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Official announcement

The Nobel Prize in Physics 2020 was divided,
one half awarded to Roger Penrose “for the discovery that
black hole formation is a robust prediction of the general
theory of relativity”,
the other half jointly to Reinhard Genzel and Andrea
Ghez “for the discovery of a supermassive compact object
at the centre of our galaxy”.
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The astronomy part

Reinhard Genzel and Andrea Ghez got Nobel prize for their
brilliant infrared observations of stars orbiting close to
Sagittarius A*.

Sagittarius A* (SgrA*) is a very bright and very compact (less
than 0.1 arc sec) radio source in the center of the Milky
Way; it is known since 1974.
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The astronomy part

Reinhard Genzel and his Munich group, were the first to
estimate the mass of this object, to be
M = 4.31± 0.06× 106 M�; because of its compactness
SgrA* is believed to be a supermassive black hole;
Genzel’s group result was based on observations of a star
S2, which is in the distance smaller that 17 light hours from
the SgrA*; in the years 1992-2002 they observed in
infrared 2/3 of the full revolution of S2 around SgrA*; from
this they reconstructed a Keplerian orbit of S2; then they
used the third Kepler’s law:
the square T 2 of star’s orbital period T is proportional to
the cube a3 of the length a of star’s orbit semi-major axis;
actually, modulo an universal constant c, we have
a3

T 2 = cM, so knowing a and T we know the gravitational
source mass M;
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The astronomy part

The Keplerian orbit of the S2 star in the
vicinity of SgrA*.
The blue orbit points are measured by
GRAVITY - a second - generation
instrument of the Very Large Telescope
Interferometer (VLTI) at ESO’s Paranal
Observatory, Chile, operating since
2016. As one of ESO astronomers
says: ’It is born from the desire to observe very small details

of faint objects, including those at the centre of galaxies. With its

high sensitivity and accuracy, GRAVITY can reveal a whole new

world of planets, stars and galactic centres that were previously

out of reach because they were too faint for previous instruments’.
The picture is prepared by an
astronomer Odele Straub, a member of
Reinhard Genzel’s group since 2017.

Odele made this picture for us,
especially for this talk.
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The astronomy part

Keplerian orbits of eight stars
close to SgrA*
The infrared photograps of these
stars where obtained by the
group of Andrea Ghez during 20
years, using the Keck telescope;

The Keck telescope
consists of two twin
10-meter in diameter
telescopes; it is one of
the most precise and
most technologically
adavanced telescope on
our planet. It is situated at
mount Mauna Kea,
Hawaii, at the altitude of
4100m
It is worth noticing the
resolution of the picture:
the interval in the left
upper corner corresponds
1/10th arc second!
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Comments from Odele Straub

Ghez and Genzel are both infrared astronomers, leading teams
of observers, theoreticians and engineers. However, one would
perhaps like to add the radio observer Mark Reid to the
laureates, as he could show that the BH is supermassive by
measuring how it moves (it nearly doesn’t).
The maths behind this discovery has many faces. Typically we
use both, PPN (O(1)) and full GR.

The old pre-GRAVITY data for the star S2 have too large
uncertainties to access the BH spin today. We have measured
one full orbit, but it has period of 16 years. We think that we can
access the spin in principle after a few full orbits taking into
account the accumulative nature of the Lense-Thirring effect on
the S2 star’s trajectory. However, there will also be Newtonian
effects of the neighbouring S-stars of that order of magnitude,
which have to be considered - and they work in the opposite
direction to the LT effect. The full problem is highly non-trivial.
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Official announcement

The Nobel Prize in Physics 2020 was divided,
one half awarded to Roger Penrose “for the discovery that
black hole formation is a robust prediction of the general
theory of relativity”,
the other half jointly to Reinhard Genzel and Andrea
Ghez “for the discovery of a supermassive compact object
at the centre of our galaxy.”

Note that the astronomers were not granted the Nobel Prize in
Physics for the discovery of a supermassive black hole in our
Galaxy; the prize for black holes went to a mathematician
Roger Penrose.
A mathematician, because he graduated in Cambridge in 1958,
under John Arthur Todd, with PhD thesis ‘Tensor methods in
algebraic geometry’.
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Roger Penrose - the most influential person in General Relativity after Einstein

major contributions to the theory of gravitational radiation -
defined assymptotic properties of fields and spacetimes,
cofounder of Newman-Penrose formalism, introduced conformal
geometry methods to GR,
introduced topological methods to GR,
introdced the symmetry free definition of singularities in GR,
formulated and proved the main singularity theorem,
introduced a ‘cosmic censor’
shown how to extract energy from rotating black holes,
popularized use of spinors in GR, invented twistors and
introduced complex geometric and CR methods into GR,
introduced ‘Penrose limit’ of a spacetime,
initiated investigations on collision of gravitational waves,
recently proposed new view on cosmology, inventing conformal
cyclic cosmology,
even has shown that Mr Tompkins (George Gamow, “Mr
Tompkins in Wonderland”, first published in 1939) wrongly
perceived apparent shapes of relativistically moving spheres...
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For what he got Nobel Prize?

So which Penrose’s contribution to GR won the Nobel
Prize?
I do not know what a person from outside the GR
community would answer if he was given the list of RP’s
contributions from the previous slide.
But for people from the GR community it is obvious that
this what is written in the Nobel Prize announcement refers
to Penrose’s paper entitled :
Gravitational collapse and spacetime singularities,
Phys. Rev. Lett. (1965) 14, 57-59.
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Aside

Although Nobel’s Committee anouncement says that
Penrose gets the Nobel Prize for the discovery that
formation of black holes is a robust prediction of General
Relativity, the term black hole is NOT used in this paper.
Why?
Such a term did not existed at this time! It was introduced
by J. A. Wheeler in 1967 only (see the book by Kip Thorne,
‘Black holes and time warps’ (1995), pp. 256-257).
The term is used in the title of Steven Hawking’s 1972
paper: Black holes in General Relativity, Commun.
Math. Phys. 25, 152-166. The above mentioned Penrose’s
paper about singularities, Penrose’s 1968 paper ‘Structure
of space-time’, In Batelle Rencontres, C. M. de Witt and J.
A. Wheeler, eds. (Benjamin, New York), and Hawking’s
black holes paper, put the theory of black hole physics at a
solid ground. Perhaps, if Steven Hawking was alive, he
would also be mentioned in this year Nobel Prize.
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Penrose’s singularity theorem wins the Nobel Prize

In the 1965 Phys. Rev. Lett. paper Penrose formulates and
sketches the proof of the theorem which, in a bit modernized
version, reads as follows.

Theorem
If the space-time contains a non-compact Cauchy
hypersurface and a closed future-trapped surface, and if
the convergence condition Ric(u,u) ≥ 0 holds for null
vectors u , then there are future incomplete null geodesics.

The rest of my talk is to explain what is the meaning of this
theorem and why it is so revolutionary.
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Let us come back to the official announcement

The Nobel Prize in Physics 2020 was divided,
one half awarded to Roger Penrose “for the discovery that
black hole formation is a robust prediction of the general
theory of relativity”,
the other half ...
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General Relativity (GR) theory

Quick intro to General Relativity theory:

the arena for all physical events is a spacetime – a
4-dimensional manifold M equipped with a metric g of
Lorentzian signature (−,+,+,+),

points of M – are physical events; curves in M – are histories of
events,

because of the Lorentzian signature, there are three categories
of curves:

timelike curves: whose tangent vectors u always satisfy
g(u,u) < 0,
spacelike curves: whose tangent vectors satisfy
g(u,u) > 0,
null, or using Elie Cartan’s name, optical curves: whose
tangent nonzero vectors satisfy g(u,u) = 0;
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General Relativity (GR) theory

Curves representing movement of particles in spacetime
are particles’ worldlines; physically realistic particles
have worldlines which are:

either everywhere timelike, if they have mass, or
optical, if they are massless (they represent e.g. photons∼
particles of light);
curves whose tangent vectors are never spacelike are
called causal; causal curves correspond to worldlines of
physically acceptable particles;

Paricles in free fall have worldlines, which are affinely
parametrized causal geodesics. Their normalized
tangent vectors u satisfy

∇uu = 0;
the word normalized means that g(u,u) = −1 (for
particles with mass) or 0 (for masless particles as e.g.
photons).
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General Relativity (GR) theory

Thus, the movement of test particles in free fall in
gravitational field is determined by the Levi-Civita
connection ∇ of the metric g, and the Newtonian
gravitational force is incorporated in the notion of this
connection,
In GR every spacetime satisfies Einstein’s field
equiations

Ric − 1
2Sg + Λg = κT ,

where Λ is a (cosmological) constant, κ is a universal
constant, Ric is the Ricci tensor of g, S is its Ricci scalar,
and T is the energy momentum tensor, which represents
the matter content of spacetime;
Once g satisfying Einstein’s equations is given in M, the
dynamics of free particles’s movement is goverened by a
simple rule: knowing a position p and velocity u of a
particle at p, follow a geodesic passing through p and
tangent to u; this is the worldline of the considered particle.
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General Relativity spacetimes

the simplest spacetime is the Minkowski spacetime, with
M = R4 and g = −dt2 + dx2 + dy2 + dz2; here (t , x , y , z)
are the Cartesian coordinates in R4; in this spacetime the
geodesics are straight lines, and thus free particles’
worldlines are timelike straight lines; no gravitation, as the
curvature of the metric Riemann≡ 0;
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General Relativity spacetimes

one of the the simplest non-flat metrics is
Schwarzschild’s metric,

g = −(1− 2m
r )dt2 + 1

1− 2m
r

dr2 + r2(dθ2 + sin2 θdφ2);

It is interpreted as a metric of a spacetime outside a
spherically symmetric mass m centered at r = 0. It is a
solution to the Einstein’s equations with T = 0 and
Λ = 0; It was obtained by Karl Schwarzschild in 1915
under the assumption that the metric is spherically
symmetric; The metric has nonvanishing Riemann
tensor; nowadays we say that the Schwarzschild metric
describes gravitational filed of the most general
stationary, nonrotating black hole;
The metric g was obtained by Schwarzschild for the region
r > 2m. Note that apart from spherical symmetry, the
metric g has also a Killing vector ∂t ; Thus, in the region
considered by Schwarzschild, the metric/corresponding
spacetime is stationary (even static).
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General Relativity spacetimes

Generalization of this to a metric describing the most
general stationary, rotating black hole, was obtained by
Patrick Roy Kerr in 1962 only!; The Kerr metric is also a
solution of the vacuum (T ≡ 0) Einstein’s equations with
Λ = 0; it has axial symmetry and depends on two free
parameters, m and a; m is the mass of the rotating black
hole, and a is its angular momentum per unit mass; in the
limit a→ 0 Kerr’s metric becomes Schwarzschild’s.
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Cosmology spacetimes

Einstein applied his General Relativity to cosmology; a wide
class of cosmological metrics is given by
Friedmann-Lemaître-Roberston-Walker metrics;
In particular in 1921 Alexander Friedmann considered a class
of isotropic and spatially homogeneous metrics

g = −Fdt2 + R2(t)(dχ2 + sin2 χdΩ2)
to describe the spacetime of the Universe; in this ansatz for the
Einstein equations the space (t = const) is a 3-sphere with the
standard round 3-sphere metric;
if R(t) = const , the only solutions to the Einstein equations are
F = const which corresponds to Einstein’s static Universe
filed with the matter of constant density (T 6= 0) and the
cosmological constant Λ > 0, or F = c2 cos2 χ, which
corresponds to the deSitter Universe with T ≡ 0 and Λ > 0;
Friedmann has also found dynamical solutions with dR/dt 6= 0,
in which the only nonzero component of the energy momentum
tensor is Ttt = 3

κc2
M
R3 , and for which the ‘scale’ R(t) satisfies

R(Ṙ2 + 1) = M + Λ
3 R3; M is an integration constant

21/40



Cosmology spacetimes

Einstein applied his General Relativity to cosmology; a wide
class of cosmological metrics is given by
Friedmann-Lemaître-Roberston-Walker metrics;
In particular in 1921 Alexander Friedmann considered a class
of isotropic and spatially homogeneous metrics

g = −Fdt2 + R2(t)(dχ2 + sin2 χdΩ2)
to describe the spacetime of the Universe; in this ansatz for the
Einstein equations the space (t = const) is a 3-sphere with the
standard round 3-sphere metric;
if R(t) = const , the only solutions to the Einstein equations are
F = const which corresponds to Einstein’s static Universe
filed with the matter of constant density (T 6= 0) and the
cosmological constant Λ > 0, or F = c2 cos2 χ, which
corresponds to the deSitter Universe with T ≡ 0 and Λ > 0;
Friedmann has also found dynamical solutions with dR/dt 6= 0,
in which the only nonzero component of the energy momentum
tensor is Ttt = 3

κc2
M
R3 , and for which the ‘scale’ R(t) satisfies
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Attention singularity!

Einstein equations for Friedmann model imply also that
6R̈
R = 2Λ− κc2Ttt . This shows that whenever Λ is not big

enough the scale function R = R(t) of the spacelike
dimensions in the metric g tends to 0, R(t)→ 0, in a finite
time! This is a catastropyhy since at such time t0,
R(t0) = 0, and the entire spatial part of the metric g is
squezed to 0, g = Fdt2; volume of the space is zero, and
the energy density of the matter blows up. Moreover, one is
remained with ‘time without space’, as the only remnant of
the Universe!
Friedmann abandoned this model and went on
investigating models in which the spatial sections were
negatively curved.
This model however happens to be very useful in the
analysis of gravitational collapse.
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Attention singularity!

Schwarzschild metric is singular at r = 2m and r = 0.
It follows that only r = 0 singularity is outragous; the curvature
invariant RµνρσRµνρσ ∼ 1

r6 ; so when r → 0 the spacetime
curvature goes to infinity, and something really wrong is going on
with the spacetime at the spacelike hypersurface r = 0.
as first explained by Eddington (1924) and Lemaître (1933), the
singularity of the metric at r = 2m corresponds to a coordinate
singularity; for example the substitution
−dt + dr/(1− 2m/r)→ dv brings the Shwarzschild metric to the
form

g = 2dvdr − (1− 2m
r )dv2 + r2dΩ2,

which is perfectly regular at r = 2m
Nevertheless since g(∂t , ∂t ) = −(1− 2m

r ), the surface r = 2m is
interesting: for r > 2m the Killing vector ∂t is timelike - the
spacetime is stationary in this region, for r = 2m it is optical,
and for r < 2m its is spacelike - the spacetime is NOT
stationary there. In particular, the area function 4πr2 of round
spheres of radius r in the region r < 2m becomes timelike
coordinate there! Strange, ha?
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Solution describing a collapse on Shwarzschild singularity

Robert Oppenheimer and Hartland Snyder in 1939 answered
in positive a question if the Schwarzschild radius r = 2m may be
reached by a surface of a gravitationally collapsing star.
They found a solution of Einstein’s field equations with Λ = 0,
which outside the surface of the star is the Schwarzschild
solution, and which is matched along the surface of the star to
the collapsing Friedmann Universe with Λ = 0 and the
energy-momentum tensor T of dust with uniform density.
The dust particles at the surface of the star move along radial
geodesics in the Schwarzschild solution.
Although for the outside observer the particles on the spherical
surface of the star reach the surface r = 2m in infinite time, they
achieve r = 2m in finite time as measured by observers
comowing with them. Moreover, for observers comoving with the
particles on the surface of the star the entire collapse to r = 0
will last finite time. There will be infinite density at r = 0 - a
physical singularity will be created, and the metric will be
eventually the Schwarzschild metric everywhere, with
Schwarzschild singularity at r = 0.
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Shwarzschild black hole as a result of spherically symmetric collapse
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Critics: singulsarities are artefacts of symmetry

The Russian GR school with prominent relativists Evgeny
Lifshitz and Isaak Khalatnikov claimed that the
singularity which is an effect of Oppenheimer-Snyder
proces of collapse is artificial, because the situation which
creates it was highly symmetric. Spherically symmetric
mass distribution, without preasure, will of course collapse
to a point under selfgravity! Even the singularity described
by the Kerr metric, is still very special - axially symmetric
and algebraically special. According to the Russian
relativists even this singularity is an effect of physically
nonrealistic processes.
And here is the main motivation of Penrose’s paper
winning the Nobel Prize: ‘Can I show that a collapse of a
realistic star will be similar to that of
Oppenheimer-Snyder? Will singularity be also created
without symmetry assumptions on the spacetime and
the matter distribution?’.
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Raychaudhuri equation

The Riemann curvature tensor Riemann = (Rα
ρµν) of the metric

g is essentially defined in terms of the commutator of the
Levi-Civita connection ∇ operators. As a result, for every vector
field u we have the identity:

(∇µ∇ν −∇ν∇µ)uα = Rα
ρµνuρ.

Contracting α with µ and then with uν , one gets equation
involving the Ricci tensor Ric = (Rρν), which under the
assumption that the vector field u is (i) normalized to -1 or 0,
gµνuµuν = −1 or 0, (ii) tangent to an affinely patameterized
geodesic, uν∇νuµ = 0, and (iii) hypersurface orthogonal,
∇µuν −∇νuµ = 0, becomes

uν∇ν∇µuµ = −σµνσµν − Ric(u,u) with σµν = ∇(µuν).
The nonnegative quantity σ2 = σµνσ

µν is the shear of the
congruence generated by u, and θ = div(u) = ∇µuµ is its
expansion. Denoting by ‘dot’ the derivative of θ w.r.t. the affine
parameter along the geodesics defined by u we get

θ̇ = −σ2 − Ric(u,u),

the Raychaudhuri equation for the evolution of an expansion of
the surface forming geodetic timelike or null congruence.
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geodesic, uν∇νuµ = 0, and (iii) hypersurface orthogonal,
∇µuν −∇νuµ = 0, becomes

uν∇ν∇µuµ = −σµνσµν − Ric(u,u) with σµν = ∇(µuν).
The nonnegative quantity σ2 = σµνσ

µν is the shear of the
congruence generated by u, and θ = div(u) = ∇µuµ is its
expansion. Denoting by ‘dot’ the derivative of θ w.r.t. the affine
parameter along the geodesics defined by u we get

θ̇ = −σ2 − Ric(u,u),

the Raychaudhuri equation for the evolution of an expansion of
the surface forming geodetic timelike or null congruence.
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Raychaudhuri equation

The Raychaudhuri equation θ̇ = −σ2 − Ric(u,u) shows
that if the expansion θ of the congruence generated by
timelike u is negative at some point and if Ric(u,u) ≥ 0,
then θ will reach an infinite negative value in finite affine
parameter to the future!
If a timelike u describes the motion of a fluid moving along
these geodesics, then a physical singularity develops,
since the mean volume decreases and the density of the
fluid will become unbounded!
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First singularity theorem without symmetry: Raychaudhuri

Theorem (Raychaudhuri 1955, Komar 1956)
Assume Λ = 0 and a perfect fluid energy momentum
tensor Tµν = ρuµuν + p(gµν + uµuν), uµuν = −1, whose
velocity vector field uµ is geodesic and irrotational. If the
expansion θ of u is positive (negative) at an instant of time,
and if Riv(u,u) ≥ 0, then the energy density ρ of the fluid
diverges in the finite past (future) along every integral
curve of uµ.
Note that Ric(u,u) ≥ 0 relates to the inequality between
the density ρ and preasure p, (3p + ρ) ≥ 0 via the Einstein
equations, Ric − 1

2gS = κT .
This shows, without any assumptions about
symmetries, that singularities in irrotational
cosmologies based on perfect fluids are unavoidable.
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Why the Penrose theorem is better?

Q: Why the Penrose 1965 theorem
If the space-time contains a non-compact Cauchy
hypersurface and a closed future-trapped surface, and if
the convergence condition Ric(u,u) ≥ 0 holds for null
vectors u, then there are future incomplete null
geodesics

is better?
A: Raychaudhuri/Komar theorems are about (important) but
particular form of matter content of spacetime – the perfect
fluid. They connect energy condition Ric(u,u) ≥ 0 with a vector
field u comoving with the fluid. If there was no this connection
the focusing property of u predicted by the Raychaudhuri
equation would talk about e.g. caustics, and not physical
singularity. Also the theorem is valid for surface-forming us only.
Penrose has the energy condition Ric(u,u) ≥ 0 for all null
vectors u in spacetime; we now understand the neccessity of
this kind of condition.

So what about the other two?
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Properties of Schwarzschild’s black hole

Hawking: If the collapse is exactly spherically symmetric the
metric is that of Schwarzschild solution outside the star, and
has the following properties:

The surface of the star will pass inside the Schwarzschild
radius r = 2m. After this has happened there will be
closed trapped surface around the star.

This is a crucial Penrose’s observation and Penrose’s
concept .

31/40



Properties of Schwarzschild’s black hole

Hawking: If the collapse is exactly spherically symmetric the
metric is that of Schwarzschild solution outside the star, and
has the following properties:

The surface of the star will pass inside the Schwarzschild
radius r = 2m. After this has happened there will be
closed trapped surface around the star.

This is a crucial Penrose’s observation and Penrose’s
concept .

31/40



Properties of Schwarzschild’s black hole

Hawking: If the collapse is exactly spherically symmetric the
metric is that of Schwarzschild solution outside the star, and
has the following properties:

The surface of the star will pass inside the Schwarzschild
radius r = 2m. After this has happened there will be
closed trapped surface around the star.

This is a crucial Penrose’s observation and Penrose’s
concept .

31/40



Properties of Schwarzschild’s black hole

Hawking: If the collapse is exactly spherically symmetric the
metric is that of Schwarzschild solution outside the star, and
has the following properties:

The surface of the star will pass inside the Schwarzschild
radius r = 2m. After this has happened there will be
closed trapped surface around the star.

This is a crucial Penrose’s observation and Penrose’s
concept .

31/40



Properties of Schwarzschild’s black hole

Hawking: If the collapse is exactly spherically symmetric the
metric is that of Schwarzschild solution outside the star, and
has the following properties:

The surface of the star will pass inside the Schwarzschild
radius r = 2m. After this has happened there will be
closed trapped surface around the star.

This is a crucial Penrose’s observation and Penrose’s
concept .

31/40



Properties of Schwarzschild’s black hole

Hawking: If the collapse is exactly spherically symmetric the
metric is that of Schwarzschild solution outside the star, and
has the following properties:

The surface of the star will pass inside the Schwarzschild
radius r = 2m. After this has happened there will be
closed trapped surface around the star.

This is a crucial Penrose’s observation and Penrose’s
concept .

31/40



Trapped surface

Given a 2-surface Σ in usual Euclidean 3-space, think about
orthogonal directions to Σ at a point. There are two such
directions - outward and inward ones. Put two torches aligned
with these two directions and flash light. Then, from the surface
there will be two light rays emanating: the inward ray and the
outward one. If the surface is a round sphere and we assign
pairs of torches to every point of it, we will have two
congruences of light rays in space: the ones going inward will
be focussing at the center, and the ones going outward will be
diverging. Passing to the Minkowski spacetime picture these
congruences of light rays from 3-space, produce two
congruences of optical directions in spacetime. The outward
ones will have expansion θ > 0 and the inward ones will have
expansion θ < 0.
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Trapped surface

The situation is quite different beyond the Schwarzschild
radius, r < 2m, in the Schwarzschild spacetime! It follows that
every 2-sphere r = r0 < 2m, t = const there, has expansion
θ < 0 for both families of ‘outward’ and ‘inward’ optical rays, at
every point!
Physically, the gravitational field inside the Schwarzschild radius
is that strong, that even outgoing light rays will converge!
This results in a Definition of a trapped surface Σ in any
spacetime to be a closed surface such that both families of
orthogonal optical directions emanating from it orthogonally
have expansion θ < 0 across Σ.
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Properties of Schwarzschild’s black hole

Hawking: If the collapse is exactly spherically symmetric the
metric is that of Schwarzschild solution outside the star, and
has the following properties:

The surface of the star will pass inside the Schwarzschild
radius r = 2m. After this has happened there will be
closed trapped surface around the star.
There is a spacetime singularity.

In Schwarzschild spacetime it is at r = 0 surface where the
curvature diverges.
But Penrose has his own view on this what a singularity is!
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Spacetime singularity

The spacelike hypersurface r = 0 in Schwarzschild has the property,
such that the worldlines of all dust particles forming a collapsing star
finish their life there. They happily follow their timelike goedesics, and
suddenly in their finite time they die. They die because the
spacetime ends! Their internal clock dies and its hands can not
move anymore!
This motivates Penrose’s definition of singularity:
Spacetime is singular if it is geodesically incomplete. More
precisely: it is singular if there is at least one incomplete causal
geodesic in it. And, an affinely parmetrized geodesic is incomplete
if one can not prolong its affine parameter up to +∞ (future
incomplete), and/or −∞ (past incomplete).
Of course such situation happens for the star’s surface particles in an
Oppenheimer-Snyder collapse: they die at the Schwarzschild
singularity at r = 0; their world lines can not be prolonged in their
proper time beyond this surface.
But Penrose’s definitions is about any spacetime!
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Penrose’s theorem

So here is again Penrose’s Nobel Prize winning theorem:
If the space-time contains a non-compact Cauchy
hypersurface and a closed future-trapped surface, and
if the convergence condition Ric(u,u) ≥ 0 holds for null
vectors u, then there are future incomplete null
geodesics.

We now understand every bit of it! Even if the collapse is not
spherically symmetric, a small continuous deformation of this
symmetry will not destroy the existence of the trapped
surface and the singularity (in the spirit of Penrose’s
definition) will be formed!
But...
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Properties of Schwarzschild’s black hole

Hawking: If the collapse is exactly spherically symmetric the
metric is that of Schwarzschild solution outside the star, and
has the following properties:

The surface of the star will pass inside the Schwarzschild
radius r = 2m. After this has happened there will be
closed trapped surface around the star.
There is a spacetime singularity.
The singularity is not visible to observers who remain
outside the Schwarzschild radius. This means that the
breakdown of our present physical theory which one
expects to occur at a singularity cannot affect what
happens outside the Schwarzschild radius and one
can still predict the future in the exterior region from
Cauchy data on a spacelike surface.

This is not generally true for Kerr’s black holes!
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Penrose’s cosmic censor

If the parameter a > m in the Kerr solution, i.e. if the
angular momentum of the black hole is too large, the Kerr’s
singularity is not hidden under the horizon, it is visible
by a distant observer. So the third property of
Schwarzschild collapse is not true for the exact solution
of the vacuum Einstein’s equations given by Kerr, when
the angular momentum is too large.
Penrose conjectures then, that black holes such as
Kerr’s with too large angular momentum can not be
formed in reality. There is a cosmic censor that prevents
it.
If one reads Nobel’s committee anouncement, one could
think that Penrose’s ‘cosmic censorship hypothesis’ is
proven.
It is not!
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Literature

The astronomy part of my talk benefited very much from my
discussions with Marek Abramowicz and Odele Straub. In
particular, for the Polish speaking participants, I reccommend to
consult Marek’s article in ‘Przewodnik Katolicki’ nr 42,
18.10.2020, pp 40-43.
In the ‘singularity theorems’ part I followed very closely
(sometimes quoting the full phrases) the review article of Jose
Senovilla and David Garfinkle GR Milestone; The 1965
Penrose singularity theorem, avaliable at:
https://arxiv.org/abs/1410.5226.
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THANK YOU!
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