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Background

The subject of discrete Lagrangian mechanics concerns the study
of certain discrete dynamical systems on manifolds.

-The main tool in the theory of geometric integrators is the
discrete Lagrangian and Hamiltonian formalism on Q × Q.

-This Cartesian products plays the role of a discretized version of
standard velocity phase space TQ.

-Applying a natural discrete variational principle, we get a second
order recursion operator

ξ : Q × Q → Q × Q, (x , y) 7−→ (y , z).

J.E. Marsden, M. West, Discrete mechanics and variational
integrators, Acta Numerica (2001), 357–514.
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Background

-Moser and Veselov consider the Lagrangian and Hamiltonian
formalisms for discrete mechanics on a Lie group.

Moser, J., and Veselov, A.P., Discrete versions of some classical
integrable systems and factorization of matrix polynomials,
Comm. Math. Phys. 139 (1991), 217-243.

The Lagrangian function L is defined on a Lie group G , and the
dynamical system is given by a diffeomorphism from G to itself.
The corresponding Hamiltonian system is the mapping from the
dual Lie algebra g∗ to itself for which L is the generating function.

-Weinstein observed that these systems could be understood as a
special case of a more general theory, describing discrete
Lagrangian mechanics on arbitrary Lie groupoids.

A. Weinstein, Lagrangian Mechanics and groupoids, Fields Inst.
Comm. 7 (1996), 207–231.
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The aim of the talk

Discrete Lagrangian mechanics on Lie groups and groupoids has
been developed in many papers.

J. C. Marrero, D. Mart́ın de Diego, E. Mart́ınez, Discrete
Lagrangian and Hamiltonian Mechanics on Lie groupoids, J.
Nonlinear Sci. 18 (2008), 221–276..

J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and
Symmetry, SpringerVerlag, (1994). Second Edition, 1999.

A. Weinstein, Lagrangian Mechanics and groupoids, Fields Inst.
Comm. 7 (1996), 207–231..

Nevertheless, the generalization of the discrete mechanics to
non-associative objects is still lacking, and the goal is to fill this
gap by presenting a systematic approach for the construction of
discrete Lagrangian formalism on non-associative objects, smooth
loops.
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Non-associative generalization of the concept of a group

The theory of smooth quasi-groups and loops has already started
to find interesting applications in geometry and physics.

A. I. Mal’cev, Analytic loops, Mat. Sb. N.S. (in Russian),
36(78) (1955), 569–576.

A remarkable development of smooth quasigroups and loops theory
was presented by Lev V. Sabinin, where the large bibliography on
the subject is given.

L. V. Sabinin, Smooth Quasigroups and Loops, Kluwer
Academic Press, 1999.
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Non-associative objects

A quasigroup is an algebraic structure < G , · > with a binary
operation such that right translation rg : x 7→ xg and left
translation lg : x 7→ gx are permutations of G , equivalently, in
which the equations ya = b and ax = b are solvable uniquely
for x and y respectively.

A Loop is a quasigroup with a two-sided identity element, e
such that ex = xe = x .

An Inverse loop is a loop equipped with an inversion map
ι : G → G , which we denote by ι(a) = a−1, such that

ι(e) = e , ι2 = IdG , and ι ◦ lg = rg−1 ◦ ι .
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Smooth loops

A smooth loop G is a smooth manifold equipped with a
smooth multiplication, m : G × G → G ,
(g , h) 7−→ m(g , h) = gh, such that:

1. The left and right translations are diffeomorphisms.
2. There is an identity element e ∈ G such that eg = ge = g
for every g ∈ G .

G is a smooth inverse loop if there is a smooth inverse
ι : G → G .

Let g = TeG . If G is a smooth loop with the smooth inverse
ι : G → G , then

ι∗(X ) = −X , for X ∈ g .
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Smooth prolongations

We can left-translate (resp. right-translate) the value of Xe ∈ g by
the tangent of the left (resp. right) translation by g ∈ G .

Although they are not invariant vector fields anymore due to
the lack of associativity, we still are able to define the left

(resp. right) prolongations of Xe to vector fields
←−
X (resp.

−→
X )

on G using the tangent maps at g ∈ G to the left translation
lg and right translation rg :

←−
X g = De(lg )(Xe),

−→
X g = De(rg )(Xe).

Here, D denotes the derivative. This prolongations are smooth
vector fields.

For the inverse smooth loop, ι∗(
←−
X ) = −

−→
X ◦ ι .
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Skew algebra

Due to non-associativity

we cannot infer that there is [X ,Y ] ∈ g such that

[
←−
X ,
←−
Y ] =

←−−−
[X ,Y ] nor [

−→
X ,
−→
Y ] =

−−−→
[X ,Y ].

Moreover, in general, we do not have [
←−
X ,
−→
Y ] = 0.

However, the tangent space at the identity TeG ∼= g inherits a
skew-symmetric bilinear product [·, ·]l from the Lie product of the
left prolongations of vector fields over the loop, that is

[X ,Y ]l = [
←−
X ,
←−
Y ]e , but

the Jacobi identity does not hold due to the non-associativity.

Mimicking the Lie theory, one can define for any smooth loop, a
‘Lie functor’ associating with the loop a skew algebra, i.e. a real
vector space with a bilinear skew operation.
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Moufang loops

Smooth Moufang loops were also considered by Mal’cev, as
particular cases of loops.

A loop is called a Moufang loop if it satisfies any of the three
following equivalent conditions

((ax)a)y = a(x(ay)), ((xa)y)a = x(a(ya)), (ax)(ya) = (a(xy))a.

The tangent algebra of a smooth Moufang loop is a Mal’cev
algebra which is a skew algebra satisfying

[[X ,Y ], [X ,Z ]] = [[[X ,Y ],Z ] ,X ]+[[[Y ,Z ],X ] ,X ]+[[[Z ,X ],X ] ,Y ] ,

for every X ,Y ,Z . There is a sort of Lie’s Third Theorem for
smooth Moufang loops and Mal’cev algebras.
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Motivating example

As a working example we will develop the discrete Lagrangian
formalism on unitary octonions O1, understood as an inverse loop
in the algebra of octonions O, or a subloop in the loop O× of
invertible octonions which as a manifold is the seven-sphere.

It is well known that S0, S1, S3 and S7 are only spheres
which are parallelizable and they correspond to elements of
unit norm in the normed division algebras of the real numbers,
complex numbers, quaternions, and octonions. The first three
spheres are Lie groups (S0 = Z2, S1 = U(1), S3 = SU(2)),
but S7 is the only parallelizable sphere which is not a Lie
group since it is not associative.
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Octonions

The octonions O are the noncommutative non-associative algebra
which is one of the four division algebras that exist over the real
numbers.

Every octonion can be expressed in terms of a natural basis
{e0, e1, ·, ·, ·, e7} where e0 = 1 represents the identity element and
the imaginary octonion units ei , {i = 1, ..., 7} satisfy the
multiplication rule eiej = δji + fijkek , where δji is the Kronecker’s
delta and fijk ’s are completely anti-symmetric structure constants
which read as

f123 = f147 = f165 = f246 = f257 = f354 = f367 = 1.

The multiplication is subject to the relations

∀i 6= 0 e2i = −1 , eiej = −ejei , for i 6= j 6= 0.
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Fano plane

The octonion multiplication rules are encoded in a triangular
diagram called the Fano plane.

Figure: A mnemonic for the products of the unit octonions using the
Fano plane
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Properties of octonions

Conjugation is an involution of O satisfying (gh)∗ = h∗g∗.

The inner product on O is inherited from R8 and can be
rewritten

〈g , h〉 =
(gh∗ + hg∗)

2
=

(h∗g + g∗h)

2
∈ R .

The norm of an octonion is just ‖g‖2 = gg∗ which satisfies
the defining property of a normed division algebra, namely
‖gh‖ = ‖g‖‖h‖.
The scalar product is invariant with respect to the
multiplication: 〈ag , ah〉 = 〈g , h〉 for a 6= 0.
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Octonions as a smooth Moufang loop

Every nonzero octonion g ∈ O has an inverse g−1 = g∗

‖g‖2 ,

such that
gg−1 = g−1g = 1,

which makes the set of invertible octonions an inverse loop with
respect to the octonion multiplication.

We remark that the inverse is a genuine one, i.e.,

g(g−1h) = g−1(gh) = h, ∀g , h ∈ O,

which is stronger than the standard above property for
non-associative algebra.

Theorem

Invertible octonions O× form a smooth inverse Moufang loop
under the octonion multiplication.
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Discrete Lagrangian mechanics on Lie groups

A discrete Lagrangian system consists of a Lie group G and a
smooth, real-valued function L on G .

We define a function (g , h)→ L(g) + L(h) of elements
g , h ∈ G .

A solution of the Lagrange equations for the Lagrangian
function L is a sequence g0, g1, g2, ... of elements G such that
(gi , gi+1) are the stationary points of the function
L(gi ) + L(gi+1) for every i .
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Variational principles

Discrete Lagrangian systems on Lie groups can be based on
variational principles.

The variational principle for a Lie group G with Lie algebra g
is based on a set of sequences

CNg = {(g1, g2, ..., gN) ∈ GN | g1g2 · · · gN = g ∈ G} .

Take a tangent vector at (g1, g2..., gN) which can be
understood as the tangent vector of a curve c(t) ∈ CNg
passing through (g1, g2..., gN) at t = 0.

Lemma

In a Lie group G we have gigi+1 = g ′i g
′
i+1 if and only if there is

h ∈ G such that g ′i = gih and g ′i+1 = h−1gi+1.
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The process

By Lemma the curve c(t) is necessarily of the form

c(t) = (g1γ1(t), (γ1(t))−1g2γ2(t), ...,
(γN−2(t))−1gN−1γN−1(t), (γN−1(t))−1gN),

such that γi : t ∈ (−ε, ε) ⊆ R→ G are the integral curves of
the left invariant vector field corresponding to Xi ∈ TeG that
passes through the identity, that is γi (0) = e.

Therefore the tangent space of CNg at (g1, . . . , gN) can be
identified with

Tg1,...,gNC
N
g = {(X1,X2, ...,XN−1) ∈ gN−1 | Xi ∈ TeG ∼= g}.

The curve c is called a variation of (g1, g2..., gN) and
(X1,X2...,XN−1) is called infinitesimal variational of
(g1, g2..., gN).
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Discrete Euler-Lagrange equations

Define the discrete action sum SL : CNg → R associated to the
Lagrangian L as

SL(g1, g2, ..., gN) =
N∑

k=1

L(gk).

According to the Hamilton’s principle of critical action, the
sequence (g1, g2..., gN) is a solution of the Lagrangian system
if and only if (g1, g2..., gN) is a critical point of SL. Therefore,
we calculate

d

dt
|t=0 SL(c(t)) =

N−1∑
k=1

[←−
X k(gk)(L)−

−→
X k(gk+1)(L)

]
= 0,

where Xk ∈ g.

These equations are called to be discrete Euler-Lagrange equations.
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Discrete Euler-Lagrange equations on smooth loops

In the category of smooth loops, because of the lack of
associativity there is not clear variations like what we have in Lie
groups. But still we can define the discrete Euler-Lagrange
equations using the smooth prolongation of vector fields as follows.

Definition: The discrete Euler-Lagrange equations for a
discrete Lagrangian system on a smooth loop G with
Lagrangian L : G → R is given by equations

←−
X (L)(gi )−

−→
X (L)(gi+1) = 0

for every X ∈ TeG , where
←−
X and

−→
X are the left and right

prolongation, respectively. A sequence g1, g2, ... of elements G
is a solution of the Euler-Lagrange equations if gi and gi+1

satisfy these equations for i = 1, 2, . . . .
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Discrete Legendre transformation

We have the discrete Legendre transformation for smooth loops
similar to what we have for Lie groups.

Given a Lagrangian L : G → R on smooth loop G with the
skew-algebra g, two discrete Legendre transformations
F+L = l∗g ◦ dL : G → g∗ and F−L = r∗g ◦ dL : G → g∗, where
dL : G → T∗G , are as follows

F+L(g)(X ) =
←−
X (L)(g), F−L(g)(X ) =

−→
X (L)(g),

for X ∈ g. Clearly, l∗ and r∗ are the pull backs of left and
right translations.
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Discrete flow

Let γL : G → G be a smooth map on a smooth loop G for
which the couples (g , γ(g)) are solutions of Euler-Lagrange
equations for L. The map γL : G → G is called a discrete flow
or discrete Lagrangian evolution operator for L.

Proposition

γL : G → G is the discrete flow for the Lagrangian L : G → R if
and only if

F−L ◦ γL = F+L .

Theorem

For an inverse smooth loop G the Legendre map F+L is regular at
g if and only if F−L is regular at g−1. Moreover, F+L is a
diffeomorphism if and only if F−L is a diffeomorphism.
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Regular Lagrangian

Definition: A discrete Lagrangian L : G → R on smooth loop G is
said to be regular if and only if the Legendre transformation F+L is
a local diffeomorphism. If F+L is global diffeomorphism, L is called
to be hyperregular.

Theorem

For an inverse smooth loop G the following are equivalent:

A discrete Lagrangian L : G → R on smooth loop G is to be
regular;

F−L is a local diffeomorphism;

Moreover, L is hyperregular if and only if F−L is a global
diffeomorphism. In this case the discrete Lagrangian evolution
operator is a diffeomorphism.
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Tangent bundle of smooth loops

Theorem

The tangent bundle TG of a smooth loop G is a smooth loop
under the multiplication

D(g ,h)m(Xg ,Yh) = Dg (rh)(Xg ) + Dh(lg )(Yh),

for Xg ∈ TgG and Yh ∈ ThG .
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Cotangent bundle of smooth loops

In the category of Lie group, the cotangent bundle of a Lie group
is a symplectic groupoid over the dual of the tangent algebra.

The cotangent bundle of T∗G of the smooth loop G is
equipped with a canonical symplectic structure but the lack of
associativity is an obstacle for defining a natural loop
structure on T∗G analogous to the Lie group.

Theorem

In other words in general there is no natural partial multiplication
(’loopoid structure’) on T∗G .
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Projections on T∗G

For a smooth loop G with the skew-algebra g and the dual g∗:

There are two projections α, β : T∗G → g∗ such that

〈β(µg ),X 〉 = 〈µg ,De(lg )(X )〉 , for µg ∈ T∗gG and X ∈ g,

〈α(νh),Y 〉 = 〈νh,De(rh)(Y )〉 , for νh ∈ T∗hG and Y ∈ g .

In other words,

〈β(µg ),X 〉 =
〈
µg ,
←−
X (g)

〉
, 〈α(νh),X 〉 =

〈
νh,
−→
X (h)

〉
.

Setting aside the ’loopoid structure’, for any function L : G → R
on manifold G the submanifolds dL(G ) ⊂ T∗G is a Lagrangian
submanifold of the cotangent bundle.
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Equivalent definition of Discrete Euler-Lagrange dynamics

Definition: Let G be a smooth loop and L a discrete Lagrangian
function on it. A sequence µ1, ..., µn ∈ T∗G satisfies the discrete
Lagrangian dynamics if µ1, ..., µn ∈ dL(G ) and they are
composable sequence in T∗G , that is

β(µk) = α(µk+1), k = 1, ..., n − 1 .

Theorem

Let G be a smooth loop and L : G → R a discrete Lagrangian.
Then a sequence µ1, ..., µn ∈ T∗G satisfies the discrete Lagrangian
dynamics of dL(G ) ⊂ T∗G if and only if

µk = dL(gk) for some gk ∈ G , k = 1, . . . , n,

and the discrete Euler -Lagrangian equations←−
X (L)(gk) =

−→
X (L)(gk+1) are satisfied, k = 1, . . . , n − 1.
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Unitary octonions

The manifold of unitary octonions O1 = {a ∈ O, ‖a‖ = 1} is
closed under the octonion multiplication and therefore is an inverse
smooth loop under the octonion multiplication. Consider the
tangent space

o1 = Te0O1 = span{e1, ..., e7}.

to O1 inside the vector space O.

The tangent bundle TO1 is given by the left (or right)
prolongation of imaginary octonions, that is
TO1 = span{←−e 1, ...,

←−e 7}, where

←−e i (a) = De0(la)(ei ) = aei ∈ TaO1, a ∈ O1.

Then [←−ei ,←−ej ](e0) = 2eiej implies that (o1, [ei , ej ] = 2eiej) is
the skew-algebra (Mal’cev algebra) corresponding to the
smooth loop O1.
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Discrete Euler-Lagrange equations on O1

Discrete Euler-Lagrange equations

←−
X (L)(gi ) =

−→
X (L)(gi+1), X ∈ TeG .

Let L : O1 → R be a Lagrangian function, then the discrete
Euler-Lagrange equations read as recurrence equation

←−e i (L)(an) = −→e i (L)(an+1) ,

where ←−e i (a) = De0(la)(ei ) = aei and −→e i (a) = De0(ra)(ei ) = eia
are the left and the right prolongation by the element a ∈ O1. A
solution for those equations is a sequence of elements O1.

Note: We interpret the tangent and cotangent vectors to O1 as
octonions.
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Linear Lagrangian

Take the Lagrangian as a linear function L = e1 = 〈e1, ·〉, then

←−e i (L)(an) = (anei )(L)(an) = 〈e1, anei 〉 .

The right-hand side of the above relation is obtained by taking the
integral curve γ(t) = an + tanei for the tangent vector anei and
then we have

d

dt
|t=0L(an + tanei ) =

d

dt
|t=0 〈e1, an + tanei 〉 .

Therefore, by the definition the Euler-Lagrange equations are

〈e1, anei − eian+1〉 = 0, for i = 1, ..., 7.

Every element an ∈ O1 can be written as an = α0
n + αk

nek such
that

∑7
s=0 |αs

n|2 = 1, so the above equations turn to
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How to find the solutions?

7∑
k=1

〈
e1, α

0
nei − α0

n+1ei + (αk
n + αk

n+1)ekei

〉
= 0, for i = 1, ..., 7.

Now, if i = 1, since 〈e1, e1〉 = 1 and 〈e1, eke1〉 = 0 for k 6= 0,
we get α0

n − α0
n+1 = 0.

If i > 1, the two first expressions are zero because 〈e1, ei 〉 = 0
for i 6= 1 and thus we left by the third expression, that is

7∑
k=1

〈
e1, (α

k
n + αk

n+1)ekei

〉
= 0, for i = 2, ..., 7 .

But for each k, there is some i such that ekei = ±e1 and all
i ′s are used.
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Solution of Euler-Lagrange equations w.r.t L

Consequently, we get the Euler-Lagrange equations

α0
n − α0

n+1 = 0, αk
n + αk

n+1 = 0, k = 1, ..., 7.

It is obvious from the equations that the solution of
Euler-Lagrange equations for the linear Lagrangian L are just the
conjugate pairs in O1.

Zohreh Ravanpak Discrete mechanics on unitary octonions



Regularity of Lagrangian

Next step is to check whether the Lagrangian L is regular or
hyperregular. So, we would need to find the Legendre maps
associated with L.

Consider the tangent skew-algebra o1 and the its dual o∗1 with
the basis {e1, ..., e7}. The corresponding Legendre maps
F+L,F−L : O1 → o∗1 are

F+L(a) =
7∑

i=1

←−e i (a)(L)e i , F−L(a) =
7∑

i=1

−→e i (a)(L)e i , a ∈ O1.

Let us remark that there is no hyperregular Lagrangian on unit
octonions O1, because the Legendre maps are F+L,F−L : S7 → R7

which cannot be diffeomorphisms. Thus we can only find
Lagrangians which are (locally) regular.
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Regularity of linear Lagrangian

For the linear Lagrangian L = 〈e1, ·〉 = e1, we have
−→e i (a)(e1) = 〈e1, eia〉 and corresponding Legendre map

F−L(a) =
7∑

i=1

−→e i (e
1)(a)e i =

7∑
i=1

〈e1, eia〉 e i , a ∈ O1.

The Lagrangian L = e1 is not regular at e0 because

F−L(e0) =
7∑

i=1

〈e1, ei 〉 e i = e1

and

De0(F−L)(e1) =
d

dt |t=0

F−L(e0 + te1) =
7∑

i=1

〈e1, eie1〉 e1 = 0.
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Lagrangian as total kinetic energy

Take the Lagrangian L =
∑7

k=1mk
(ek)2

2
, where mk > 0, as the

‘total kinetic energy’ of the system. Then

−→e i (a)(L) =
7∑

k=1

mke
k(a)−→e i (a)(ek) =

7∑
k=1

〈mkek , a〉 〈ek , eia〉 ,

and

←−e i (a)(L) =
7∑

k=1

mke
k(a)←−e i (a)(ek) =

7∑
k=1

〈mkek , a〉 〈ek , aei 〉 ,
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Discrete Euler-Lagrange equations w.r.t L

The discrete Euler-Lagrange equations is

7∑
k=1

〈mkek , an〉 〈ek , eian〉 =
7∑

k=1

〈mkek , an+1〉 〈ek , an+1ei 〉 , i = 1, . . . , 7 .

If we write an =
∑7

s=0 α
s
nes and an+1 =

∑7
s=0 α

s
n+1es , then this

reduces to the quadratic recurrence equation

αi
nα

0
n = αi

n+1α
0
n+1, i = 1, ..., 7

which does not depend on mk .

Since
∑7

i=0

(
αi
n

)2
= α0

n +
∑7

i=1

(
αi
n

)2
= 1, we have

7∑
i=1

(
αi
nα

0
n

)2
= (α0

n)2
(
1− (α0

n)2
)

= (α0
n+1)2

(
1− (α0

n+1)2
)

Zohreh Ravanpak Discrete mechanics on unitary octonions



Solution of Euler-Lagrange equations w.r.t L

αi
nα

0
n = αi

n+1α
0
n+1, i = 1, ..., 7

If α0
n and α0

n+1 are close to 1, thus an and an+1 are close to e0,
then α0

n = α0
n+1, since the function f (x) = x2(1− x2) is monotonic

on the interval [1/
√

2, 1], so we get only trivial solutions an = an+1.

Theorem

The discrete Euler-Lagrange equation for the Lagrangian L as the
total kinetic energy on the smooth loop O1 admits in a
neighbourhood of e0 only trivial solutions.
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Note

However that there are nontrivial solutions lying outside the
neighbourhood of e0. For instance,

(an, an+1) =
(
(0, a′n), (0, a′n+1)

)
, where a′n and a′n+1 represent

arbitrary imaginary and unitary octonions.

We can also take A = α0
n 6= α0

n+1 = B, |A| < |B| < 1, which are
different solutions of Euler Lagrange equations. Note that in this
case B is not close to 1, as |A| < 1/

√
2.

Then, for any an = (A, a′n), where a′n represents an imaginary
octonion of length

√
1− A2, the pair ((A, a′n), (B, ua′n)), with

u2 = (1− B2)/(1− A2), is a solution of the Euler-Lagrange
equation.
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Regularity of Lagrangian L

F−L(a) =
7∑

i ,k=1

〈mkek , a〉 〈ek , eia〉 e i .

F+L(a) =
7∑

i ,k=1

〈mkek , a〉 〈ek , aei 〉 e i .

F−L(es) = 0 for all s ∈ {0, ..., 7}, hence, changing the base of
imaginary octonions, we infer that F−L(a) = 0 for any
imaginary octonion, that supports once more the fact that the
Lagrangian is not hyperregular.
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Result

De0F
−L(es) =

7∑
i ,k=1

〈mkek , es〉 〈ek , ei 〉 e i = mse
s = De0F

+L(es) .

Under identification Te0O1 = o1 = o∗1 the differential of
F−L : O1 → o1 at e0, and similarly for F+L : O1 → o1, can be
identified with the diagonal automorphism on o1 for which
es 7→ mses . In particular F−L and F+L are regular in a
neighbourhood of e0.
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