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ABSTRACT

A function J defined on a family C of stationary processes is finitely observ-

able if there is a sequence of functions sn such that sn(x1, . . . , xn) → J(X )

in probability for every process X =(xn) ∈ C. Recently, Ornstein and

Weiss proved the striking result that if C is the class of aperiodic ergodic

finite valued processes, then the only finitely observable isomorphism in-

variant defined on C is entropy [8]. We sharpen this in several ways. Our

main result is that if X → Y is a zero-entropy extension of finite entropy

ergodic systems and C is the family of processes arising from generating

partitions of X and Y , then every finitely observable function on C is con-

stant. This implies Ornstein and Weiss’ result, and extends it to many

other families of processes, e.g., it follows that there are no nontrivial

finitely observable isomorphism invariants for processes arising from the

class of Kronecker systems, the class of mild mixing zero entropy systems,

or the class of strong mixing zero entropy systems. It also follows that for

the class of processes arising from irrational rotations, every finitely ob-

servable isomorphism invariant must be constant for rotations belonging

to a set of full Lebesgue measure.
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1. Introduction

Let (xn)∞n=−∞ be an aperiodic ergodic process taking on finitely many values

(without loss of generality the values are in N). Up to isomorphism there is a

unique measure preserving system, X = (X,B, µ, T ), such that (xn) arises from

a generating partition P = (Pi) of an X . The question we are interested in is,

what can one learn about the underlying system X by observing a sample path

(xn)?

In principle, the answer is “everything”, since by the ergodic theorem a typical

sample path of (xn)∞n=1 determines all finite distributions of the process and this

determines X . However, a more realistic scenario is one in which at each time

step another output of the process is revealed, i.e. at time n we have observed

the finite sequence x1, . . . , xn, and we are asked to make a guess about the

nature of X based on this data. These guesses should converge as n → ∞. We

call a scheme for producing such a sequence of guesses an observation scheme.

To be precise

Definition 1.1: An observation scheme (or scheme for short) is a metric space

∆ and a sequence of functions sn : Nn → ∆. An observation scheme is said to

converge for a family of processes C if limn→∞ sn(x1, . . . , xn) exists in probabil-

ity for every process (xn) ∈ C. A function J : C → ∆ is finitely observable

if there is an observation scheme (sn) which converges to J((xn)) for every

(xn) ∈ C.

Note that the larger a family of processes is, the harder it is for a scheme to

converge for every member of the family, hence large families have fewer finitely

observable functions.

Nonetheless, there are many observation schemes (sn) for which the sequence

s1(x1), s2(x1, x2), s3(x1, x2, x3), . . . converges in probability, or even almost

surely, for every ergodic process (xn). For example, if sn(x1, . . . , xn) counts

the frequencies of 1’s appearing in x1, . . . , xn, then by the ergodic theorem

limn→∞ sn(x1 . . . xn) exists almost surely and equals the probability of the sym-

bol 1 in the process (xn). This example and others like it show that some things

about a process can be calculated from finite observations; but these are gen-

erally not isomorphism invariants, and so tell us nothing about the underlying

dynamical system.
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We will say that a process (xn) arises from a measure preserving system X if

it is defined by a generating partition of X . For processes (xn) and (yn) etc. we

denote by X and Y respectively the measure preserving system determined by

them (and from which they arise). Write (xn) ∼= (yn) or X ∼= Y to indicate that

X and Y are isomorphic as dynamical systems. We are interested in families

of processes C which are closed under isomorphism, that is, they will have the

property that if (xn) ∈ C and (yn) ∼= (xn) then (yn) ∈ C. Such a family is

called saturated. Usually we will specify C by some property of the underlying

systems, e.g., C might be the family of all processes arising from an irrational

rotation. In this case we would say for brevity that C is the class of irrational

rotations.

Definition 1.2: Let C be a saturated family of processes, ∆ a metric space and

J : C → ∆. Then J is an isomorphism invariant for C (or invariant for short)

if for every (xn), (yn) ∈ C,

(xn) ∼= (yn) ⇒ J((xn)) = J((yn))

and J is a complete invariant for C if the reverse implication also holds. When

J is an invariant we write J(X ) instead of J((xn)).

For quite some time it has been known that the entropy, h((xn)) = h(X ), of

a process is finitely observable in the class of all ergodic processes. The earliest

observation scheme for entropy is due to D. Bailey [1]. A number of simpler

schemes have been developed, such as the Lempel–Ziv compression algorithm

[12] and the Ornstein–Weiss estimators [6, 7].

D. Ornstein and B. Weiss recently proved a striking converse to this: Every

finitely observable invariant for the class of all ergodic processes is a continuous

function of entropy [8]. They also showed that there are no finitely observable

invariants except entropy for any class which contains the Bernoulli processes,

for the class of zero entropy processes or for the class of zero entropy weak

mixing processes.

However, their techniques do not settle what is finitely observable in several

other interesting classes of systems. Ornstein and Weiss have asked if there

exists a complete finitely observable invariant for the class of irrational rota-

tions (translations by an irrational on the group R/Z); this is not implausible,

since for this class there is a complete invariant for isomorphism, namely the

spectrum, or equivalently the modulus of rotation (up to sign and mod1). We
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remark that in the classes which Ornstein and Weiss studied there are no known

complete invariants, finitely observable or not, with the exception of the class

of Bernoulli systems, in which entropy is itself a complete invariant.

In an attempt to get a handle on this problem, we came up with the following,

which is interesting in its own right:

Theorem: Suppose X → Y is a zero entropy extension of finite entropy dy-

namical systems, that is h(X ) = h(Y). Let C be the class of processes arising

from X ,Y. Then every finitely observable invariant for C is constant.

This allows us reclaim the results of Ornstein and Weiss, and to settle the

following problems.

Theorem: If J is a finitely observable invariant on one of the following classes:

(1) the Kronecker systems (the class of systems with pure point spectrum),

(2) the zero entropy mild mixing processes,

(3) the zero entropy strong mixing processes,

Then J is constant.

For the class of irrational rotations we obtain a slightly weaker result.

Theorem: For every finitely observable invariant J on the class of irrational

rotations, there is a Borel set Θ ⊆ [0, 1) of full Lebesgue measure such that

J assigns the same value to processes arising from rotations by angles in Θ.

In particular, there is no complete finitely observable invariant for irrational

rotations.

The rest of the paper is organized as follows. Section 2 presents some defi-

nitions and background. In section 3 we prove the theorem about zero-entropy

extensions. Section 4 contains proofs of the other results, and in section 5 we

mention some open problems.

Acknowledgement. This paper was written during the authors’ graduate

studies. We would like to thank our adviser Professor Benjamin Weiss for his

encouragement and good advice.

2. Preliminaries

For general background on ergodic theory we refer to [3, 9, 11].
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2.1. Dynamical systems, partitions and processes. By an aperiodic er-

godic system X = (X,B, µ, T ) we mean that (X,B, µ) is a standard probability

space, T : X → X is an invertible measure preserving map which acts ergodi-

cally, and the set of periodic points is of measure zero. A measure preserving

systems Y = (Y, C, ν, S) is a factor of the system X = (X,B, µ, T ) if there

is a measure-preserving map f : X → Y defined almost everywhere satisfying

Sf = fT . If there is such a map which is also invertible and bi-measurable then

X ,Y are isomorphic.

A partition P of X is a finite ordered collection of pairwise disjoint measurable

sets (Pi)
|P|
i=1 whose union is X (up to measure zero). If P ,Q are partitions of

X then the partition P ∨Q = (Pi ∩ Qj)(i,j) is the join of P, Q (order the pairs

(i, j) lexicographically); the join of finitely many partitions is defined similarly.

Write T nP = (T nPi).

A partition P of X generates X if
∨∞

n=−∞ T nP = B up to measure zero,

where
∨∞

n=−∞ T nP is the σ-algebra generated by the collection

⋃

N

N∨

n=−N

T nP .

For a partition P = (Pi)i∈N and ω ∈ X we write P(ω) for the index of the

set in P that contains ω. A partition P determines a stationary ergodic process

(xn) with values in N by

xn(ω) = P(T nω).

We say that xi(ω), xi+1(ω), . . . , xj(ω) is the itinerary of ω (with respect to P)

from time i to time j. The itinerary of ω from time 0 to time N − 1 is called

the (P , N)-name of ω. If P is a generating partition for X , then the system X

and the partition P are determined, up to isomorphism, by the process (xn).

We say that this process arises from P if P generates X .

The space of ordered partitions of X into n sets comes with a metric ρ = ρn

defined by

ρ(P ,Q) =

n∑

i=1

µ(Pi△Qi),

for P = (P1, . . . , Pn) and Q = (Q1, . . . , Qn) (here ∆ denotes symmetric differ-

ence). The metric ρn is complete; note, however, that if Pi → P in ρn it may

happen that some of the members of P are empty.
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It is easy to check that if ρ(P ,Q) < ε, then ρ(
∨N

n=1 T nP ,
∨N

n=1 T nQ) < Nε.

It follows that if Pk → P in ρ and (x
(k)
n ), (xn) denote the processes arising

from Pk,P respectively, then the sequence of processes (x
(k)
n )∞n=−∞ converges

to (xn)∞n=−∞ in probability.

Given a partition P of X into r sets and an integer N we may consider

the distribution that µ induces on {1, . . . , r}N , where the measure of a word

w ∈ {1, . . . , r}N is the measure of the set of points whose (P , N)-name is w,

or in other words µ(
⋂N

n=1 T−nPw(n)). We refer to this as the distribution of

N -names determined by P .

Since a distribution on N -names is just a rN -dimensional probability vector,

we can compare these distributions using e.g. the ℓ1 metric. When we talk of

closeness of N -name distributions, we will mean it in this sense. Note that if

P ,Q are partitions and ρ(P ,Q) < ε then the distance between the N -name

distributions associated with P and Q is at most Nε.

2.2. Entropy. Let X = (X,B, µ, T ) be an invertible ergodic measure preserv-

ing system and P = (Pi) a partition. The entropy of a partition P is

H(P) = −
∑

i

µ(Pi) log µ(Pi).

(all logarithms are to base 2 unless specified otherwise). H(P) is non-negative

and finite (define 0 log 0 = 0). The entropy of the system X with respect to P

(equivalently, the entropy of the process arising from P) is

h(X ,P) = lim
n→∞

1

n
H(P ∨ TP ∨ · · · ∨ T n−1P).

The limit above can be shown to exist. The entropy of X is

h(X ) = sup{h(X ,P) : P a finite partition of X}.

If P is a finite generating partition then h(X ) = h(X ,P), but the relation

h(X ) = h(X ,P) is not in itself enough to guarantee that P generates. However,

the Krieger generator theorem [5] guarantees that if h(X ) < log k for an integer

k, then there exists a generating partition P = (P1, . . . , Pk) of X into k sets.

In the space of partitions of X into n sets, the entropy is continuous in the

metric ρn: that is, for a partition P , for every δ > 0 there is an ε > 0 such that

if ρ(P ,Q) < δ then |h(X ,P) − h(X ,Q)| < ε.

The main fact about entropy we use is the following classical theorem:



Vol. 164, 2008 ON PROCESSES WHICH CANNOT BE DISTINGUISHED 271

Theorem 2.1 (Shannon–McMillan–Breiman theorem): For any finite partition

P of X and almost every x ∈ X ,

1

n
log µ

( n−1⋂

i=0

P(T−ix)
)
→ h(X ,P).

A proof can be found in [10, p. 55].

Denote

µ(u) = µ({x ∈ X : the (P , n)-name of x is u}).

With this notation the Shannon–McMillan–Breiman theorem states that

1

n
log µ(x1, . . . , xn) → h(X ,P)

almost surely, where (xn) is the process arising from P .

Also, for partitions P ,Q and (u, v) ∈ Nn × Nn, we say that (u, v) is the

(P × Q, n) name of a point ω ∈ X if u is the (P , n)-name of ω and v is the

(Q, n)-name of ω. This is just another way of talking about the partition P∨Q.

Denote

µ(v|u) =
µ({x ∈ X : the (P ×Q, n)-name of x is (u, v)})

µ({x ∈ X : the (P , n)-name of x is u})
·

We will actually use the following “relative” version of the Shannon–McMillan–

Breiman theorem.

Theorem 2.2 (Relative Shannon–McMillan–Breiman): Let P ,Q be partitions

of X with entropies h(X ,P) = s ≤ t = h(X ,Q). For every ε > 0 there are

collections of words An ⊆ Nn × Nn for n = 1, 2, 3, . . . such that

(1) #{u ∈ Nn : (u, v) ∈ An for some v} < 2(s+ε)n for every n.

(2) #{v ∈ Nn : (u, v) ∈ An} < 2(t−s+ε)n for every n.

(3) For almost every point x ∈ X the (P ×Q, n)-name of x is in An for all

sufficiently large n.

Proof. Define

An = {(u, v) ∈ Nn × Nn : µ(u) > 2−(s+ε)n and µ(v|u) > 2−(t−s+ε)n}.

The fact that for almost every x ∈ X the (P ×Q, n)-name of x is eventually in

An follows from the Shannon–McMillan–Breiman theorem, once applied to the

partition P and once to the partition P × Q. The estimates on the size of the

u’s represented in An and the v’s associated to a given u in An follow easily
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from the definition since the mass of the u’s and the mass of the v’s relative to

a given u must add to at most 1.

2.3. Towers. A tower of height n in X is a set of the form

B ∪ TB ∪ T 2B ∪ · · · ∪ T n−1B ⊆ X

such that the sets T iB are measurable and pairwise disjoint for i = 0, . . . , n−1.

The set B is called the base of the tower, and the set T iB is called the i-th

level of the tower.

Given a partition P = (Pi) and a tower
⋃n−1

i=0 T iB, we can partition the base

B into disjoint (possibly empty) sets Bw indexed by words w ∈ Nn, such that

Bu = {ω ∈ B : u is the (P , n) − name of ω}.

This partitions the tower into disjoint subtowers
⋃n−1

i=0 T iBu whose base is Bu;

these subtowers are called columns. Each level T iBu is contained entirely in

the element Pu(i) of P . Rephrasing, if (xn) is the process associated with P then

for ω ∈ Bu the first n outputs (x1(ω), . . . , xn−1(ω)) of the process are equal to

u = (u1, . . . , un−1).

We will need two tower lemmas.

Lemma 2.3 (Kakutani towers lemma): Let B be a set of positive measure and N

an integer. Then the space X can be partitioned into countably many pairwise

disjoint towers all of height no less than N , all of whose bases are subsets of B.

Proof. Since X is aperiodic we can choose a set B′ ⊆ B of positive measure such

that if x ∈ B′ then T ix /∈ B′ for 1 ≤ i < N . Partition the base B according to

the first return time to B′, i.e., let

B(n) = {x ∈ B′ : n is the first positive integer such that T nx ∈ B′}.

Then for each n ≥ N we have a tower B(n) ∪ TB(n) ∪ · · · ∪ T (n−1)B(n), these

towers are pairwise disjoint, and their union fills X because their union is in-

variant.

A stronger result is a version of the Rohlin lemma whose proof can be found

in [9]

Lemma 2.4 (Strong Rohlin lemma): Let P = {P1, . . . , Pk} be a partition of

X and ε > 0. Then for every N there is a tower B ∪ TB ∪ · · · ∪ T N−1B of

height N whose complement is of measure at most ε and such that the partition
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Q = {B∩P1, . . . , B∩Pk} induced on B by P has the same distribution relative

to B as P has relative to X .

Corollary 2.5: Given A ⊆ X with µ(A) > 1− ε and any N , there is a tower

B ∪ TB ∪ · · · ∪ T N−1B in X filling all but 2ε of the space and with B ⊆ A.

Proof. Let C ∪ TC ∪ · · · ∪ T N−1C be the tower provided by the strong Rohlin

lemma with respect to the partition {A, X \ A} and set B = C ∩ A.

2.4. Approximation methods for partitions. Often, a generating parti-

tion with some property is constructed by approximation, that is, a sequence

of partitions is defined satisfying more and more of our requirements and which

converge in ρ to a partition with the properties we want. Below we outline some

of the tools we use for such constructions.

If A is a partition or an algebra of measurable sets and B is a measurable

set then we write B ⊆ε A to indicate that there is a set A ∈ A such that

µ(A△B) < ε. Clearly B ∈ A (up to measure zero) if and only if B ⊆ε A for

every ε > 0. For a partition P we write P ⊆ε A if Pi ⊆ε A for every Pi ∈ P .

Let P be a generating partition for X and suppose that Q is a partition such

that, for every ε > 0, there is an N such that P ⊆ε

∨N
n=−N T nQ. It follows that

P ⊆
∨∞

n=−∞ T nQ, and since
∨∞

n=−∞ T nQ is T -invariant, B =
∨∞

n=−∞ T nP ⊆∨∞
n=−∞ T nQ. Thus Q generates.

Suppose P ,Q are partitions of X into n elements and A ⊆ε P . Then if

ρ(P ,Q) < δ we have A ⊆ε+δ Q. Thus if A ⊆ε

∨N
n=1 T nP and ρ(P ,Q) < δ then

A ⊆ε+Nδ

∨N
n=1 T nQ.

These observations are essentially the proof of the following lemma, see also

[9, p. 79].

Lemma 2.6: Let (Pk)∞k=1 be a sequence of partitions of X and Q a partition

of X . Suppose that ρ(Pk−1,Pk) < ε(k) and Q ⊂ε(k)

∨N(k)
j=−N(k) T−jPk for

some sequences ε(k) > 0 and N(k) ∈ N which satisfy
∑∞

k=1 ε(k) < ∞ and

N(k) ·
∑∞

j=k+1 ε(j) → 0 as k → ∞. Then (Pk) converges to a partition P and

Q ⊆
∨∞

j=−∞ T−jP .

The following theorem shows that in order to change a partition P into a

generating partition, you need to perturb P by an amount of the same order as

the difference h(X ) − h(P). This result is not new but, lacking a reference, we

include a proof for completeness.
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Theorem 2.7 (Entropy and generating partitions): Let h ≥ 0 and k be an

integer with log k > h. Let X = (X,B, µ, T ) be an aperiodic ergodic system with

entropy h and let P = (P1, . . . , Pk) be a partition of X with h(X ,P) = h′ (so

h′ ≤ h). Then for every δ > 0 there is a generating partition P ′ = (P ′
1, . . . , P

′
k)

of X such that ρ(P ,P ′) < δ + h−h′

log k−h . In particular, the generating partitions

are dense in the ρ-metric among the partitions of maximal entropy.

Remark: The parameter δ was introduced only in order to deal with the case

that h = h′.

Proof. Let δ > 0 be given. Fix a very small ε > 0 which will determined later.

Fix a generating partition Q of size k, and for n = 1, 2, 3, . . . let An ⊆ Nn ×Nn

be as in Theorem 2.2 for the partitions P ,Q and parameter ε. Let N ≥ 1/ε be

large enough so that the the set X0 of ω’s whose (P ×Q, n)-name in An for all

n ≥ N has positive measure. Applying Lemma 2.3 we can partition the space

X into disjoint towers of height at least N/ε whose bases are contained in X0,

that is, for each n ≥ N/ε we get disjoint towers B(n) ∪ TB(n) ∪ · · · ∪ T n−1B(n)

of height n with B(n) ⊆ X0, and the union of these towers has full measure.

Partition the bases B(n) according to An, so for a word (u, v) ∈ An the set B
(n)
u,v

consists of points whose (P ×Q, n)-name is (u, v).

We construct a partition P ′ by modifying the labels of some levels of the

columns B
(n)
u,v . The construction proceeds in three stages.

Marking the base: Fix m = 1/ε (for simplicity we ignore rounding errors

and treat m as an integer, and adopt a similar philosophy later as well). Label

the lower 2m levels of the column B
(n)
u,v (i.e., the levels indexed 0 to 2m − 1)

with 1’s and mark levels 2m, 3m, . . . , [n/m]m with 0’s.

The result of this procedure is that given any point ω ∈
⋃n−1

i=0 T iB(n) the base

of the column can be identified as the largest index i ∈ {−n,−n+1, . . . , 0} such

that the (P ′, 2m)-name of T iω consists of all 1’s. Thus given the P ′ itinerary

of ω from time −n to n, we can reconstruct the P-name of the column to which

ω belongs. We will preserve this property in the following steps, hence with

probability 1 given the P ′ itinerary of a point from time −∞ to −∞ we can

determine the n corresponding to the column the point belongs to, and the

P ′-name of that column.

Coding the Q-itinerary into P ′: Denote An(u) = {v : (u, v) ∈ An} ⊆ Nn.

Fix (u, v) ∈ An and enumerate An(u) = {v1, . . . , vr} in a way depending only
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on u; by assumption |An(u)| < 2(h−h′+ε)n. We modify the column over B
(n)
u,v

so as to record the index i for which v = vi. We do this by writing the base-k

representation of i near the bottom of the column. To be precise, we record the

base-k digits of i starting at level 2m + 1 and writing consecutively in blocks of

m− 1, skipping levels of height 0 mod m so as not to overwrite what we did in

the previous stage. Since there are at most 2(h−h′+ε)n possible values for i we

need to overwrite n(h − h′ + ε) logk 2 levels of the column.

The result of this procedure is that if we know both the (P , n)-name (the

word u) and the (P ′, n)-name of a point in the base B(n), we can deduce its

(Q, n)-name (the word v) by extracting the index i coded just above the base

marker in the (P ′, n) name, and looking at the i-th word in the list An(u).

Re-coding the P-itinerary: Fix again (u, v) ∈ An. The P-name of

the column B
(n)
u,v has been partly destroyed by the previous steps. We will

fix this by overwriting still more of the P-name, starting where we stopped at

the previous stage, skipping levels which are at height 0 mod m, and stop-

ping at some height M = M(n) which we will determine. This gives us

M − (2m + n/m + n(h − h′ + ε) logk 2) symbols in which to store informa-

tion. In this space we want to record the portion of the name u which has been

overwritten in all three stages (including the current stage). This consists of

the first M symbols of u plus at most n/m additional levels overwritten in the

first stage. Assuming as we may that M > εn ≥ N , we know that the number

of possibilities for the first M symbols of u is bounded by 2(h′+ε)M so using the

k symbols at our disposal we need M(h′ + ε) logk 2 symbols in order to record

it, plus another n/m symbols to record what was erased in the first stage. Thus

we require of M that in addition to εn < M < n it satisfies the inequalities

M − (2m + n/m + n(h − h′ + ε) logk 2) ≥ M(h′ + ε) logk 2 + n/m

or equivalently

M ≥
((h − h′ + ε) logk 2 + 2(1/m + m/n))n

1 − (h′ + ε) logk 2
.

Since h′ ≤ h < log k, n/m = εn and m =
(
m/n

)
n =

(
1/(εn)

)
n ≤

(
1/N

)
n ≤ εn,

when ε is small enough it suffices that

M ≥
((h − h′ + ε) logk 2 + 4ε)

1 − (h′ + ε) logk 2
n.
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Denote the coefficient of n in expression on the right hand side by C(ε). Note

that C(ε) → h−h′

log k−h′
as ε → 0 and 0 ≤ C(ε) < 1. Thus if we choose ε > 0

small enough (in a manner depending only on h, h′ and k) we can set M =

max{ε, C(ε)}·n and M will satisfy all the requirements, including εn ≤ M ≤ n.

The results of this procedure is that given the (P ′, n)-name of a point in the

base of the tower column B
(n)
u,v , we can reconstruct its (P , n)-name by looking

at the data written in this step, and hence by the previous step its (Q, n) name.

Together with the previous stages, this means that for any point in X if we

know the entire P ′ itinerary we now can determine the column it is in and the

P ′-name of that column, and hence Q(ω). This means that P ′ generates.

It remains to estimate how much P has changed. We have modified M +n/m

levels of each column B
(n)
u,v , or a (C(ε) + ε)-fraction of the mass of that column.

Summing over all columns, this is the fraction of X that has changed. For

ε > 0 sufficiently small, this is less than δ + h−h′

log k−h′
, implying that ρ(P ,P ′) <

δ + h−h′

log k−h′
. This completes the proof.

3. Zero-entropy extensions

This section is dedicated to proving our main theorem, theorem 3.1. Before

going into the details, we would like to say a few words about the relation of

this theorem to the work of Ornstein and Weiss in [8], where it was shown

that entropy is the only finitely observable invariant in some saturated classes

of processes. Their proof used a diagonalization argument: Assuming to the

contrary that for some class C there exists a finitely observable invariant finer

than entropy, choose two non-isomorphic processes (xn), (yn) ∈ C with the same

entropy h. A third process (zn) is then constructed, for which the observation

scheme does not converge. This is done by inductively defining the N -block

distributions for the process (zn) for a sequence of rapidly increasing Ns, where

at each step copying lemmas are used to make (zn) look at different time scales

as though they come from X or Y. However, in order to obtain a contradiction

it must be ensured that (zn) ∈ C, since otherwise the observation scheme is not

expected to converge. With some care one can ensure that (zn) is Bernoulli if

h > 0, or weak mixing and deterministic if h = 0, but other properties, such

as pure point spectrum or non-Bernoullicity in positive entropy, are harder to

build into (zn).
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Our results derive from the observation that when (xn) is a zero-entropy

extension of (yn), one can control the isomorphism class of the diagonal process

(zn) and, in fact, it can be made isomorphic to (yn).

Theorem 3.1: Suppose X → Y is a zero entropy extension of finite entropy

dynamical systems. Let C be the family of processes arising from X and Y.

Then every finitely observable invariant for C is constant.

Proof. We identify Y with the sub-σ-algebra of X which is the pull-back of

the σ-algebra of Y through the factor map. Let r ∈ N with log r > h(X ); all

partitions in the sequel are partitions into r sets.

To simplify notation we assume that (sn) is an observation scheme whose

range is R; there is no loss of generality here since given some other range, we

can always compose with continuous functions from the range to R. Suppose

that there are ξ, η ∈ R such that for every pair of processes (xn), (yn) arising

from X ,Y respectively and generating them,

lim sn(x1 . . . xn) = ξ in probability

lim sn(y1 . . . yn) = η in probability.

We must show that η = ξ. In order to do this will construct a generating

partition P∗ of Y and a sequence N(k) such that sN(k)(y
∗
1 , . . . , y∗

N(k)) → ξ in

probability (here (y∗
n) is the process arising from P∗). This suffices because by

assumption, lim sn(y∗
1 , . . . , y∗

n) → η, so η = ξ.

The partition P∗ will be obtained as the limit of a sequence of generating

partitions P(k) of Y, which will be constructed inductively. The induction step

is provided by the following lemma.

Lemma 3.2: Let X → Y be a zero-entropy extension of finite entropy dynamical

systems. Let C be the class of processes arising from X and Y. Let J : C → R

be a finitely observable invariant computed by a sequence of functions sn, and

denote J(X ) = ξ. Then for any generating partition P of Y, and any ε > 0,

there is a generating partition P of Y with ρ(P ,P) < ε, and an integer N so

that

P (|sN (y1, . . . , yN ) − ξ| < ε) > 1 − ε,

where (yn) is the process arising from P.
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Before proving the lemma let us show how it is used to prove the theorem. We

construct a sequence P(k) of generating partitions of Y and associated processes

(y
(k)
n ), starting with an arbitrary generating partition P(0) provided by the

Krieger generator theorem.

At the induction step, given P(k−1) we construct P(k) using the lemma; we

choose the parameter ε = ε(k) < 1/k in the lemma to be very small with respect

to the previous stages of the construction (see below). Thus we have

(3.1) ρ(P(k−1),P(k)) < ε(k).

From the lemma we also get an integer N(k) such that

(3.2) P
(
|sN(k)

(
y
(k)
1 , . . . , y

(k)
N(k)

)
− ξ

∣∣∣ < 1/k
)

> 1 − 1/k,

and since P(k) generates Y there is an integer L(k) such that

(3.3) P(0) ⊆1/k

L(k)∨

i=−L(k)

T iP(k).

During the construction we are free to choose the ε(k) as small as we like.

First of all we choose them so that
∑

ε(k) < ∞. Since the metric ρ = ρr is

complete (or using the Borel–Cantelli lemma) this guarantees that P(k) con-

verges to a partition P∗ of Y, with associated process (y∗
n). Second, note that

ρ(P∗,P(k−1)) ≤
∑∞

m=k ε(m). Thus, at the beginning of step k of the construc-

tion, when P(k−1) is given, we may choose a parameter δ(k) > 0 depending on

all the data defined so far and ensure that ρ(P∗,P(k−1)) < δ(k) by requiring

ε(m) ≤ 2−mδ(k) for every m ≥ k. The point is that the conditions (3.2) and

(3.3) remain true for any partition (and associated process) sufficiently close to

P(k), and hence a prudent choice of δ(k) implies that they hold for P∗ and (y∗
n),

that is,

∀m P (|sN(m)(y
∗
1 , . . . , y∗

N(m)) − ξ| < 1/m) > 1 − 1/m

and

∀k P(0) ⊆1/k

L(k)∨

i=−L(k)

T iP∗.

The first of these implies limk→∞ sN(k)(y
∗
1 , . . . , y∗

N(k)) = ξ in probability, and

the second that P(0) ⊆
∨∞

i=−∞ T iP∗, so P∗ generates Y. This completes the

proof of Theorem 3.1 given Lemma 3.2
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Proof of Lemma 3.2. First we present a sketch of the proof, and then give the

details. Since P generates Y it has full entropy, which by assumption is equal

to the entropy of X . Therefore, we can find a generating partition Q for X with

ρ(P ,Q) < ε/2. Let (xn) be the process determined by Q; then sn(x1, . . . , xn) →

ξ in probability, so we can choose an N such that

P (|sN (x1, . . . , xN ) − ξ| < ε) > 1 − ε.

Since P and Q are both partitions of X we get a joining of the P- and Q-

processes. Choose now a δ > 0 and a suitably large K. Now working in Y again,

we can construct a partition R whose joint K-block distribution with P is

within δ of the joint K-block distribution of P ,Q. Thus (assuming we chose

K large enough), the order of magnitude of ρ(P ,R) will be of the order of

ρ(P ,Q) + δ, the N -block distribution of the R-process will be within δ of the

N -block distribution of the Q-process, and the entropy of the R-process is δ-

close to h(Y). though R does not necessarily generate Y we need only make an

additional small correction to get a generating partition P for Y, and we can

arrange that this does not disturb the N -block distributions very much.

Now for the details.

Choosing Q: Since h(X ,P) = h(Y) = h(X ), by theorem 2.7 we can find a

generating partition Q for X with

ρ(P ,Q) < ε/2.

Choosing N and δ: Denote by (xn) the process arising from Q. Then

sn(x1, . . . , xn) → ξ in probability, so there is an integer N such that

µ(|sN (x1, . . . , xN ) − ξ| < ε) > 1 − ε.

Note that condition above is a property of the N -block distribution of (xn).

Thus there is a δ ∈ (0, ε/2) with the property that if (zn) is a process arising

from a partition R and the N -block distribution induced by R is within δ in

L1 of the N -block distribution of Q, then µ(|sN (z1, . . . , zN) − ξ| < ε) > 1 − ε.

Note also that if R,R′ are two partitions of Y and if ρ(R,R′) < δ/N then the

N -bock distributions of the processes arising from R,R′ differ by at most δ.

Choosing α, β and M : Invoking Theorem 2.7, choose α > 0 such that if R is

a partition of Y with entropy h − α then there is a generating partition R′ of
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Y with ρ(R,R′) < δ/2N . Let β > 0 be such that for any partition S of Y, if

P ⊆β S then h(S) > h − α. We may assume that β < δ/N .

Since Q generates X and P is measurable in X there is an M > N such that

P ⊆β/2

M∨

i=−M

T iQ.

Note that this property depends only on the distribution of (P × Q, 2M + 1)-

names, and if R is a partition of Y such that the distribution of (P×Q, 2M+1)-

names is within τ of the distribution (P × R, 2M + 1)-names (in ℓ1(R2M+1))

then P ⊆β/2+τ

∨M
i=−M T iR.

Choosing L, B and R: Fix an integer L with max{M, N}/L < β/8 and

choose a tower B ∪ TB ∪ · · · ∪ T LB of height L in Y, filling all but β/4 of the

space. We will define a partition R of Y by modifying P at some of the points

in the tower.

Let (Bu) be the partition of the base B according to (P , L)-names. This

partition is measurable in Y. We can further partition each Bu according to

the (Q, L)-names as Bu =
⋃

v Bu,v. The Bu,v’s are measurable in X but may

not be measurable in Y. However, since Y is non-atomic we can partition the

sets Bu into sets B′
u,v in Y such that µ(B′

u,v) = µ(Bu,v). For each B′
u,v, modify

the column over B′
u,v so that it is labeled by v (instead of u). Call the resulting

partition R.

Since

ρ(P ,R) = 2µ({x ∈ X : P(x) 6= R(x)}),

and on the tower
⋃L−1

i=0 T iB we have

µ

{
x ∈

L−1⋃

i=0

T iB : P(x) 6= R(x)

}
= µ

{
x ∈

L−1⋃

i=0

T iB : P(x) 6= Q(x)

}
,

and the tower fills all but β/4 of the mass, it follows that

ρ(P ,R) ≤ ρ(P ,Q) + β/4 < ε/2 + β/4.

Choosing P: Consider now the difference between the distributions of

(P × Q, 2M + 1)-names and the distributions of (P ×R, 2M + 1)-names. The

only difference between them is incurred at the top and bottom M levels of the

tower, which have total mass < 2M/L < β/4, and the exceptional set outside
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the tower whose mass is < β/4. Therefore, the distributions of (P×Q, 2M +1)-

and (P ×R, 2M + 1)-names differ by at most τ = β/2 so

P ⊆β/2+β/2

M∨

i=−M

T iR.

Since the entropy of
∨M

i=−M T iR is the same as the entropy of R, we conclude

by the choice of β that R has entropy > h − α. We can therefore choose a

generating partition P of Y with ρ(P ,R) < δ/2N . We conclude that

ρ(P ,P) < ρ(P ,R) + ρ(R,P) < ε/2 + β/4 + δ/(2N) < ε.

Finally, note that from the construction of R, the N -block distribution is the

same as the N -block distribution of Q except for an error introduced by the top

N levels of the tower, which have mass < β/4, and the exceptional set also of

measure β/4, which means that the N -block distribution of R and Q differ by

less than δ/2. Since ρ(R,P) < δ/2N we see that the N -block distributions of the

R-process and the P-process differ by at most δ/2, so the N -block distributions

of the P-process and the Q-process differ by at most δ; by the definition of δ

this implies

µ(|sN (y1 . . . yN ) − ξ| < ε) > 1 − ε,

where (yn) is the process defined by P.

This completes the proof.

4. Some Applications

An immediate consequence of theorem 3.1 is

Proposition 4.1: Let C be a saturated class of processes with entropy h. Sup-

pose that every X ,Y ∈ C either have a common factor or a common extension

in C. Then every finitely observable invariant is constant on C.

Proof. If X and Y have a common factor Z, then no scheme can distinguish X

and Z, and no scheme can distinguish Y and Z; so every scheme must give the

same value to X and Y. The case of a common extension is similar.

We turn now to some specific classes of processes. We begin by recovering

some of the results of [8] using the techniques of the last section.
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Proposition 4.2 ([8]): There are no nontrivial finitely observable invariants

for the class of zero entropy systems or for the class of zero entropy weakly

mixing processes.

Proof. Any zero-entropy ergodic systems X and Y have an ergodic zero entropy

joining (take a typical ergodic component of X × Y), and if X and Y are zero

entropy weakly mixing systems then so is the joining X × Y.

Proposition 4.3 ([8]): If C is a saturated family of processes which contains

the Bernoulli processes (e.g. C = all aperiodic finite valued ergodic processes)

then entropy is the only finitely observable invariant.

Proof. For h ≥ 0 let Ch = {X ∈ C : h(X ) = h}. We must show that every

finitely observable invariant scheme on C is constant on each Ch. For h = 0 this

is the previous proposition. For h > 0, we use Sinai’s theorem, which states

that every X ,Y ∈ Ch have Bernoulli factors with entropy h. By Ornstein’s iso-

morphism theorem, these factors are isomorphic. Since the Bernoulli processes

are in C we conclude that every X ,Y ∈ Ch have a common factor in Ch, so every

scheme is constant on Ch.

Theorem 4.4: (1) Every finitely observable invariant for the class of Kro-

necker systems is constant

(2) Every finitely observable invariant for the class of mildly mixing zero

entropy systems is constant.

(3) Every finitely observable invariant for the class of strong mixing zero

entropy systems is constant.

Proof. Again, we need only note that in these classes every two systems have a

joining in the same class.

An elementary class of systems is the class R of irrational rotations. A delicate

and perplexing question is whether there exist nonconstant finitely observable

invariants on this class.

To fix notation, let ([0, 1),B, λ) be the probability space of the unit interval

with Lebesgue measure. For α ∈ [0, 1) \ Q let Xα = ([0, 1),B, λ, Tα) where

Tα : [0, 1) → [0, 1) is translation by α, that is, Tα(x) = x + α(mod1). Let

R =
⋃
{Xα : α ∈ [0, 1) \ Q} be these systems (note that Xα

∼= X−α). Thus an

invariant J : R → ∆ induces a map J̃ : [0, 1) \ Q → ∆ by J̃(α) = J(Xα).
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Lemma 4.5: If J is a finitely observable invariant on R, then J̃ is Lebesgue

measurable.

Proof. We may assume that ∆ = R by composing continuous real-valued func-

tions on sn. Let (sn) be an observation scheme which calculates J . Fix the

partition P = ([0, 1/2), [1/2, 1)) of the interval into two equal halves, and note

that P generates for every Xα ∈ R. Thus denoting by (x
(α)
k ) the process arising

from P and the system Xα, we have

J̃(α) = J(Xα) = lim
n→∞

sn(x
(α)
1 , . . . , x(α)

n ),

where the limit exists in probability and is constant λ-a.e. in Xα.

Define fn : [0, 1)× [0, 1) → ∆ by

fn(α, ω) = sn(x
(α)
1 (ω), . . . , x(α)

n (ω))

and f : [0, 1)× [0, 1) → ∆ by

f(α, y) = J̃(α).

To show that J̃ is measurable it suffices to show that f is measurable, and,

in fact, the fn are measurable with respect to the product σ-algebra and since

fn converges in probability on every fiber {α} × [0, 1) (with respect to λ), and

the limit is the constant function J(α), it follows that fn converges to f in

probability on [0, 1) × [0, 1) with respect to λ × λ.

Theorem 4.6: Let J : R → ∆ be a finitely observable invariant for R. Then

J̃ is constant on a set of full measure. In particular, no finitely observable

invariant on R is complete.

Proof. If α, β ∈ [0, 1)\Q are rationally dependent then γ = mα = nβ ∈ R\Q for

some m, n ∈ N. Thus Rγ is a factor both of Rα and of Rβ , so J(Rα) = J(Rβ).

We conclude that J̃ is a Lebesgue-measurable function on [0, 1) \ Q which is

invariant to the action of multiplication by 2 mod 1. Any such map is constant

on a set of full measure, because x 7→ 2x mod 1 is ergodic with respect to

Lebesgue measure.

5. Remarks and problems

Let us mention two problems which we have not been able to resolve:

Problem: Is every finitely observable scheme on R constant?
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Let K be the class of non-Bernoulli K-processes. Another problem is:

Problem: Are there any finitely observable invariants on K finer than entropy?

It has been known for some time that there are no complete Borel invariants

on this space (when it is topologized in a natural way — see Feldman’s paper

[2]). It also follows from work of Hoffman [4] that there exist nonisomorphic K-

systems X ,Y of the same entropy such that X → Y is an extension. This implies

by Proposition 4.1 that there are no complete finitely observable invariants on

K; but this is not new in view of Feldman’s work.

If it were true that every two processes X ,Y ∈ K had a common zero-entropy

non-Bernoulli K-extension, then Proposition 4.1 would imply that there are no

finitely observable invariants but entropy on K. However, the existence of such

a joining has been an open question for some time.
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