ⊂ ∂Z. Define Wi = ∂Z \Oi, i = 1, . . . , n. Conclude
that the closed sets Mx \ FWi

, i = 1, . . . , n are pairwise disjoint. Conclude
that there exist 1 ≤ j ≤ n so that µ(Mx \ FWj

) ≤ 1
n
< ε. Conclude that

µ(FWj
) > 1− ε, i.e. [hWj

]∗(µ)(B(c, 2ε)) > 1− ε. �

We call (X,G) base-wise shrinkable iff X has a basis {Uα}α∈A (called
a shrinkable basis) so that for any pair of open subsets V ⊂ V ⊂ Uα,W ⊂
Uα there is g ∈ GUα so that g(V ) ⊂ W . It turns out that for such spaces
one can prove strong proximality.

Lemma 9.3. Suppose X is a Peano continuum such that for each connected
open set U ⊂ X and each p ∈ X the set U \ {p} is connected. If (X,G) is
base-wise shrinkable then (X,G) is strongly proximal.

Proof. Let M(X) be the space of Borel probability measures ofX. Let ε > 0.
We will show there exist an open set Uε with diam(Uε) < ε and gε ∈ G so that
µ(gε(Uε)) > 1− ε. Cover X by elements from a shrinkable basis {Uk}N−1k=1 so
that diam{Uk} < ε for k = 1, . . . , N − 1. Assume without loss of generality

that there exist a non-empty open subset UN ⊂ U1 \
⋃N−1
k=2 Uk. Define
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U r
k = {y ∈ Uk | dist(y, U c

k) >
1
r
}, r ∈ N, 1 ≤ k ≤ N . Notice Uk =

⋃∞
r=1 U

r
k .

If there is g ∈ G so that µ(g(U1)) > 1 − ε, we are done. Assume not.
Let s = supg∈G µ(g(UN)). As UN ⊂ U1, s ≤ 1 − ε. Using the fact that
U1 is part of a shrinkable basis one can assume without loss of generality

s − (1−s)
2N

< µ(UN) ≤ s. As µ(U1) ≤ 1 − ε, there is 2 ≤ k ≤ N − 1 so that

µ(Uk) >
(1−s)
2N

, in particular there is l ∈ N so that µ(U l
k) >

(1−s)
2N

. Choose

q ∈ N so that s − (1−s)
2N

< µ(U q
N) ≤ s. As X is arcwise connected there

is p ∈ Cs([0, 1], X \ U q
N) so that p(0) ∈ Uk and p(1) ∈ UN . Let T be a

δ-tube for p for some δ > 0 so that T ⊂ X \ U q
N . Using Lemma 4.1 find

h ∈ GT so that h(p(0)) = p(1). Find an open subset p(0) ∈ Z ⊂ Uk so
that h(Z) ⊂ UN . As (X,G) is base-wise shrinkable one can find e ∈ GUk

(in particular e|UN = Id) so that e(U l
k) ⊂ Z. Define g = (h ◦ e)−1. It is

easy to see µ(g(UN)) > s− (1−s)
2N

+ (1−s)
2N

= s. This is a contradiction to the
definition of s. We conclude supg∈G µ(g(U1)) > 1− ε. �

From Theorem 9.2 and Theorem 9.3 we have:

Theorem 9.4. Let the Peano continuum X be SRI and let (X,G) have the
boundary shrinking property. If (X,G) is base-wise shrinkable then (M,G)
is strongly proximal.

10. On the Structure of V (M(S2))

Let X = S2, where S2 is be the two-dimensional sphere. S2 is strongly
arcwise-inseparable but not strongly R-inseparable. One may ask if The-
orem 8.6 still holds in this setting. The following theorem answers this
question negatively.

Theorem 10.1. Let X = S2. There exist F ⊆ V (M) which is not point-
like, nor space-like, neither fiber-like.

Proof. To facilitate notation assume X = S2 = {(x, y, z) | x2 + y2 + z2 =
1} ⊂ R3 Let p = (0, 0,−1), n = (0, 0, 1) be the ”south” and ”north” poles of
X. Let Tp be the tangent space of X at p. Let x̂ ∈ Tp be the unit tangent
vector in the direction of the x-axis. We are going to define a family of
curves q(x,θ)→n, where x ∈ X and θ = θ(x) ∈ [0, 2π] represents an angle. We
start by defining for θ ∈ [0, 2π] the curve q(p,θ)→n : [0, 1]→ X as the unique
geodesic of X with q(p,θ)→n(0) = p, q(p,θ)→n(1) = n and ∠(x̂, q̇(p,θ)→n(0)) = θ.
Fix t ∈ (0, 1] and θ ∈ [0, 2π]. Let x = q(p,θ)→n(t) and denote by q(x,θ)→n :
[0, 1] → X the unique geodesic of X with q(x,θ)→n(0) = x, q(x,θ)→n(1) = n
and q(x,θ)→n([0, 1]) ⊂ q(p,θ)→n([0, 1]). Given c = {cα}α∈A ∈ M and l ∈
C([0, h], X) with {l(h)} = r(c) define the ”concatenated maximal chain”:
s(l, c) = {l([0, t]}t∈[0,h] ∪ {l([0, h]) ∪ cα}α∈A. Notice s(l, c) ∈ Ml(0). Let
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c = {B(n, ε}ε≥0 ∈M . Define:

F = {s(q(q(p,θ)→n(t),θ)→n, c)}(t,θ)∈[0,1]×[0,2π]
It is easy to see F ∈ V (M). Indeed given {s(q(xi,θi)→n, c)}∞i=1 ⊆ F a converg-
ing sequence, there is x∗ ∈ X and θ∗ ∈ [0, 2π) so that by passing to a sub-
sequence xi →i→∞ x∗ and θi →i→∞ θ∗mod 2π. Clearly s(q(xi,θi)→n, c)→i→∞
s(q(x∗,θ∗)→n, c) for the original sequence. Notice r(F ) = X, conclude F is
not point-like, nor fiber-like. We will now show F is neither space-like.
Let e : [0, 2π] → X be the ”equatorial” great circle e(t) = (cos(π +
t), sin(π + t), 0). Let w : [0, 2π] → X be the ”Greenwich” great circle
w(t) = (0, sin(−t), cos(−t)). Let m1 ∈ M(−1,0,0), m2 ∈ M(0,0,1) be arbitrary
elements. Define c1 = s(e,m1) ∈ Me(0) and c2 = s(w,m2) ∈ Mw(0). We
will show that for any A ∈ ClV (M)(GF ) one has {c1, c2} /∈ A. In particular
M /∈ ClV (M)(GF ). Our proof will be based on the following observation: if
E,D ∈ C(X), then by the Jordan Separation Theorem there exists ε0 > 0
so that D ⊂ B(w([0, π]), ε0) and E ⊂ B(e([0, π]), ε0) imply that E ∩D 6= ∅
and in fact E ∩ D ⊂ I where I = B(w([0, π]), ε0) ∩ B(e([0, π]), ε0). We
choose 0 < ε < min{ε0, 12d(e(0), w(0))}.

Assume for a contradiction that there exist g ∈ G and f1, f2 ∈ F so that
d(g(fi), ci) < ε for i = 1, 2. In particular there exist Yi ∈ fi for i = 1, 2
so that d(g(Y1), e([0, π])) < ε and d(g(Y2), w([0, π])) < ε. We also have
d(r(g(Y1)), e(0)) < ε and d(r(g(Y2)), w(0)) < ε, which implies that r(g(Y1) 6=
r(g(Y2). As g(Y1) and g(Y2) intersect, i.e. ∅ 6= g(Y1)∩g(Y2) ⊂ I, we conclude
that Y1 = q(x1,θ1)→n([0, 1)) ∪ B(n, ε1) and Y1 = q(x2,θ2)→n([0, 1)) ∪ B(n, ε2)
for x1 6= x2 and w.l.o.g ε1 ≥ ε2 ≥ 0. Notice B(e([0, π]), ε0) \ I has two
components. Let J1 be the component with r(g(Y1)) ⊂ J1. Similarly let J2
be the component of B(w([0, π]), ε0) \ I with r(g(Y2)) ⊂ J2. We conclude
that:

g(f1) = s({g ◦ q(x1,θ1)→n([0, t])}t∈[0,1], g(c)),

g(f2) = s({g ◦ q(x2,θ2)→n([0, t])}t∈[0,1], g(c)),

where g(q(xi,θi)→n([0, 1])) ⊂ Ji ∪ I, i = 1, 2. In other words until g(f1) and
g(f2) ”meet” they are confined to J1 ∪ I and J2 ∪ I respectively. After they
”meet” they develop identically (which corresponds to the g(c) part of the
concatenation). This is a clear contradiction to d(g(fi), ci) < ε for i = 1, 2
for ε small enough. �

11. Manifolds and the Hilbert Cube

In this section we present classes of examples to which one can apply the
results of the article.

Theorem 11.1. Let X be a two-dimensional closed topological manifold and
G a locally transitive group acting on X, then (M(X), G) is minimal and
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the only minimal subspace of (Φ(X), G). Moreover the universal minimal
space (UG, G) is not transitive.

Proof. As X is a closed topological manifold, X is a Peano continuum. By
assumption G acts transitively on X. By Lemma A.1 X is strongly arcwise-
inseparable. These facts enable us to conclude by Theorem 6.5 and Corollary
6.6 that (M(X), G) is minimal and (UG, G) is not transitive. Moreover as
X is a closed topological manifold, it is easy to see X has the telescoping
annuli property. This implies by Theorem 7.2 that (M(X), G) is the only
minimal subspace of (Φ(X), G). �

Theorem 11.2. Let X be a closed topological manifold of dimension n ≥ 3
and G a subgroup of the homeomorphism group of X. If G ⊃ Homeo0(X)
or X has a smooth structure such that G ⊃ Diffeo0(X), then (M(X), G) is
minimal and strongly proximal and the only minimal subspace of (Φ(X), G).
The only minimal subspaces of (V (M(X)), G) are {M(X)}, {M(X)x}x∈X
and

{
{c} | c ∈ M(X)}. The universal minimal space (UG, G) is not transi-

tive.

Proof. Notice that by the discussion of locally transitive group actions in
the end of Section 3, G ⊃ Homeo0(X) or G ⊃ Diffeo0(X) imply that G
acts locally transitively on X. Using Theorem 11.1 we conclude (UG, G) is
not transitive and (M(X), G) is minimal and the only minimal subspace of
(Φ(X), G). By Lemma A.3 X is strongly R-inseparable. By Lemma A.5
(X,G) has the boundary shrinking property. The last two facts enable us to
conclude that the only minimal subspaces of (V (M(X)), G) are {M(X)},
{M(X)x}x∈X and

{
{c} | c ∈M(X)}. Finally it is easy to verify that (X,G)

is base-wise shrinkable which implies (M(X), G) is strongly proximal �

Recall that the Hilbert cube is defined to be Q = [−1, 1]N, equipped with

the metric d((xn)∞n=1, (yn)∞n=1) = max{ |xn−yn|
n
|n = 1, 2, . . .}.

Theorem 11.3. Let G = Homeo(Q). The G-space (M(Q), G) is minimal
and strongly proximal and the only minimal subspace of (Φ(Q), G). The
only minimal subspaces of (V (M(Q)), G) are {M(Q)}, {M(Q)x}x∈X and{
{c} | c ∈M(Q)}. The universal minimal space (UG, G) is not 1-transitive.

Proof. The Hilbert cube Q is metric, compact, connected and locally con-
nected. G acts locally transitively by Lemma A.2. By Lemma A.4 Q has
the telescoping annuli property. By Lemma A.3 Q is strongly R-inseparable.
Using Theorem 6.5, Theorem 7.2 and Corollary 6.6 conclude (M(Q), G) is
minimal, (M(Q), G) is the only minimal subspace of (Φ(Q), G) and (UG, G)
is not transitive. We now proceed to prove that the only minimal subspaces
of (V (M(Q)), G) are {M(Q)}, {M(Q)x}x∈X and

{
{c} | c ∈ M(Q)}. The

natural approach would be to use Theorem 8.6. However in order to use it



MINIMAL ACTIONS OF HOMEOMORPHISM GROUPS 22

one has to show (Q,G) has the boundary shrinking property. Unfortunately
we were not able to do that (see Question 12.2). A careful reading shows
the boundary shrinking property is used in the proof of Theorem 8.6 only
via the use of Lemma 8.4. We give in Lemma A.7 a replace proof for (Q,G)
and thus achieve the above mentioned result. By Lemma A.8 (M(Q), G) is
strongly proximal. �

12. Open Questions

We are ideally interested in finding all minimal subspaces of V n(X) for
n ∈ N, unfortunately this turned out to be too difficult and we leave it as a
question to the reader:

Question 12.1. Can one characterize all minimal subspaces of V n(X),
n ≥ 2?

A natural way to prove the results of section 8 for (Q,Homeo(Q)) is to
show that (Q,Homeo(Q)) has the (BSP) property. Unfortunately we are
unable to settle the following question:

Question 12.2. Does (Q,Homeo(Q)) have the boundary shrinking prop-
erty?.

In the Introduction we mentioned Open Questions 28 & 29 of [Pes05]
which ask for an explicit description of the universal minimal space of the
group of homeomorphisms Homeo(X), X being a closed manifold of dimen-
sion 2 or higher or the Hilbert cube. In view of our results we reformulate
these question to the following question:

Question 12.3. Is the universal minimal space for the group Homeo(X), X
being a closed manifold of dimension 3 or higher or the Hilbert cube, equal
to the space M(X)?

Appendix.

The appendix contains various topological results used in Sections 3 and
11. The first three are reformulations of facts which are well known, some-
times in a greater generality. For the reader’s convenience we provide how-
ever detailed arguments or bibliographical hints.

Lemma A.1. If X is a two-dimensional closed topological manifold then X
is strongly arcwise-inseparable.

Proof. Let U ⊂ X be open and connected and J ⊂ U be an arc. The
connectivity of U \ J is known in a greater generality when J is a cell-like
compact subset of X, that is, one which can be contracted to a point in
each of its neighborhoods. See corollary 4B on p. 121 of [Dav86]. �
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Lemma A.2. Homeo(Q) is locally transitive and is n-transitive for all n ∈
N.

Proof. In [BP75] p. 145 in the proof of Proposition 8.1 Bessaga and Pe lczyński
show Homeo(Q) is strongly locally homogeneous, i.e for each x ∈ Q
there exists a basis of open neighborhoods {Vi} so that Hoemeo(Q)Vi acts
transitively on Vi, for each i. Thus Homeo(Q) is locally transitive and, by
Theorem 4.1, also n–transitive. �

Lemma A.3. If X is a closed topological manifold of dimension n ≥ 3 or
X is the Hilbert cube, then X is strongly R-inseparable.

Proof. Let J be an arc in X and U ⊂ X be a connected open set. To
establish that U \ J is connected we consider 3 cases:

1) X is an n–manifold and U is homeomorphic to Rn, where n ≥ 3. Then
U \ S is connected for any closed set S ⊂ X of dimension not greater than
n− 2; see Theorem 1.8.13 in [Eng78]. In particular, this applies to S = J .

2) X = Q. By the definition of the product topology of Q there exists n ≥
3 and a chart V ⊂

∏n
k=1(−1, 1)k, V ∼= Rn such that V ×

∏
k>n[−1, 1]k ⊂ U .

Given x, y ∈ U there exists by the lemma above an f ∈ Homeo(Q)U such
that f(x) and f(y) belong to V × {0}. By 1) above, the set V × {0} \ f(J)
is connected and hence there is an arc K in it connecting f(x) to f(y).
Clearly, f−1(K) is an arc in U \J connecting x to y. Since x, y are arbitrary
points of U \ J , this set is connected.

3) The case where X is an n–manifold but U is not homeomorphic to
Rn follows from 1) in precisely the same manner, using the 2-transitivity of
Homeo(X)U . �

Lemma A.4. Q has the telescoping annuli property.

Proof. In order to show that there is a (1, ε) annuli telescope around a given
point x ∈ Q we first note that by Lemma A.2 we can assume without loss
of generality that x = (0, 0, . . .). As in the proof above there exists a set of
diameter smaller than ε which contains 0 and is of the form V×

∏
k>n[−1, 1]k,

for some open set V ⊂
∏n

k=1(−1, 1). Let {B,U} be an (1, δ) annuli telescope
in V around (0, . . . , 0), for some δ > 0 and the Euclidean metric of V . Define
B′ = B ×

∏
k>n[−1, 1]k and U ′ = U ×

∏
k>n[−1, 1]k. It is clear one can

choose δ small enough so that {B′, U ′} is an (1, ε) annuli telescope around
x = 0. �

Lemma A.5. Let X be a closed topological manifold of dimension n ≥ 2
and G be a subgroup of Homeo(X). If G ⊇ Homeo0(X) or X is a smooth
manifold and G ⊇ Diffeo0(X) then (X,G) has the boundary shrinking
property.
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Proof. Let x ∈ X and ε > 0. Since X is a manifold one can find a chart
C ∼= Rn so that x ∈ C ⊂ B(x, ε

2
). Let A and E be open balls (in the

Euclidean metric of C) with center x, such that A ⊂ E ⊂ C. It is easy to
see that A has the (G, ε, x)-boundary shrinking property, with E \ A being
a set ε–encircling A. �

Lemma A.6. For n ≥ 3, let x ∈ Int(In) and F ∈ V (Mx). If F is not
point-like then F is fiber-like.

Proof. This is a simple generalization of the techniques used in this article.
One uses strongly the fact that x ∈ Int(In). The idea is that all con-
structions in the first 9 sections can be done inside Int(In) and therefore
the statement of the lemma follows from same statement for Sn (proven in
Lemma 8.4 applied to X = Sn). �

For n ∈ N it will be convenient to denote the product
∏n

i=1[−1, 1]i by In,∏∞
i=n[−1, 1]i by I∞n and the standard projection of Q onto In by πn. Given

a homeomorphism g of In we write g̃ for the homeomorphism of Q which
composed with πn is equal to g and composed with the projection onto I∞n+1

equals to this projection. In the following lemmas it would be convenient to

use the metric d((xm)nm=1, (ym)nm=1) = max{ |xm−ym|
m

|m = 1, 2, . . . , n} on In

and the metric d((xm)∞m=1, (ym)∞m=1) = max{ |xm−ym|
m

|m = 1, 2, . . .} on Q.

Lemma A.7. Let x = (0, 0, . . .) ∈ Q. Let F ∈ V (Qx), then F is either
point-like or fiber-like.

Proof. According to Lemma A.6 for each n ∈ N, πn(F ) ∈ V (Mπn(x)(I
n))

is either point-like or fiber-like. We either have that (1) there exist an
increasing sequence of integers n1 < n2 < . . . so that πni(F ) is fiber-like,
or (2) there exist an increasing sequence of integers n1 < n2 < . . . so that
πni(F ) is point-like. Assume case (1). We claim F is fiber-like. Let ε > 0
be given. Let {ci}Li=1 ⊂ Mx(Q) be an ε-net of Mx(Q). Choose i ∈ N such
that 1

ni
< ε. Find g ∈ Homeo(Ini) so that d(g(πni(F )),Mπni (x)

(Ini)) < ε.

In particular there exists {fk}Lk=1 ⊂ F so that d(g(πni(fk)), πni(ck)) < ε
for k = 1, . . . , L. As 1

ni
< ε, one concludes d(g̃(fk), ck) < ε. This implies

d(g̃(F ),Mx(Q)) < 2ε. Now assume case (2). We claim F is point-like.
Similarly to the proof of the previous case fix i ∈ N such that 1

ni
< ε. Find

g ∈ Homeo(Ini) and c = {cα}α∈A ∈Mπni (x)
(Ini) so that d(g(πni(F )), {c}) <

ε. Let p ∈ Mx(Q) so that {cα × I∞ni+1}α∈A ⊂ p (this corresponds to finding
{eβ}β∈B ∈Mx(πni(x)× I∞ni+1) and defining P = {eβ}β∈B ∪{cα× I∞ni+1}α∈A).

As 1
ni
< ε, one concludes d(g̃(F ), {p}) < ε. Indeed fix f ∈ F . Let R ∈ f ∈

F . Find C ∈ c so that d(πni(R), C) < ε, which implies d(R,C × I∞ni+1) < ε.
Let P ∈ p. If P = C× I∞ni+1 for some C ∈ c then one can find R ∈ f so that
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d(R,C×I∞ni+1) < ε. If this is not the case we must have P ⊆ r(c)×I∞ni+1. As

d
(
r(c), r(πni(f))

)
= d(r(c), πni(r(f))) < ε, we conclude d(P, r(f)) < ε. �

In order to show that (M(Q), Homeo(Q)) is strongly proximal, we first
prove the following lemma:

Lemma A.8. (Q,Homeo(Q)) is strongly proximal.

Proof. Clearly it is enough to show that (Homeo(In), In) is strongly prox-
imal for each n ∈ N. Fix n ∈ N. Notice that ∂In and Homeo(In) have a
property which is very similar to (albeit weaker than) the boundary shrink-
ing property. Indeed for any closed W ( ∂In and any y ∈ ∂In and δ > 0
there is h ∈ Homeo(In) so that h(W ) ⊂ B(y, δ). Let us call this property
the Weak Boundary Shrinking Property. Let µ ∈ M(In). Let ε > 0
be given. Let N ∈ N so that 1

N
< ε. Denote b = µ(∂In). By choosing N

disjoint open subsets of ∂In, considering their complements and using the
weak boundary shrinking property we find h1 ∈ Homeo(In) and y ∈ ∂In

so that µ(h1(B(y, ε)) ∩ ∂In) > (1 − ε)b. Let Pk = [−1 + 1
k
, 1 − 1

k
]n, k ∈ N.

Notice In =
⋃∞
k=1 Pk. As h1(Int(I

n)) = Int(In), there is q ∈ N so that
µ(h1(Pq)) > (1− ε)(1− b). Again relying on the structure of Homeo(In) we
can find h2 ∈ Homeo(In) so that [h2]|∂In = Id and h2(h1(Pq)) ⊂ B(y, ε). Let
h = h2 ◦h1. Conclude µ(h(B(y, ε))) > (1− ε)b+ (1− ε)(1− b) = (1− ε). �

We cannot use Theorem 9.2 directly as we have not shown (Q,Homeo(Q))
has the (BSP) property. Instead we prove directly:

Theorem A.9. (M(Q), Homeo(Q)) is strongly proximal.

Proof. Let µ ∈M(M(Q)). Let r∗(µ) be the projection of µ under the map
r : M → Q. Using the strong proximality of (Q,Homeo(Q)) one can
assume without loss of generality that r∗(µ)({x}) = 1 for x = (0, 0, . . .). Let
N ∈ N so that 1

N
< ε. Using the ideas appearing in the proof of Lemma

A.6 and Theorem 9.2, one can find gN ∈ Homeo(IN) and cN ∈ M(IN) so
that [gN ◦ πN ]∗(µ))(B(cN , 4ε)) > 1 − ε. Using the same ideas appearing in
Lemma A.7 one finds c ∈M(Q) so that g̃∗(µ)(B(c, 5ε)) > 1− ε. �
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