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form z = z(x, y; X, ¥, Z) if and only if

(Ic) AH=DG

where D = 0x + pdz + rdp + HOr, A = 8y + GI, + DG + D?>Goy, and we
have introduced p = zx , r = Zx.

General solutions of systems (S) give examples of 5-dim para-CR structures.
We prefer the PDE point of view, and we will stick to this in the following. In
particular, in this point of view, para-CR transformations for hypersurfaces in
(x,y,z,X,y,Z) are point transformations of variables of (S).
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Moreover, vanishing or not of each of A, B or C is an invariant property of the corresponding para-CR
structure.

@ Remark: We were unable to make normalizations such that the EDS describes a curvature of some Cartan
connection. BUT we did not tried hard. See the end of the talk.
@ Flatmodel: A = B = C = 0, and this is locally equivalent to zyxx = 0, z, = £ 5.
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The first step

@ Theorem: Given a para-CR structure represented by the forms w' = dz — pdx — Gdy,
w? = dp — rdx — DGdy, w® = dr — Hdx — D?Gdy, w* = dx and w® = dy with G, = 0, Gpp # 0 and

DSG /\H itis always possible to force the lifted coframe ()1 = fiw!, 0% = huw! + pe®w? + fud,
1

= fsw! + fgw? + FwS, 6% = Hw! + pePwt + fwd, 05 = Tw! + fyw? + Fw® to satisfy the
foIIowing EDS:
T =qn0" + 021 6%,
462 =% ( — 3921) — 0'A Q5 + 61 04,
6% =207 Q, — 67 Q3 + Q01 A 6° + 2 co’n0°
a6t = — 0%n0° — 6*A (10 + Q) — 6" 0y,
d6% = — 2607 Qp + 6% A Q2 o 29 "B A 62+ Q0" A 0% + C94A 0°.
Here
A = (— 1) [9D°H; — 27DHp — 18H,DH; + 18HyH, + 4H? + 54H, ],  Wuenschmann 1905
2
B = (2(; ) [40G2,, — 45GppGrpp Gpppp + 9Gop Gopppp |+ Monge 1872
C= (7 [2Gppp + GppHrr 1, 777 2017

C vanishes |fC =0.

Moreover, vanishing or not of each of A, B or C is an invariant property of the corresponding para-CR
structure.

@ Remark: We were unable to make normalizations such that the EDS describes a curvature of some Cartan
connection. BUT we did not tried hard. See the end of the talk.

@ Flatmodel: A = B = C = 0, and this is locally equivalent to zyx = 0, 2z, = Z Symmetry algebra
sp(4,R) ~ so(2, 3).
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Homogeneous models

@ Method ?: Elie Cartan’s reduction procedure applied to the EDS from the last
Theorem. It required quite a gymnastics!

@ Structure?:

X

o=/
42 [t e woneC]
el 10, e Prm
=0 Is._—.._-)[:‘_-_m—-_p 1? cMngtriiﬂlrt;_:—\_M'J({:
o= =°
o d
A ==X
o=|
[FLAT
FLA

@ Cartan’s reduction produces eventually the homogeneous models in terms of
Maurer-Cartan systems for invariant forms on the maximal symmetry group of
the model. We get:
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Isolated model

In the case C # 0, we have 2 models, depending on this if e = 1 or —1:

2 4

351 5
é(')/\('))-ﬁAﬁ,

do? (*%0 n 6% —26°7 6% + J0Pn 0" — 6°76%) — 0" A 6%+
Al

50 a0t — 1o'A0° 1 63n 0%,
3 _ 31 23 L 103 a4 143 05\ L, 1042 04 142 5
d(‘)7(<7ﬁ9/\9}éﬁAﬁfiﬁAH){ﬁﬁAﬁfgb‘Ab‘,
d()4*( 10'no* + 10"A0° + 40%n 0% — ‘0%05)70%05,
a6° 7(( 6'n6° +20%1 0° — ‘9‘%95).
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Isolated model

In the case C # 0, we have 2 models, depending on this if e = 1 or —1:

2 4

351 5
é(')/\('))-ﬁAﬁ,

do? (7%0 n 6% —26°7 6% + J0Pn 0" — 6°76%) — 0" A 6%+
Al

50 a0t — 1o'A0° 1 63n 0%,
3 _ 31 23 L 103 a4 143 05\ L, 1042 04 142 5
d(‘)7(<7ﬁ9/\9}éﬁAﬁfiﬁAH){ﬁﬁAﬁfgb‘Aﬁ.
<104*F( 10'no* + 10"A0° + 40%n 0% — ‘0%05)70%05,
a6° 7((7117691/\95‘#293/\957%94/\95).

Symmetry algebra of dimension 5; unique homogeneous model.
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1-paramater family of nonequivalent models

In the case C = 0 and B # 0, we have two 1-parameter families of nonequivalent
homogneous models, depending on this if e = 1 or —1:

a0 = — <<0‘A03+9‘A95> +0°%n 6%,
6% =€ (s0' A 0% — A@S) —s0'n 0" +0%A 0%,
—c(0'no* —03n06° ) —0'A 6% — s0Pn 0%,

d6* =e( —so'n6* + 0 »9) L s0'A 0% — 62A6°,

do® =

(
(
(
(-

0'n0* +0%r0 )+01/\02+S()2/\04.
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Here every s € R gives a model, and different s corresponds to the nonequivalent ones. Symmetry algebra of
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The flat system

In the case A = B = C = 0, we have

2

=0°n0* —0'AQy

%

S5y
o
|

=0°n 0% + 02A (2 — 104) — 0'A Qg

0% = 2037 Qp — 02A Qg

4 2 ] 4 1
do* = —0°n 0> — 0% A (3 + Q) — 0" Ay
0% = —2057 Qp + 0% A Qy
A = —0*AQa + 02A Q4 — 0'A Q5

a2y = —0°76° — 10 A Q3 — 16%A 0

A = — (3 + Q)A Qg + 654 Q4 — $6%A 05
A = ( — 3Q)AQ + 607 Q5 — 167 Q5
dQ5 = —Q4 A Q5 + 231 Q.

Symmetry algebra of dimension 10;
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The flat system

In the case A = B = C = 0, we have

2

=0°n0* —0'AQy

[

5
N
|

=0°n 0% + 02A (2 — 104) — 0'A Qg

0% = 2037 Qp — 02A Qg

4 2 ] 4 1
do* = —0°n 0> — 0% A (3 + Q) — 0" Ay
0% = —2057 Qp + 0% A Qy
dQ = —6*A Q3 + 6027 Q4 — 0" A 05

a2y = —0°76° — 10 A Q3 — 16%A 0
A = — (3 + Q)A Qg + 654 Q4 — $6%A 05
A = ( — 3Q)AQ + 607 Q5 — 167 Q5

dQ5 = — Q1A Qg + 2031 Q.

Symmetry algebra of dimension 10; unique model, sp(4, R) symmetry.
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@ Question:
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Worries

@ Question: Can these abstract systems be realized as PDEs (S) — (/C) — (2NG)?

@ Worry: Mike Eastwood’s talk. When | got these 2 systems with exactly 5
symmetries and showed it to Joél he said: ‘you must have overlooked some
models’. Every homogeneous affine surface gives rise to our para-CR by simply
extending it as constant along 3-dimensions - ‘tube over an affine surface’. And
looking at the classification of affine surfaces, which Mike showed us last week,
one sees that one has (0) our flat model, (1) TWO single models and (2) TWO
1-parameter families. And these TWO are not related to our €. Seems that Mike
has mor models than we have with Joél.
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Resolution of Joél’'s worries — homogeneous para-CR of Fels a

In their Acta Mathematica paper Fels and Kaup in 2008 classified all 5-dimensional homogeneous degenerate CR
manifolds. If one looks at their para-CR version, with the degeneracy as in this report, one finds the following
homogeneous models, which are ‘tubes over the following affine surfaces’

@ v ={R® : xy+ 2% =0}. Ourflat model zy = 123, Zyxx = 0.

4
t 1

<r2> +r<2t> , rt e R}
i# 32

Q v=
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t 1
Q v- {};3 3 <t2> +r <2f> , r,t € R}.Oursingle model z, — J—‘zf, Zyxx = zfx.
e 3¢2

p
Case1 M, = {R® : (rct>Ar,I€R},a>2.
r

et
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In their Acta Mathematica paper Fels and Kaup in 2008 classified all 5-dimensional homogeneous degenerate CR
manifolds. If one looks at their para-CR version, with the degeneracy as in this report, one finds the following
homogeneous models, which are ‘tubes over the following affine surfaces’

@ v ={R® : xy+ 2% =0}. Ourflat model zy = J—‘zf,zxxx =

t 1
Q@ v={r : <f2> Sl <2f2> , 1.t € R}. Oursingle model z, = 22, zy = 25,
i 3t

et

7
Case2 M = {R® :1<ff> r,t € R}.

ft‘[

p
Case1 M, = {R® : (rct>Ar,I€R},a>2.
r
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manifolds. If one looks at their para-CR version, with the degeneracy as in this report, one finds the following
homogeneous models, which are ‘tubes over the following affine surfaces’

@ v ={R® : xy+ 2% =0}. Ourflat model zy = J—‘zf, Zyxx = 0.

t 1
Q v- <t2> +r <2f> , r,t € R}.Oursingle model z, — J—‘zf,zm( = zfx.

i 32
r
Casel My ={R® : [ rel | ,r,teR},a>2.
r

et

.
ot r,t € R}.
F:‘[

rcost
Case3 Mg = {R® :, [ rsint | r,teR},B > 0.
Bt
re

Case2 M=

It turns out, that the surfaces given by cases 1, 2, 3 above are in one-to-one correspondence with OUR
1-PARAMETER FAMILY OF MODELS!
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ponds to s < —3(2) and zy = 72, Zxx = (2 — b) 25, 1<b<2is= .

2
((b—2)(2b—1)) 3
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THANK YOU!



