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Path geometries
Setup: M connected oriented smooth surface

Path geometry: Prescription of a path on M for each direction in every tangent
space (e.g. geodesics of a Finsler metric, geodesics of a projective structure)

Projective circle bundle
7 :SM:= (TM\ {Oy}) /Rt = M
Contact structure
g ={£ € TySM: 7' (§) Av =0}

Immersed curve v : (a, b) — Mlifts st. §(t) liesin 7
0:=1[%]:(a,b) — SM
Path geometry: 1-dim distribution P — SM so that P + ker 7/ = 7.

Paths: Integral curves of P projected to M



The dual of a path geometry
Definition (Bryant). A generalised path geometry is a 3-manifold N together
with an ordered pair (P, L) of transverse 1-dim distributions spanning a contact

structure.

Path geometry:
N =SM, P = “pathbundle”, L = vertical bundle of projection SM — M

/ : \
surface N/L  space of paths N/P

Definition. The dual of a generalised path geometry (N, P, L) is the generalised
path geometry (N, L, P).

Question. Are there (non-trivial global) examples where the dual of a path
geometry is again a path geometry?



Projective structures
Affine connection: connection V on TM, assume V is torsion-free

Geodesic: immersed curvey : | — Ms.t.

Vi¥(t) = 0.
Projective equivalence: V ~ V' iff V and V' have the same geodesics up to
parametrisation.

Projective structure: Equivalence class p of connections

Lemma (Cartan, Eisenhart, Weyl). V ~ V' iff3 3 € Q'(M) such that
VY — VY = B(X)Y + B(Y)X.

Projective surface (M, p) is called flat if it is locally diffeomorphic to S? so that
geodesics are mapped onto (segments of) great circles.



Finsler metrics

A Finsler norm is a continuous function F : TM — [0, co) which is smooth away
from the zero section and so that

» F(A\v) = MF(v)forA >0
» F(v) > Ounlessv =0
» the symmetric bilinear form
1 0?
X,Y)=—
91 =3 oo, |
is positive definite.

F(v + sX + tY)?]

Fis called reversible is F(v) = F(—v) forallv € TM

Length of immersed curve : [a,b] — M, L(y) := fab F(4(t)) dt is invariant
under orientation preserving reparametrisations

Locally length minimising curves are the geodesics of F.



Finsler norm is determined by its unit tangent bundle
UM:={veTM: F(v)=1}.

Zermelo deformation: Construct new Finsler metric by translating each fibre
of UM with a vector of small enough length.

Cartan: UM is equipped with a coframing (x, , ) which satisfies the structure
equations

dx=-nAv, dn=—-vA(x—1n), dv = —(Kx —Jv) An,
forl, J,K € C>°(UM).

Riemannian case: (M,g) choose isothermal coordinates (x, y)
g= eZu(x,y)(dXZ + dyZ)
Coframing
x =¢€“(cosadx+sinady), n=e“(—sinadx+cosady), v=datxdu,

where a is the angle coordinate on the unit tangent bundle.



Riemannian Finsler metric: / = J = 0 and K is (the pullback to UM of) the
Gauss curvature Kj;.

K is the Finsler-Gauss curvature or flag curvature.
Theorem (Akbar-Zadeh, 1988). If a Finsler metric on a compact surface has
constant negative curvature, then it is Riemannian, and, if it has zero curvature,

then it is locally Minkowskian.

Theorem (Bryant, 2006). /f a reversible Finsler metric on a compact surface has
constant positive curvature, then it is Riemannian.

Fact: A Zermelo deformation of a constant curvature Finsler metric by a Killing
vector field has again constant curvature.

Example. (Katok) First example of non-Riemannian K = 1 Finsler metric on S? via
Zermelo deformation of constant curvature metric.

Theorem (Bryant, 1997). Classification of K = 1Finsler 2-spheres that are
projectively flat.



(Generalised) thermostats

Dual vector fields (X, H, V) to (x, 7, v)
V,X] =H, [V.H=-X, [X H =KV
Tautological bundle = = { = 0}, vertical bundle {x = n =0}

Thermostat: flow ¢ generated by X + AV for A\ € C>°(UM)
Choice of metric g identifies path geometry P with thermostat.
A = A(x, ¥, @), 2r-periodic in «, Fourier-decomposition in «

Volume form: © = x A n A v and inner product:

(u,v) = /UMUV@,

Densely defined operator —iV is self-adjoint
L*(UM) = P Hm,  Hm = ker(mid +iV)

meZ



Examples of thermostats

Example. a € Q*(M), g € Riem(M). Consider flow of Hamiltonian vector field X,
on (T*M, Qo + v* ) generated by Hamiltonian n(&) = %|§\;u.

Magnetic flows correspond to thermostats of degree 0,i.e. VA =0
T =AY AN.
1-forms \ € C°°(UM) N (H_1 & H1) < Q'(M)

To 0 € Q'(M) - thought of as a function 6 : UM — R - we associate the
thermostat ¢ generated by the vector field

F=X—V(O)V.

Orbits of ¢ — when projected to M - are reparametrisations of the geodesics of
the Weyl connection defined by (g, 6).



Weyl connections

Weyl connection: Affine torsion-free connection V preserving a conformal
structure [g], i.e. parallel transport maps of V are angle preserving w.r.t. [g],

Vg =20®g,
Weyl connections are of the form
WYV =9V + g6 —0x1d—1de 6
with g € [g] and 6 € Q'(M).

Weyl structure is an equivalence class [(g, )] where
(9.0) ~(3.0) <= §=¢e¥g and =0+du,ueC®M)

Weyl structures are in one-to-one correspondence with Weyl connections
[(9.0)] » 9V +g®6"—0RId—1d® 6

Weyl connections with 6 exact correspond to Levi-Civita connections



AWeyl structure [(g, 0)] is called positive if Sym(Ric((9-9)V)) is positive definite

On oriented surface M

[(g,0)] ispositive <= (Kq— dq0)dAs >0

Lemma. For a positve Weyl structure [(g, 0)] there exists a unique gauge (g, 0) -
henceforth called the natural gauge - so that K; — 640 = 1.

Lemma. Let [(g, 8)] be a positve Weyl structure with natural gauge (g, 8) and let
7 : UM — M denote the unit tangent bundle of g with coframing (x, n, v). Then
the forms

X =7 (%g0) — v, M= —n, Ui=—x
satisfy the structure equations of a Finlser metric with K = 1.
Paraphrasing: Ignoring global issues, the path geometry of a positive Weyl

structure (i.e. whose paths are the geodesics of the associated Weyl connection)
is dual to the path geometry of a Finsler metric with K = 1.



Dynamical aspects of K = 1 Finsler metrics

Theorem (Bryant, Foulon, lvanov, Matveev, Ziller, 2017). Let Fbe a K = 1
Finsler metric on S. Then there exists a shortest closed geodesic of length
27l € (m, 27] and the following holds:

» [f¢ =1, all geodesics are closed and have the same length 2,

» [fCis irrational, there exist two closed geodesics with the same image, and
all other geodesics are not closed. The length of the second closed geodesic
is 27 /(2¢ — 1). Moreover, the metric admits a Killing vector field.

> If{ =p/q € (3,1) withp,q € Nand ged(p, q) = 1, and in this case all
unit-speed geodesics have a common period 2wp. Furthermore, there exists
at most two closed geodesics with length less than 2mp. A second one exists
onlyif2p — g > 1, and its length is 2wp/(2p — q) € (27, 2p).

In particular, if all geodesics of a Finsler metric on S? are closed, then its
geodesic flow is periodic with period 27rp for some integer p.

They also show that the case when F admits a Killing field can be deformed (via
a Zermelo deformation) to the case ¢ = 1.



A duality result

A Weyl structure [(g, 8)] is called Besse if the associated Weyl connection has
the property that all of its maximal geodesic are closed.

Theorem (Lange-M., 2019). There is a one-to-one correspondence between
Finsler metrics on S* with K = 1 and all geodesics closed on the one hand, and
positive Besse-Wey! structures on weighted projective spaces CP(ay, a,) with
¢ :=gcd(ay, a2) € {1,2}, a1 = ay, 2|(a1 + a2) and c3|aya, on the other hand.
More precisely,

1. such a Finsler metric with shortest closed geodesic of length 2m{ € (r, 27],
C=p/q € (3.1], ged(p. q) =1, gives rise to a positive Besse-Weyl structure
on CP(ay, a;) witha; = gand a, = 2p — g, and

2. a positive Besse-Weyl structure on such a CP(a, a;) gives rise to such a
Finsler metric on S* with shortest closed geodesic of length

2 (‘“;“Taz) € (m, 2m),

and these assignments are inverse to each other. Moreover, two such Finsler
metrics are isometric if and only if the corresponding Besse-Weyl structures
coincide up to a diffeomorphism.



Weighted projective space

Projective space CP' is C? \ {0} modulo the action
A (z,w) = (Az, \w), AecC”

Weighted projective space CP(a;, a,) for weights (a1, a;) € N?is €%\ {0}
modulo the action

A (z,w) = (A2, \%2w), decC*

CP(1,1) = CP', weighted projective space is in general an orbifold

There exists a natural generalisation grs of the Fubini-Study metric to
CP(O], 02)

grs is a Besse orbifold metric of strictly positive Gauss curvature (Ky,, # const).

Try to deform grs among the class of positive Besse-Weyl structures to construct
new examples of K = 1 Finsler structures.



Isometric embeddings

2
4grs = (‘” 72”’2 + & ; @ cos(r)> dr? +sin®(r)d¢?,  (r,¢) € (0,7) x §'




Twistor space

Twistor bundle Jt — M

Ji = {linear complex structures J on T,M : (v, Jv) is pos. oriented V v # 0}

Bundle with fibre
GL™(2,R)/GL(1,€) ~D:={z€ C:|z| <1}
Conformal structure <+ orientation compatible complex structure
Jp : ToM — T,M,  J, = counterclockwise rotation by 7 /2
Conformal structure defines section [g] : M — J...
Proposition (O’Brian & Rawnsley, Dubvois-Violette). Torsion-free V on TM
equips J* with an integrable almost complex structure J, which does only

depend on the projective equivalence class of V.

Atj € JT liftj horizontally and use complex structure on the fibre vertically.



Holomorphic curves

Proposition (M., 2014). The Wey! connection (9-9)V belongs to p iff
[g] : M — (J7T, Jp) is a holomorphic curve.

Same statement holds for orbifolds.

Proposition (M., 2014). For the projective structure on S* whose geodesics are
the great circles, we have J* — CP?

Proposition (Lange-M., 2019). For the projective structure arising from the
Fubini-Study metric ges on CP(a, a,), we have J* — CP(ay, (a1 + 02)/2, a2).
Furthermore, the holomorphic curve
[9rs] : CP(an, a3) — CP(ay, (a1 + 02)/2, a3)
corresponds to the Veronese embedding
[z, w] = [2%, 2w, w?].
Suitable deformations of the Veronese embedding yield positive Besse-Weyl

structure on CP(a;, ;) and hence new examples of Finsler 2-spheres with
K=1.



