Deformations of the Veronese embedding and Finsler 2-spheres of constant curvature

Thomas Mettler

Geometry and Differential Equations Seminar 2nd December 2020

Path geometries

Setup: M connected oriented smooth surface

Path geometry: Prescription of a path on *M* for each direction in every tangent space (e.g. geodesics of a Finsler metric, geodesics of a projective structure)

Projective circle bundle

$$\pi:\mathsf{S}M:=\left(\mathit{T}M\setminus\{\mathsf{0}_{\mathit{M}}\}\right)/\mathsf{R}^{+}
ightarrow M$$

Contact structure

$$au_{[m{v}]} = ig\{\xi \in extsf{T}_{[m{v}]} { extsf{S}} extsf{M}: \pi'(\xi) \wedge m{v} = m{0}ig\}$$

Immersed curve $\gamma : (a, b) \to M$ lifts s.t. $\dot{\delta}(t)$ lies in τ $\delta := [\dot{\gamma}] : (a, b) \to SM$

Path geometry: 1-dim distribution $P \rightarrow SM$ so that $P + \ker \pi' = \tau$.

Paths: Integral curves of P projected to M

The dual of a path geometry

Definition (Bryant). A **generalised path geometry** is a 3-manifold *N* together with an ordered pair (P, L) of transverse 1-dim distributions spanning a contact structure.

Path geometry:

N = SM, P = "path bundle", L = vertical bundle of projection $SM \rightarrow M$

Definition. The **dual** of a generalised path geometry (N, P, L) is the generalised path geometry (N, L, P).

Question. Are there (non-trivial global) examples where the dual of a path geometry is again a path geometry?

Projective structures

Affine connection: connection ∇ on *TM*, assume ∇ is torsion-free

Geodesic: immersed curve $\gamma : I \rightarrow M$ s.t.

 $\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t)=0.$

Projective equivalence: $\nabla \sim \nabla'$ iff ∇ and ∇' have the same geodesics up to parametrisation.

Projective structure: Equivalence class p of connections

Lemma (Cartan, Eisenhart, Weyl). $\nabla \sim \nabla'$ iff $\exists \beta \in \Omega^1(M)$ such that $\nabla_X Y - \nabla'_X Y = \beta(X)Y + \beta(Y)X.$

Projective surface (M, p) is called **flat** if it is locally diffeomorphic to S^2 so that geodesics are mapped onto (segments of) great circles.

Finsler metrics

A **Finsler norm** is a continuous function $F : TM \to [0, \infty)$ which is smooth away from the zero section and so that

- $F(\lambda v) = \lambda F(v)$ for $\lambda \ge 0$
- F(v) > 0 unless v = 0
- ▶ the symmetric bilinear form

$$g_{\nu}(X,Y) = \frac{1}{2} \left. \frac{\partial^2}{\partial s \partial t} \right|_{s=t=0} \left[F(v + sX + tY)^2 \right]$$

is positive definite.

F is called **reversible** is F(v) = F(-v) for all $v \in TM$

Length of immersed curve $\gamma : [a, b] \to M$, $L(\gamma) := \int_a^b F(\dot{\gamma}(t)) dt$ is invariant under orientation preserving reparametrisations

Locally length minimising curves are the **geodesics** of *F*.

Finsler norm is determined by its unit tangent bundle

$$UM := \{v \in TM : F(v) = 1\}.$$

Zermelo deformation: Construct new Finsler metric by translating each fibre of *UM* with a vector of small enough length.

Cartan: *UM* is equipped with a coframing (χ, η, ν) which satisfies the structure equations

 $\mathrm{d}\chi = -\eta \wedge \nu, \qquad \mathrm{d}\eta = -\nu \wedge (\chi - I\eta), \qquad \mathrm{d}\nu = -(K\chi - J\nu) \wedge \eta,$ for I, J, K $\in C^{\infty}(UM)$.

Riemannian case: (M,g) choose **isothermal coordinates** (*x*, *y*)

$$g = e^{2u(x,y)}(dx^2 + dy^2)$$

Coframing

 $\chi = e^{u} (\cos \alpha \, dx + \sin \alpha \, dy), \quad \eta = e^{u} (-\sin \alpha \, dx + \cos \alpha \, dy), \quad \nu = d\alpha + \star du,$ where α is the **angle coordinate** on the unit tangent bundle. **Riemannian Finsler metric:** $I \equiv J \equiv 0$ and *K* is (the pullback to *UM* of) the **Gauss curvature** K_q .

K is the **Finsler–Gauss curvature** or flag curvature.

Theorem (Akbar-Zadeh, 1988). If a Finsler metric on a compact surface has constant negative curvature, then it is Riemannian, and, if it has zero curvature, then it is locally Minkowskian.

Theorem (Bryant, 2006). If a reversible Finsler metric on a compact surface has constant positive curvature, then it is Riemannian.

Fact: A Zermelo deformation of a constant curvature Finsler metric by a Killing vector field has again constant curvature.

Example. (Katok) First example of non-Riemannian $K \equiv 1$ Finsler metric on S^2 via Zermelo deformation of constant curvature metric.

Theorem (Bryant, 1997). Classification of $K \equiv 1$ Finsler 2-spheres that are projectively flat.

(Generalised) thermostats

Dual vector fields (X, H, V) to (χ, η, ν) $[V, X] = H, \quad [V, H] = -X, \quad [X, H] = K_g V$ Tautological bundle $\tau = \{\eta = 0\}, \quad \text{vertical bundle } \{\chi = \eta = 0\}$

Thermostat: flow ϕ generated by $X + \lambda V$ for $\lambda \in C^{\infty}(UM)$

Choice of metric g identifies path geometry P with thermostat.

 $\lambda = \lambda(x, y, \alpha)$, 2π -periodic in α , Fourier-decomposition in α

Volume form: $\Theta = \chi \wedge \eta \wedge \nu$ and inner product:

$$\langle u,v\rangle = \int_{UM} u\overline{v}\,\Theta,$$

Densely defined operator -iV is self-adjoint

$$L^2(UM) = \bigoplus_{m \in \mathbf{Z}} \mathcal{H}_m, \quad \mathcal{H}_m = \ker(m \operatorname{Id} + \operatorname{iV})$$

Examples of thermostats

Example. $\alpha \in \Omega^2(M)$, $g \in \text{Riem}(M)$. Consider flow of Hamiltonian vector field X_η on $(T^*M, \Omega_0 + \nu^*\alpha)$ generated by Hamiltonian $\eta(\xi) = \frac{1}{2} |\xi|^2_{a^{\sharp}}$.

Magnetic flows correspond to thermostats of degree 0, i.e. $V\lambda = 0$

 $\pi^* \alpha = \lambda \chi \wedge \eta.$

1-forms $\lambda \in C^{\infty}(UM) \cap (\mathcal{H}_{-1} \oplus \mathcal{H}_1) \leftrightarrow \Omega^1(M)$

To $\theta \in \Omega^1(M)$ – thought of as a function $\theta : UM \to \mathbf{R}$ – we associate the thermostat ϕ generated by the vector field

 $F = X - V(\theta)V.$

Orbits of ϕ – when projected to *M* – are reparametrisations of the geodesics of the **Weyl connection** defined by (*g*, θ).

Weyl connections

Weyl connection: Affine torsion-free connection ∇ preserving a conformal structure [g], i.e. parallel transport maps of ∇ are **angle preserving** w.r.t. [g],

$$abla g=2 heta\otimes g$$
 ,

Weyl connections are of the form

$$^{(g, heta)}
abla = {}^{g}
abla + g\otimes heta^{\sharp} - heta\otimes \mathsf{Id} - \mathsf{Id}\otimes heta$$

with $g \in [g]$ and $\theta \in \Omega^1(M)$.

Weyl structure is an equivalence class $[(g, \theta)]$ where $(g, \theta) \sim (\hat{g}, \hat{\theta}) \iff \hat{g} = e^{2u}g$ and $\hat{\theta} = \theta + du, u \in C^{\infty}(M)$

Weyl structures are in one-to-one correspondence with Weyl connections $[(g, \theta)] \mapsto {}^{g}\nabla + g \otimes \theta^{\sharp} - \theta \otimes \mathsf{Id} - \mathsf{Id} \otimes \theta$

Weyl connections with θ exact correspond to Levi-Civita connections

A Weyl structure $[(g, \theta)]$ is called **positive** if Sym(Ric $(^{(g,\theta)}\nabla)$) is positive definite

On oriented surface M

$$[(g, heta)]$$
 is positive $\iff (K_g - \delta_g heta) dA_g > 0$

Lemma. For a positive Weyl structure $[(g, \theta)]$ there exists a unique gauge (g, θ) – henceforth called the **natural gauge** – so that $K_g - \delta_g \theta \equiv 1$.

Lemma. Let $[(g, \theta)]$ be a positive Weyl structure with natural gauge (g, θ) and let $\pi : UM \to M$ denote the unit tangent bundle of g with coframing (χ, η, ν) . Then the forms

$$\hat{\chi} := \pi^*(\star_g \theta) - \nu, \qquad \hat{\eta} := -\eta, \qquad \hat{\nu} := -\chi$$

satisfy the structure equations of a Finlser metric with $K \equiv 1$.

Paraphrasing: Ignoring global issues, the path geometry of a positive Weyl structure (i.e. whose paths are the geodesics of the associated Weyl connection) is dual to the path geometry of a Finsler metric with $K \equiv 1$.

Dynamical aspects of $K \equiv 1$ **Finsler metrics**

Theorem (Bryant, Foulon, Ivanov, Matveev, Ziller, 2017). Let *F* be a $K \equiv 1$ Finsler metric on S^2 . Then there exists a shortest closed geodesic of length $2\pi \ell \in (\pi, 2\pi]$ and the following holds:

- If $\ell = 1$, all geodesics are closed and have the same length 2π ,
- If ℓ is irrational, there exist two closed geodesics with the same image, and all other geodesics are not closed. The length of the second closed geodesic is 2πℓ/(2ℓ − 1). Moreover, the metric admits a Killing vector field.

▶ If $\ell = p/q \in (\frac{1}{2}, 1)$ with $p, q \in \mathbb{N}$ and gcd(p, q) = 1, and in this case all unit-speed geodesics have a common period $2\pi p$. Furthermore, there exists at most two closed geodesics with length less than $2\pi p$. A second one exists only if 2p - q > 1, and its length is $2\pi p/(2p - q) \in (2\pi, 2p\pi)$.

In particular, if all geodesics of a Finsler metric on S^2 are closed, then its geodesic flow is periodic with period $2\pi p$ for some integer p.

They also show that the case when *F* admits a Killing field can be deformed (via a Zermelo deformation) to the case $\ell = 1$.

A duality result

A Weyl structure $[(g, \theta)]$ is called **Besse** if the associated Weyl connection has the property that all of its maximal geodesic are closed.

Theorem (Lange–M., 2019). There is a one-to-one correspondence between Finsler metrics on S^2 with $K \equiv 1$ and all geodesics closed on the one hand, and positive Besse–Weyl structures on weighted projective spaces $CP(a_1, a_2)$ with $c := gcd(a_1, a_2) \in \{1, 2\}, a_1 \ge a_2, 2|(a_1 + a_2) \text{ and } c^3|a_1a_2 \text{ on the other hand.}$ More precisely,

- 1. such a Finsler metric with shortest closed geodesic of length $2\pi \ell \in (\pi, 2\pi]$, $\ell = p/q \in (\frac{1}{2}, 1]$, gcd(p, q) = 1, gives rise to a positive Besse–Weyl structure on **CP** (a_1, a_2) with $a_1 = q$ and $a_2 = 2p q$, and
- 2. a positive Besse–Weyl structure on such a **CP** (a_1, a_2) gives rise to such a Finsler metric on S² with shortest closed geodesic of length $2\pi \left(\frac{a_1+a_2}{2a_1}\right) \in (\pi, 2\pi]$,

and these assignments are inverse to each other. Moreover, two such Finsler metrics are isometric if and only if the corresponding Besse–Weyl structures coincide up to a diffeomorphism.

Weighted projective space

Projective space CP¹ is **C**² \ {0} modulo the action $\lambda \cdot (z, w) = (\lambda z, \lambda w), \quad \lambda \in \mathbf{C}^*$

Weighted projective space $CP(a_1, a_2)$ for weights $(a_1, a_2) \in N^2$ is $C^2 \setminus \{0\}$ modulo the action

$$\lambda \cdot (\mathsf{z}, \mathsf{w}) = (\lambda^{a_1} \mathsf{z}, \lambda^{a_2} \mathsf{w}), \quad \lambda \in \mathbf{C}^*$$

 $CP(1, 1) = CP^1$, weighted projective space is in general an orbifold

There exists a natural generalisation g_{FS} of the **Fubini–Study metric** to $CP(a_1, a_2)$

 g_{FS} is a Besse orbifold metric of strictly positive Gauss curvature ($K_{g_{FS}} \neq const$).

Try to deform g_{FS} among the class of positive Besse-Weyl structures to construct new examples of $K \equiv 1$ Finsler structures.

Isometric embeddings

$$4g_{FS} = \left(\frac{a_1 + a_2}{2} + \frac{a_1 - a_2}{2}\cos(r)\right)^2 dr^2 + \sin^2(r)d\phi^2, \qquad (r,\phi) \in (0,\pi) \times S^1$$

CP(3, 1)

CP(5, 3)

Twistor space

Twistor bundle $J^+ \rightarrow M$

 $J_p^+ := \{ \text{linear complex structures } J \text{ on } T_p M : (v, Jv) \text{ is pos. oriented } \forall v \neq 0 \}$

Bundle with fibre

$$GL^+(2, \mathbf{R})/GL(1, \mathbf{C}) \simeq \mathbf{D} := \{z \in \mathbf{C} : |z| < 1\}$$

Conformal structure \leftrightarrow orientation compatible complex structure

 $J_p: T_pM \to T_pM$, $J_p = \text{counterclockwise rotation by } \pi/2$

Conformal structure defines section $[g] : M \rightarrow J_+$.

Proposition (O'Brian & Rawnsley, Dubvois-Violette). Torsion-free ∇ on TM equips J^+ with an integrable almost complex structure J_p which does only depend on the projective equivalence class of ∇ .

At $j \in J^+$ lift j horizontally and use complex structure on the fibre vertically.

Holomorphic curves

Proposition (M., 2014). The Weyl connection ${}^{(g,\theta)}\nabla$ belongs to p iff $[g]: M \to (J^+, J_p)$ is a holomorphic curve.

Same statement holds for orbifolds.

Proposition (M., 2014). For the projective structure on S^2 whose geodesics are the great circles, we have $J^+ \hookrightarrow \mathbf{CP}^2$

Proposition (Lange–M., 2019). For the projective structure arising from the Fubini–Study metric g_{FS} on $CP(a_1, a_2)$, we have $J^+ \hookrightarrow CP(a_1, (a_1 + a_2)/2, a_2)$. Furthermore, the holomorphic curve

$$[g_{FS}]$$
 : **CP** $(a_1, a_2) \rightarrow$ **CP** $(a_1, (a_1 + a_2)/2, a_2)$

corresponds to the Veronese embedding

$$[z, w] \mapsto [z^2, zw, w^2].$$

Suitable deformations of the Veronese embedding yield positive Besse–Weyl structure on **CP** (a_1, a_2) and hence new examples of Finsler 2-spheres with $K \equiv 1$.