Homogeneous geodesics in sub-Riemannian geometry

Alexey Podobryaev A. K. Ailamazyan Program Systems Institute of RAS Pereslavl-Zalesskiy

Geometry and Differential Equations Seminar February 16, 2022

1/27

Plan

- What is sub-Riemannian geometry?
- 2 Homogeneous geodesics.
- A criterion for homogeneous geodesics.
- Examples.
- Section 2 Sec
- Geodesic orbit sub-Riemannian structures.
- Integrability of a geodesic flow.

A sub-Riemannian structure on a manifold *M*

Let $\Delta \subset TM$ be a distribution of *r*-dimensional subspaces equipped with a scalar product $B(\cdot, \cdot)$.

Definition

A curve $\gamma : [0, T] \rightarrow M$ is called an admissible curve if

$$\dot{\gamma}(t)\in\Delta_{\gamma(t)}$$
 a.e.

Definition

The sub-Riemannian length of an admissible curve γ is

$$\int_0^T \sqrt{B(\dot{\gamma}(t),\dot{\gamma}(t))} \, dt.$$

Remark. For $r = \dim M$ we get a Riemannian structure.

The goal is to describe the shortest arcs.

An optimal control problem

Let X_1, \ldots, X_r be a orthonormal frame for distribution Δ with respect to $B(\cdot, \cdot)$. The problem is to find controls $u_1, \ldots, u_r \in L^{\infty}([0, T], \mathbb{R})$ and a curve $\gamma : [0, T] \to M$ such that

$$\dot{\gamma}(t) = u_1(t)X_1(\gamma(t)) + \dots + u_r(t)X_r(\gamma(t))$$
 a.e.,

$$\int_0 \quad \sqrt{u_1^2(t) + \cdots + u_r^2(t)} \, dt \to \min.$$

The energy functional

$$\int_0^T \sqrt{u_1^2(t) + \dots + u_r^2(t)} \, dt \to \min \iff$$
$$\Leftrightarrow \quad J = \frac{1}{2} \int_0^T \left(u_1^2(t) + \dots + u_r^2(t) \right) \, dt \to \min .$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Existence of solutions

Theorem (Rashevskiy, Chow)

If M is connected and span $\{\Delta_m^1, \Delta_m^2, \dots\} = T_m M$ for any $m \in M$, where

$$\Delta^1 = \Delta, \quad \Delta^k = \Delta^{k-1} + [\Delta, \Delta^{k-1}],$$

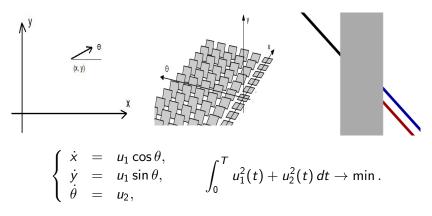
then there exists an admissible curve connecting any two given points.

Theorem (Filippov)

The reachable set is compact under some broad conditions.

Example. Sub-Riemannian structure on the group of isometries of a plane.

The bundle of unit tangent vectors on a plane. A model of a car.



Sub-Riemannian geodesics

Consider functions that are linear on the fibers of the cotangent bundle

$$h_i: T^*M \to \mathbb{R}, \quad h_i(\lambda) = \langle X_i(\pi(\lambda)), \lambda \rangle, \quad \lambda \in T^*M,$$

where $\pi: T^*M \to M$. Introduce a family of functions on T^*M

$$H_u^{\nu} = u_1(t)h_1 + \ldots u_r(t)h_r - \frac{\nu}{2}(u_1^2(t) + \cdots + u_r^2(t)).$$

Theorem (Pontryagin maximum principle)

If $\tilde{u}: [0, T] \to U \subset \mathbb{R}^k$ is an optimal control and $\tilde{\gamma}: [0, T] \to M$ is a shortest arc, then there exists a Lipschitz curve $\lambda: [0, T] \to T^*M$ and $\nu \ge 0$ such that $(1) \pi(\lambda(t)) = \tilde{\gamma}(t), t \in [0, T];$ $(2) \dot{\lambda}(t) = H^{\nu}_{\tilde{u}(t)}(\lambda(t));$ $(3) H^{\nu}_{\tilde{u}(t)}(\lambda(t)) = \max_{u \in U} H^{\nu}_{u}(\lambda(t))$ for a.e. $t \in [0, T];$ $(4) (\lambda(t), \nu) \ne 0.$

Sub-Riemannian geodesics

We will consider the normal case $\nu \neq 0$. The maximized Hamiltonian is quadratic $H = \frac{1}{2}(h_1^2 + \dots + h_r^2)$. The trajectories of the Hamiltonian vector field \vec{H} project to geodesics (their small arcs are optimal). Any normal geodesic is defined by its initial momentum. Assume that a Lie group G acts on M transitively and a sub-Riemannian structure is G-invariant. Let K be a stabilizer of a point $o \in M$.

Consider a lift of our problem to the group G

$$\gamma(0) \in K, \qquad \gamma(T) \in gK.$$

The transversality condition of the Pontryagin maximum principle: $\lambda \in (T_g g K)^\circ$, where $g = \pi(\lambda)$.

A trivialisation via group action: $\mathcal{T}^*\mathcal{G} = \mathfrak{g}^* \times \mathcal{G} \supset \mathfrak{k}^\circ \times \mathcal{G}$, where

$$\mathfrak{k}^{\circ} = (\mathfrak{g}/\mathfrak{k})^* = \mathfrak{m}^*, \qquad \mathfrak{m} = T_o M.$$

Normal case (
$$\nu = 1$$
). Maximized Hamiltonian
 $H = \frac{1}{2}(h_1^2 + \dots h_r^2) \in C^{\infty}(\mathfrak{m}^*).$
The Hamiltonian system is

$$\begin{cases} \dot{g} &= g \circ d_p H, \\ \dot{p} &= (\mathrm{ad}^* d_p H) p, \end{cases}$$

where $g\in G$, $p\in \mathfrak{m}^*$.

The vertical part of the Hamiltonian system is independent.

Homogeneous geodesics

Let (M, Δ, B) be a sub-Riemannian manifold. Let $G \subset \text{Isom} M$ be a closed subgroup of isometries. Assume that G acts on M transitively and effectively. Let $K \subset G$ be an isotropy subgroup for a point $o \in M$. So, M = G/K. Notice that K is compact and there is an Ad K-invariant decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$, where $\mathfrak{m} = T_o M$.

Definition

A geodesic $\gamma : [0, T] \to M$ passing through the point o is called a homogeneous geodesic if $\gamma(t) = \exp(tX)o$ for same $X \in \mathfrak{g}$.

Some properties of homogeneous geodesics

- A simple parametrization.
- The cut time (the time of loss of optimality) is independent on a starting point on a geodesic.

Question. How many homogeneous geodesics could be there?

A criterion for homogeneous geodesic in the Riemannian case

Theorem (Geodesic Lemma (Kowalski, Vanhecke))

A curve $\exp(tX)o$ is a homogeneous geodesic iff

 $B(X_{\mathfrak{m}}, [X, \mathfrak{g}]_{\mathfrak{m}}) = 0,$

where $X_{\mathfrak{m}}$ is a \mathfrak{m} -component of X.

Example

If M is a compact Lie group G and a metric B is defined by the Killing form, then any geodesic is homogeneous. The form B is bi-invariant in this case. We have $M = G \times G/G$ as a homogeneous space.

A criterion for homogeneous geodesic in the sub-Riemannian case

A geodesic is defined by its initial covector (instead of initial vector in the Riemannian case).

Theorem

The following conditions are equivalent: (1) A geodesic with an initial momentum p is homogeneous. (2) There exists $X \in \mathfrak{g}$ such that

$$p([X, \mathfrak{g}]) = 0$$
 and $X_{\mathfrak{m}} = d_p H$.

(3) The trajectory of the vertical part of the Hamiltonian vector field passing through the point p lies in $(Ad^* K)$ -orbit.

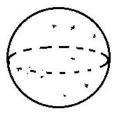
Examples

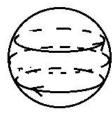
Example

Consider a Riemannian metric on SO3 with eigenvalues l_1 , l_2 , $l_3 > 0$.

The vertical part of the Hamiltonian vector field on the level surface $H = \frac{1}{2}$.

 $l_1 = l_2 = l_3$ $l_1 = l_2 \neq l_3$ $l_1 \neq l_2 \neq l_3 \neq l_1$





Any geodesic is homogeneous, $M = SO_3 \times SO_3/SO_3$.

Any geodesic is homogeneous, $M = SO_3 \times SO_2/SO_2$.

Six homogeneous geodesics.

Example

Example

Axisymmetric sub-Riemannian structure on $M = PSL_2(\mathbb{R})$. Homogeneous space $M = (PSL_2(\mathbb{R}) \times SO_2)/SO_2$.

Example

Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be a Cartan decomposition. The distribution Δ is generated by \mathfrak{p} and B is a restriction of the Killing form to \mathfrak{p} . The any geodesic is homogeneous (Agrachev, Brockett, Kupka, Jurdjevic).

$$\gamma(t) = \exp(t(X+Y))\exp(-tY),$$

where $X \in \mathfrak{p}$ and $Y \in \mathfrak{k}$.

Existence of homogeneous geodesics

Theorem

Let \mathcal{K} be the Killing form of the Lie algebra \mathfrak{g} . If $\operatorname{Ker} \mathcal{K} = \mathfrak{m}$ or $\mathcal{K}|_{\Delta} \neq 0$, then there exists a homogeneous geodesic passing through the point $o \in M$.

Kowalski, Szenthe: Existence of homogeneous geodesics for Riemannian manifolds.

Geodesic orbit sub-Riemannian manifolds

Definition

A sub-Riemannian manifold is *geodesic orbit* if any normal geodesic is homogeneous.

Proposition

A sub-Riemannian manifold is geodesic orbit iff

 $\{H, \mathbb{R}[\mathfrak{m}^*]^K\} = 0,$

where $\{\cdot, \cdot\}$ is the Poisson bracket, H is the normal Hamiltonian of the Pontryagin maximum principle, and $\mathbb{R}[\mathfrak{m}^*]^K$ is an algebra of left-invariant polynomial functions on T^*M (i.e., the algebra of $\mathrm{Ad}^* K$ -invariant functions on \mathfrak{m}^*).

Geodesic orbit sub-Riemannian manifolds

Corollary

If the algebra of left-invariant polynomial functions is commutative with respect to the Poisson bracket, then a sub-Riemannian structure is geodesic orbit. In particular, sub-Riemannian weakly symmetric spaces are geodesic orbit.

Definition

A homogeneous space is called *weakly symmetric* if for any two points there exists an isometry that replace these points one with another.

Example

Selberg's original example $M = PSL_2(\mathbb{R}) \times SO_2/SO_2$. The sub-Riemannian structure models a car on a hyperbolic plane.

Integrability in non-commutative sense

Definition

A Poisson algebra \mathcal{F} on \mathcal{T}^*M is called *complete* if

 $\dim \operatorname{span} \{ d_x f \mid f \in \mathcal{F} \} + \dim \operatorname{Ker} \{ \cdot, \cdot \} |_{\mathcal{F}} = \dim \mathcal{T}^* \mathcal{M}.$

Definition

A Hamiltonian system $\dot{\lambda} = \vec{H}(\lambda)$ is called *integrable in* non-commutative sense if $\{H, \mathcal{F}\} = 0$ for some complete algebra \mathcal{F} .

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Integrability in non-commutative sense

A generalization of Jovanovic's result to the sub-Riemannian case.

Theorem

If a sub-Riemannian structure is geodesic orbit, then the corresponding geodesic flow is integrable in non-commutative sense.

Indeed, take $\mathcal{F} = \mathbb{R}[\mathfrak{m}^*]^K + \mu^*(\mathbb{R}[\mathfrak{g}^*])$, where $\mu : T^*M \to \mathfrak{g}^*$ is the momentum map. This is a complete algebra. The normal sub-Riemannian Hamiltonian $H \in \mathbb{R}[\mathfrak{m}^*]^K$. Since any geodesic is homogeneous, we have $\{H, \mathbb{R}[\mathfrak{m}^*]^K\} = 0$. Notice that $\{\mathbb{R}[\mathfrak{m}^*]^K, \mu^*(\mathbb{R}[\mathfrak{g}^*])\} = 0$. It follows that $\{H, \mathcal{F}\} = 0$.

Free Carnot groups

Consider a free nilpotent Lie algebra of step s and rank r:

$$\mathfrak{g} = \bigoplus_{m=1}^{s} \mathfrak{g}_{m}, \qquad [\mathfrak{g}_{i}, \mathfrak{g}_{j}] \subset \mathfrak{g}_{i+j}, \qquad \mathfrak{g}_{k} = 0 \quad \text{for} \quad k > s.$$

Lie algebra \mathfrak{g} is generated by \mathfrak{g}_1 and dim $g_1 = r$. The corresponding connected and simply connected Lie group is called *a free Carnot group*. Consider a sub-Riemannian structure with distribution generated by \mathfrak{g}_1 .

There is a nilpotent approximation of sub-Riemannian problems (Agrachev, Sarychev).

Any Carnot group of step 2 is geodesic orbit

Example

Consider a two step free Carnot group $G = V \times \Lambda^2 V$ of rank $r = \dim V$. Multiplication rule:

$$(x_1,\omega_1)\cdot(x_2,\omega_2)=(x_1+x_2,\,\omega_1+\omega_2+x_1\wedge x_2),$$

where
$$x_1, x_2 \in V$$
, $\omega_1, \omega_2 \in \Lambda^2 V$.

The tangent algebra $\mathfrak{g} = V \oplus \Lambda^2 V$, the distribution $\Delta = V \oplus 0$. The vertical part of Hamiltonian vector field (Rizzi-Serres):

$$\dot{p}=arrho p, \quad \dot{arrho}=0, \quad ext{where} \quad (p,arrho)\in V^*\oplus \Lambda^2 V^*=V^*\oplus\mathfrak{so}(V).$$

Isom $G = G \times SO(V)$ (Kivioja, Le Donne).

Carnot groups of step more than 2

Theorem

Carnot groups of step more than 2 could not be geodesic orbit.

The generalization of C. Gordon's result obtained for Riemannian nilpotent manifolds. Idea: For any $X \in \Delta$ the operator $\pi_{[\mathfrak{g},\mathfrak{g}]} \operatorname{ad} X$ is skew-symmetric and nilpotent

and nilpotent.

Integrability of the geodesic flow on Carnot groups

- Step 1. Euclidian geometry.
- Step 2. Geodesic flow is integrable in elementary functions.
- Step 3, rank 2. Geodesic flow is integrable in elliptic functions (Sachkov).
- Step 3, rank \ge 3. Geodesic flow is not Liouville integrable (numerically shown by Bizyaev, Borisov, Kilin, Mamaev).
- Step \ge 4. Geodesic flow is not Liouville integrable (proved by Lokutsievskii, Sachkov).

Thank you!

▲ロト ▲御ト ▲国ト ▲国ト 三国

27/27