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Path geometries

Setup: M connected oriented smooth surface

Path geometry: Prescription of a path onM for each direction in every tangent
space (e.g. geodesics of a Finsler metric, geodesics of a projective structure)

Projective circle bundle

π : SM := (TM \ {0M}) /R+ → M

Contact structure

τ[v] =
{
ξ ∈ T[v]SM : π′(ξ) ∧ v = 0

}
Immersed curve γ : (a, b)→ M li�s s.t. δ̇(t) lies in τ

δ := [γ̇] : (a, b)→ SM

Path geometry: 1-dim distribution P→ SM so that P + ker π′ = τ .

Paths: Integral curves of P projected toM



The dual of a path geometry

Definition (Bryant). A generalised path geometry is a 3-manifold N together
with an ordered pair (P, L) of transverse 1-dim distributions spanning a contact
structure.

Path geometry:

N = SM, P = “path bundle”, L = vertical bundle of projection SM→ M

N

surface N/L space of paths N/P
""||

Definition. The dual of a generalised path geometry (N, P, L) is the generalised
path geometry (N, L, P).

Question. Are there (non-trivial global) examples where the dual of a path
geometry is again a path geometry?



Projective structures

A�ine connection: connection∇ on TM, assume∇ is torsion-free

Geodesic: immersed curve γ : I→ M s.t.

∇γ̇(t)γ̇(t) = 0.

Projective equivalence:∇ ∼ ∇′ i�∇ and∇′ have the same geodesics up to
parametrisation.

Projective structure: Equivalence class p of connections

Lemma (Cartan, Eisenhart, Weyl).∇ ∼ ∇′ i� ∃ β ∈ Ω1(M) such that

∇XY −∇′XY = β(X)Y + β(Y)X.

Projective surface (M, p) is called flat if it is locally di�eomorphic to S2 so that
geodesics are mapped onto (segments of) great circles.



Finsler metrics
A Finsler norm is a continuous function F : TM→ [0,∞)which is smooth away
from the zero section and so that
I F(λv) = λF(v) for λ > 0
I F(v) > 0 unless v = 0
I the symmetric bilinear form

gv(X, Y) =
1
2

∂2

∂s∂t

∣∣∣∣
s=t=0

[
F(v + sX + tY)2

]
is positive definite.

F is called reversible is F(v) = F(−v) for all v ∈ TM

Length of immersed curve γ : [a, b]→ M, L(γ) :=
∫ b
a F(γ̇(t)) dt is invariant

under orientation preserving reparametrisations

Locally length minimising curves are the geodesics of F.



Finsler norm is determined by its unit tangent bundle

UM := {v ∈ TM : F(v) = 1} .

Zermelo deformation: Construct new Finsler metric by translating each fibre
of UMwith a vector of small enough length.

Cartan: UM is equipped with a coframing (χ, η, ν)which satisfies the structure
equations

dχ = −η ∧ ν, dη = −ν ∧ (χ− Iη), dν = −(Kχ− Jν) ∧ η,

for I, J,K ∈ C∞(UM).

Riemannian case: (M,g) choose isothermal coordinates (x, y)

g = e2u(x,y)(dx2 + dy2)

Coframing

χ = eu (cosα dx + sinα dy) , η = eu (− sinα dx + cosα dy) , ν = dα+? du,

where α is the angle coordinate on the unit tangent bundle.



Riemannian Finsler metric: I ≡ J ≡ 0 and K is (the pullback to UM of) the
Gauss curvature Kg.

K is the Finsler–Gauss curvature or flag curvature.

Theorem (Akbar-Zadeh, 1988). If a Finsler metric on a compact surface has
constant negative curvature, then it is Riemannian, and, if it has zero curvature,
then it is locally Minkowskian.

Theorem (Bryant, 2006). If a reversible Finsler metric on a compact surface has
constant positive curvature, then it is Riemannian.

Fact: A Zermelo deformation of a constant curvature Finsler metric by a Killing
vector field has again constant curvature.

Example. (Katok) First example of non-Riemannian K ≡ 1 Finsler metric on S2 via
Zermelo deformation of constant curvature metric.

Theorem (Bryant, 1997). Classification of K ≡ 1 Finsler 2-spheres that are
projectively flat.



(Generalised) thermostats

Dual vector fields (X,H, V) to (χ, η, ν)

[V, X] = H, [V,H] = −X, [X,H] = KgV

Tautological bundle τ = {η = 0}, vertical bundle {χ = η = 0}

Thermostat: flow φ generated by X + λV for λ ∈ C∞(UM)

Choice of metric g identifies path geometry Pwith thermostat.

λ = λ(x, y,α), 2π-periodic in α, Fourier-decomposition in α

Volume form: Θ = χ ∧ η ∧ ν and inner product:

〈u, v〉 =

∫
UM
uvΘ,

Densely defined operator−iV is self-adjoint

L2(UM) =
⊕
m∈Z
Hm, Hm = ker(mId+ iV)



Examples of thermostats

Example. α ∈ Ω2(M), g ∈ Riem(M). Consider flow of Hamiltonian vector field Xη
on (T∗M, Ω0 + ν∗α) generated by Hamiltonian η(ξ) = 1

2 |ξ|
2
g] .

Magnetic flows correspond to thermostats of degree 0, i.e. Vλ = 0

π∗α = λχ ∧ η.

1-forms λ ∈ C∞(UM) ∩ (H−1 ⊕H1)↔ Ω1(M)

To θ ∈ Ω1(M) – thought of as a function θ : UM→ R – we associate the
thermostat φ generated by the vector field

F = X − V(θ)V.

Orbits of φ – when projected toM – are reparametrisations of the geodesics of
theWeyl connection defined by (g, θ).



Weyl connections

Weyl connection: A�ine torsion-free connection∇ preserving a conformal
structure [g], i.e. parallel transport maps of∇ are angle preservingw.r.t. [g],

∇g = 2θ ⊗ g,

Weyl connections are of the form
(g,θ)∇ = g∇+ g⊗ θ] − θ ⊗ Id− Id⊗ θ

with g ∈ [g] and θ ∈ Ω1(M).

Weyl structure is an equivalence class [(g, θ)]where

(g, θ) ∼ (ĝ, θ̂) ⇐⇒ ĝ = e2ug and θ̂ = θ + du, u ∈ C∞(M)

Weyl structures are in one-to-one correspondence with Weyl connections

[(g, θ)] 7→ g∇+ g⊗ θ] − θ ⊗ Id− Id⊗ θ

Weyl connections with θ exact correspond to Levi-Civita connections



AWeyl structure [(g, θ)] is called positive if Sym(Ric((g,θ)∇)) is positive definite

On oriented surfaceM

[(g, θ)] is positive ⇐⇒ (Kg − δgθ)dAg > 0

Lemma. For a positve Weyl structure [(g, θ)] there exists a unique gauge (g, θ) –
henceforth called the natural gauge – so that Kg − δgθ ≡ 1.

Lemma. Let [(g, θ)] be a positve Weyl structure with natural gauge (g, θ) and let
π : UM→ M denote the unit tangent bundle of g with coframing (χ, η, ν). Then
the forms

χ̂ := π∗(?gθ)− ν, η̂ := −η, ν̂ := −χ

satisfy the structure equations of a Finlser metric with K ≡ 1.

Paraphrasing: Ignoring global issues, the path geometry of a positive Weyl
structure (i.e. whose paths are the geodesics of the associated Weyl connection)
is dual to the path geometry of a Finsler metric with K ≡ 1.



Dynamical aspects of K ≡ 1 Finsler metrics
Theorem (Bryant, Foulon, Ivanov, Matveev, Ziller, 2017). Let F be a K ≡ 1
Finsler metric on S2. Then there exists a shortest closed geodesic of length
2π` ∈ (π, 2π] and the following holds:
I If ` = 1, all geodesics are closed and have the same length 2π,
I If ` is irrational, there exist two closed geodesics with the same image, and

all other geodesics are not closed. The length of the second closed geodesic
is 2π`/(2`− 1). Moreover, the metric admits a Killing vector field.

I If ` = p/q ∈ ( 12 , 1)with p, q ∈ N and gcd(p, q) = 1, and in this case all
unit-speed geodesics have a common period 2πp. Furthermore, there exists
at most two closed geodesics with length less than 2πp. A second one exists
only if 2p− q > 1, and its length is 2πp/(2p− q) ∈ (2π, 2pπ).

In particular, if all geodesics of a Finsler metric on S2 are closed, then its
geodesic flow is periodic with period 2πp for some integer p.

They also show that the case when F admits a Killing field can be deformed (via
a Zermelo deformation) to the case ` = 1.



A duality result

A Weyl structure [(g, θ)] is called Besse if the associated Weyl connection has
the property that all of its maximal geodesic are closed.

Theorem (Lange–M., 2019). There is a one-to-one correspondence between
Finsler metrics on S2 with K ≡ 1 and all geodesics closed on the one hand, and
positive Besse–Weyl structures on weighted projective spaces CP(a1, a2)with
c := gcd(a1, a2) ∈ {1, 2}, a1 > a2, 2|(a1 + a2) and c3|a1a2 on the other hand.
More precisely,
1. such a Finsler metric with shortest closed geodesic of length 2π` ∈ (π, 2π],
` = p/q ∈ ( 12 , 1], gcd(p, q) = 1, gives rise to a positive Besse–Weyl structure
on CP(a1, a2)with a1 = q and a2 = 2p− q, and

2. a positive Besse–Weyl structure on such a CP(a1, a2) gives rise to such a
Finsler metric on S2 with shortest closed geodesic of length
2π
(
a1+a2
2a1

)
∈ (π, 2π],

and these assignments are inverse to each other. Moreover, two such Finsler
metrics are isometric if and only if the corresponding Besse–Weyl structures
coincide up to a di�eomorphism.



Weighted projective space

Projective space CP1 is C2 \ {0}modulo the action
λ · (z,w) = (λz,λw), λ ∈ C∗

Weighted projective space CP(a1, a2) for weights (a1, a2) ∈ N2 is C2 \ {0}
modulo the action

λ · (z,w) = (λa1z,λa2w), λ ∈ C∗

CP(1, 1) = CP1, weighted projective space is in general an orbifold

There exists a natural generalisation gFS of the Fubini–Studymetric to
CP(a1, a2)

gFS is a Besse orbifold metric of strictly positive Gauss curvature (KgFS 6= const).

Try to deform gFS among the class of positive Besse-Weyl structures to construct
new examples of K ≡ 1 Finsler structures.



Isometric embeddings

4gFS =

(
a1 + a2
2

+
a1 − a2
2

cos(r)
)2

dr2 + sin2(r)dφ2, (r,φ) ∈ (0,π)× S1

CP(3, 1)

CP(5, 3)



Twistor space

Twistor bundle J+ → M

J+p := {linear complex structures J on TpM : (v, Jv) is pos. oriented ∀ v 6= 0}

Bundle with fibre

GL+(2,R)/GL(1,C) ' D := {z ∈ C : |z| < 1}
Conformal structure↔ orientation compatible complex structure

Jp : TpM→ TpM, Jp = counterclockwise rotation by π/2

Conformal structure defines section [g] : M→ J+.

Proposition (O’Brian & Rawnsley, Dubvois-Violette). Torsion-free∇ on TM
equips J+ with an integrable almost complex structure Jp which does only
depend on the projective equivalence class of∇.

At j ∈ J+ li� j horizontally and use complex structure on the fibre vertically.



Holomorphic curves

Proposition (M., 2014). The Weyl connection (g,θ)∇ belongs to p i�
[g] : M→ (J+, Jp) is a holomorphic curve.

Same statement holds for orbifolds.

Proposition (M., 2014). For the projective structure on S2 whose geodesics are
the great circles, we have J+ ↪→ CP2

Proposition (Lange–M., 2019). For the projective structure arising from the
Fubini–Study metric gFS on CP(a1, a2), we have J+ ↪→ CP(a1, (a1 + a2)/2, a2).
Furthermore, the holomorphic curve

[gFS] : CP(a1, a2)→ CP(a1, (a1 + a2)/2, a2)

corresponds to the Veronese embedding

[z,w] 7→ [z2, zw,w2].

Suitable deformations of the Veronese embedding yield positive Besse–Weyl
structure on CP(a1, a2) and hence new examples of Finsler 2-spheres with
K ≡ 1.


