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Streszczenie

We study the Lipschitz simplicial volume, which is a metric version of the simplicial volume.
We introduce the piecewise straightening procedure for singular chains, which allows us to
generalize the proportionality principle and the product inequality to the case of complete
Riemannian manifolds of finite volume with sectional curvature bounded from above.
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Streszczenie

0.1. Objętość symplicjalna

Celem niniejszej pracy jest pokazanie nowych własności Lipschitzowskiej objętości sympli-
cjalnej. Objętość symplicjalna zamkniętej, orientowalnej rozmaitości M wymiaru n jest zde-
finiowana jako

‖M‖ := inf{|c|1 : c ∈ C∗(M ;R) jest cyklem podstawowym},

gdzie C∗(M,R) jest singularnym kompleksem łańcuchowym na M o współczynnikach rzeczy-
wistych, zaś | · |1 oznacza normę `1 na łańcuchach singularnych ze względu na bazę złożoną
z sympleksów singularnych. Jest to niezmiennik homotopijny, wykazujący jednak związki ze
sztywniejszymi strukturami na rozmaitości (na przykład z objętością Riemannowską).

Objętość symplicjalna została wprowadzona i użyta po raz pierwszy przez Gromowa w
jego dowodzie twierdzenia Mostowa o sztywności [26, 33]. Z tego względu jest również czasem
nazywana normą Gromowa. Gromow udowodnił, iż dla dwóch zwartych rozmaitości hiperbo-
licznych M1, M2 tego samego wymiaru (rozumianych jako ilorazy przestrzeni hiperbolicznej
przez grupę działającą na niej w sposób wolny i właściwy przez izometrie) ich objętości
symplicjalne są dodatnie i proporcjonalne do objętości Riemannowskiej, czyli

‖M1‖
vol(M1)

=
‖M2‖

vol(M2)
.

Następnie wykorzystał ten fakt w dowodzie twierdzenia Mostowa by pokazać, że dwie ho-
motopijnie równoważne zwarte rozmaitości hiperboliczne muszą mieć tę samą objętość. Ob-
jętość symplicjalna została jednak zbadana przez Gromowa dużo dokładniej w jego pracy
[12]. Uogólnił on w niej powyższą zasadę na dowolną parę rozmaitości Riemannowskich o
izometrycznych nakryciach uniwersalnych, jak również wykazał inne związki objętości sym-
plicjalnej i Riemannowskiej, między innymi udowodnił istnienie oszacowań z góry i z dołu na
objętość symplicjalną za pomocą objętości Riemannowskiej, o ile spełnione są pewne warunki
dotyczące krzywizny. Gromow w omawianej pracy opisał również szereg zastosowań objętości
symplicjalnej.

Objętość symplicjalną stosuje się do badań minimalnej objętości Riemannowskiej [12],
hiperbolicznych chirurgii Dehna [33], rozpoznawania rozmaitości grafowych [2] oraz oblicza-
nia liczby wielostycznych trajektorii trawersujących pól wektorowych [1]. Jednak jednym z
podstawowych zastosowań objętości symplicjalnej są twierdzenia o stopniach odwzorowań.
Jeżeli f : M → N jest ciągłym odwzorowaniem między rozmaitościami zamkniętymi i orien-
towalnymi tego samego wymiaru, wtedy oczywiście

‖N‖ · | deg(f)| ¬ ‖M‖,
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skąd wniosek, że jeżeli ‖N‖ > 0, to

|deg(f)| ¬ ‖M‖
‖N‖

.

Objętość symplicjalna może więc pomóc uzyskiwać stałe ograniczające możliwy stopień od-
wzorowań między rozmaitościami. O ile jednak nie potrafimy obliczać objętości symplicjalnej,
powyższa metoda jest tyleż prosta, co bezużyteczna. Pomocne mogą być już wszelkie osza-
cowania objętości symplicjalnej, czy choćby przykłady rozmaitości, dla których objętość ta
jest niezerowa. Szczęśliwie, jest kilka własności pozwalających dowodzić dodatniości objętości
symplicjalnej, mianowicie:

1. Dodatniość przy ujemnej krzywiźnie [12, 20, 29]

Jeżeli M jest zamkniętą rozmaitością ujemnie zakrzywioną, wtedy ma dodatnią objętość
symplicjalną. Co więcej, jeżeli sec(M) ¬ −1, wtedy istnieje dodatnia stała Cn zależna
jedynie od wymiaru M , taka, że

‖M‖  Cn · vol(M).

Można również pokazać, że jest to również prawdą dla zwartych przestrzeni lokalnie
symetrycznych niezwartego typu przy ustalonej metryce odpowiedniej przestrzeni sy-
metrycznej [20, 29].

2. Zasada proporcjonalności [12]

Jeżeli M i N są zamkniętymi rozmaitościami Riemannowskimi o izometrycznych na-
kryciach uniwersalnych, wtedy

‖M‖
vol(M)

=
‖N‖

vol(N)
.

3. Nierówność produktowa [12]

Dla dowolnych dwóch zamkniętych rozmaitości M i N zachodzą nierówności

‖M‖ · ‖N‖ ¬ ‖M ×N‖ ¬
(

dimM + dimN

dimM

)
‖M‖ · ‖N‖.

4. Addytywność ze względu na sumy spójne [12]

Jeżeli M i N są tego samego wymiaru  3, wtedy

‖M#N‖ = ‖M‖+ ‖N‖.

Z drugiej strony jest jednak dużo rozmaitości o zerowej objętości symplicjalnej, jak choćby
wszystkie rozmaitości o średniowalnej grupie podstawowej [12].

Naturalnym pytaniem jest, co dzieje się w przypadku rozmaitości niezwartych. Najprost-
szym uogólnieniem objętości symplicjalnej jest infimum norm `1 lokalnie skończonych cykli
podstawowych. Definicja ta redukuje się do klasycznej w przypadku zwartym, jednakże nie
wnosi zbyt wiele dla rozmaitości niezwartych. Z wyżej wymienionych faktów jedynie addy-
tywność ze względu na sumy spójne pozostaje prawdziwa w przypadku niezwartym, nie ma
więc w istocie zbyt wielu narzędzi, które pozwalałyby podać przykład rozmaitości niezwar-
tej o dodatniej objętości symplicjalnej. Co więcej, wiele takich ’potencjalnych przykładów’
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ma w istocie zerową objętość symplicjalną. Warto tu wspomnieć choćby fakt udowodniony
przez Gromova [12], że produkt trzech otwartych rozmaitości ma zawsze zerową objętość
symplicjalną.

Gromov zasugerował jednak rozwiązanie, które pozwoliłoby uniknąć powyższych niedo-
godności. Mianowicie, można rozważać objętość symplicjalną liczoną na lokalnie skończonych
Lipschitzowskich cyklach podstawowych, tzn. takich, które składają się z sympleksów o jed-
nostajnej stałej Lipschitza. W ten sposób uzyskujemy Lipschitzowską objętość symplicjalną:

‖M‖Lip := inf{|c|1 : c ∈ C lf∗ (M ;R) is a fundamental cycle, Lip(c) <∞},

gdzie Lip(
∑
i aiσi) = supi Lip(σi). Tak zdefiniowana objętość symplicjalna redukuje się do

klasycznej dla gładkich rozmaitości zwartych, daje jednak ciekawe rezultaty również w przy-
padku niezwartym.

W pracy udowodnione są poniższe twierdzenia, które potwierdzają przypuszczenie, jakoby
Lipschitzowska objętość symplicjalna była właściwym uogólnieniem objętości symplicjalnej.

Twierdzenie A. Jeżeli M jest zupełną rozmaitością Riemannowską ujemnie zakrzywioną,
wtedy ma dodatnią Lipschitzowską objętość symplicjalną. Co więcej, jeżeli sec(M) ¬ −1,
wtedy istnieje dodatnia stała Cn zależna jedynie od wymiaru M taka, że

‖M‖Lip  Cn · vol(M).

Twierdzenie B (Nierówność produktowa). Dla dowolnych dwóch rozmaitości o ograniczonej
z góry krzywiźnie sekcyjnej M i N zachodzą nierówności

‖M‖Lip · ‖N‖Lip ¬ ‖M ×N‖Lip ¬
(

dimM + dimN

dimM

)
‖M‖Lip · ‖N‖Lip.

Twierdzenie C (Zasada proporcjonalności). Jeżeli M i N są zupełnymi rozmaitościami
Riemannowskimi o izometrycznych nakryciach uniwersalnych i ograniczonej z góry krzywiźnie
sekcyjnej, wtedy

‖M‖Lip

vol(M)
=
‖N‖Lip

vol(N)
.

Powyższe twierdzenia są przedstawione w pracy jako Twierdzenia 2.2.7, 2.2.10 oraz 2.2.6.
Dowód Twierdzenia A jest znany specjalistom, jednak nie jest szczegółowo opisany w litera-
turze, dlatego jest podany dla kompletności. Dowody Twierdzeń B oraz C są nowe i wyko-
rzystują kawałkową procedurę prostowania, wprowadzoną przez autora w pracy [32]. Warto
wspomnieć, że twierdzenia te (B i C) zostały ostatnio udogólnione przez Franceschiniego na
przypadek rozmaitości bez ograniczeń na krzywiznę [14].

By pokazać, że Lipschitzowska objętość symplicjalna zachowuje się bardzo podobnie do
klasycznej objętości symplicjalnej, dla zupełności udowodnione jest też poniższe twierdze-
nie, przedstawione w pracy jako Twierdzenie 2.2.12. Jest ono znane, lecz nigdzie dotychczas
nieopublikowane.

Twierdzenie D. Jeżeli M jest rozmaitością taką, że ‖M‖Lip <∞ oraz π1(M) jest średnio-
walna, wtedy ‖M‖Lip = 0.

W pracy korzystamy z poniższych technik wykorzystywanych do badania objętości sym-
plicjalnej, mających również swoje wersje w przypadku Lipschitzwoskim. Zasada dualności
została wprowadzona przez Gromowa [12] i zaadoptowana do przypadku Lipschitzowskiego
przez Löh i Sauera [25]. Dyfuzja łańcuchów została również wprowadzona pierwotnie przez
Gromowa [12], opisujemy ją jednak w inny od niego sposób, w szczególności bez użycia mul-
tikompleksów.
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Zasada dualności

Jeżeli M jest n-wymiarową zamkniętą, orientowalną rozmaitością, wtedy jej objętość sympli-
cjalną da się wyrazić za pomocą półnormy `∞ jej podstawowej klasy kohomologii. Dokładniej

‖M‖ =
1

‖[M ]∗‖∞
,

gdzie [M ]∗ jest podstawową klasą kohomologii w Hn(M ;R), ‖[M ]∗‖∞ = inf{‖φ‖∞ : φ ∈
Cn(M ;R) , [φ] = [M ]∗} oraz ‖φ‖∞ = supσ∈C(∆n,M) |φ(σ)| dla φ ∈ Cn(M ;R). Równość ta jest
w wielu przypadkach bardzo pomocna przy obliczaniu objętości symplicjalnej. Nie jest ona
jednak prawdziwa dla Lipschitzowskiej objętości symplicjalnej, nawet gdy zastosujemy koho-
mologiczną klasę podstawową o zwartym nośniku. Istnieje jednak pewien (niestety bardziej
skomplikowany) wariant zasady dualności, działający dla Lipschitzowskiej objętości sympli-
cjalnej, opisany w pracy jako Twierdzenie 2.3.2.

Twierdzenie. Niech M będzie zupełną rozmaitością orientowalną, spójną. Wtedy dla dowol-
nej lokalnie skończonej rodziny A ⊂ C(∆n,M) złożonej z sympleksów o jednostajnej stałej
Lipschitza zachodzi równość

‖M‖A =
1

‖[M ]∗Lip‖A∞
,

gdzie [M ]∗Lip jest kohomologiczną klasą podstawową o Lipschitzowsko-zwartym nośniku (Defi-
nicja 1.2.20), ‖ · ‖A jest półnormą indukowaną przez normę

|c|A1 :=

{
|c|1 jeżeli supp(c) ⊂ A,
∞ w przeciwnym przypadku

na łańcuchach singularnych, zaś ‖ · ‖A∞ jest półnormą indukowaną przez normę ‖φ‖A∞ =
supσ∈A |φ(σ)| na kołańcuchach singularnych.

Dyfucja łańcuchów

Niech M będzie rozmaitością, zaś K ⊂M jej łukowo spójnym, zwartym podzbiorem. Wtedy
jako Π(M,K) oznaczamy grupę złożoną z odwzorowań (niekoniecznie ciągłych!) przyporząd-
kowujących punktom z K klasy homotopii ścieżek w M względem ich końców, takich, że dla
g ∈ Π(M,K), g = (γx)x∈K :

• γx(0) = x;

• γx(1) ∈ K;

• g ma skończony nośnik, tzn. jedynie dla skończenie wielu x ∈ K ścieżki γx są nietry-
wialne;

• odwzorowanie x 7→ γx(1) wyznacza bijekcję na K.

Dyfuzja łańcuchów jest techniką polegającą na modyfikowaniu danego łańcucha singu-
larnego za pomocą działania powyższej grupy. W szczególności, jeżeli powyższa grupa jest
średniowalna, zaś łańcuch składa się z sympleksów o różnych wierzchołkach, jesteśmy w stanie
’uśrednić’ łańcuch tak, by usunąć pewne sympleksy z obliczeń (Lipschitzwoskiej) objętości
symplicjalnej. Prowadzi to do następującego stwierdzenia, pojawiającego się w pracy jako
Stwierdzenie 2.4.1, które jest głównym technicznym rezultatem uzyskiwanym za pomocą dy-
fuzji łańcuchów.
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Stwierdzenie. Niech M będzie rozmaitością, zaś K ⊂M łukowo spójnym zwartym podzbio-
rem takim, że obraz przekształcenia π1(K)→ π1(M) jest średniowalny. Wówczas dla dowol-
nego (lokalnie skończonego, Lipschitzwoskiego) łańcucha singularnego c =

∑
i aiσi takiego, że

każdy sympleks σi ma różne wierzchołki, zachodzi następująca nierówność.

‖[c]‖1 ¬
∑

{i : σi nie ma krawędzi w K}
|ai|.

Nietrudnym wnioskiem z techniki dyfuzji jest Twierdzenie D. By je udowodnić, wystarczy
najpierw podzielić barycentrycznie dowolny łańcuch i zmodyfikować go tak, by wszystkie
sympleksy miały różne wierzchołki, a następnie zastosować dyfuzję łańcuchów na odpowiednio
dużym zwartym podzbiorze badanej rozmaitości.

0.2. Kawałkowa procedura prostowania

Kawałkowa procedura prostowania, która stanowi główną techniczną część pracy, jest nowa
i opisana przez autora również w jego pracy [32]. Klasyczna procedura prostowania, możliwa
do zastosowania jedynie dla rozmaitości niedodatnio zakrzywionych, działała następująco.
Mając dany sympleks singularny σ na niedodatnio zakrzywionej jednospójnej rozmaitości
Riemannowskiej M , istnieje dokładnie jeden sympleks geodezyjny (zdefiniowany indukcyjnie
jako geodezyjny stożek nad podstawą, będącą sympleksem geodezyjnym) o takich samych
(i tak samo uporządkowanych) wierzchołkach. Przekształcenie przyporządkowujące symplek-
sowi ten właśnie sympleks geodezyjny, zwany wyprostowaniem σ i oznaczanym przez str(σ),
rozszerza się do przekształcenia łańcuchowego o normie `1 mniejszej lub równej 1 i łańcu-
chowo homotopijnego z identycznością na C∗(M ;R). Podobną procedurę można zastosować
na dowolnej niedodatnio zakrzywionej rozmaitości M przez podniesienie danego sympleksu
σ do nakrycia uniwersalnego, wyprostowania go tam i opuszczenia rezultatu. Główną za-
letą procedury jest możliwość zastąpienia dowolnego łańcucha singularnego łańcuchem dużo
bardziej regularnym bez zwiększenia normy, co pozwala czasem znacząco uprościć obliczenia
objętości symplicjalnej.

Kawałkowa procedura prostowania jest uogólnieniem klasycznej procedury prostowania
na przypadek rozmaitości o krzywiźnie ograniczonej z góry i Lipschitzowskiej objętości sym-
plicjalnej. Dla danego Lipschitzwoskiego sympleksu singularnego σ i rozmaitości Riemannow-
skiej M się ona z następujących etapów.

• σ należy rozdrobnić barycentrycznie m razy, gdzie minimalne m, dla którego procedura
zadziała, zależy od stałej Lipschitza σ, wymiaru M i górnego ograniczenia na krzywiznę
M

• Każdy sympleks σ′ z m-krotnie rozdrobnionego sympleksu σ podnosimy do pewnego
otoczenia eksponencjalnego. Dla danego punktu x ∈ M jego otoczenie eksponencjalne
Vx jest zdefiniowane jako kula o odpowiednim promieniu (ograniczonym z dołu przez
stałą zależną od krzywizny M) w przestrzeni stycznej TxM , z metryką Riemannowską
indukowaną z przekształcenia expx : TxM →M .

• Eksponencjalne otoczenie każdego punktu ma tę własność, że punkty w pewnym (jedno-
stajnym) otoczeniu zera w Vx dla x ∈M mają jednostajnie dodatni promień włożoności.
Możemy więc klasycznie wyprostować podniesienie każdego sympleksu σ′, o ile jest on
odpowiednio mały, a to gwarantuje nam wybór m.
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• Opuszczamy wyprostowane w powyższy sposób sympleksy. Ponieważ otoczenia ekspo-
nencjalne dopuszczają między sobą lokalnie izometryczne odwzorowania przejścia, po-
wyższa procedura zachowuje brzegi sympleksów i możemy je wszystkie skleić ponownie
do jednego sympleksu strm(σ).

W szczególności uzyskujemy następujące stwierdzenie (Wniosek 3.1.20).

Stwierdzenie. Jeżeli M jest zupełną rozmaitością Riemannowską o ograniczonej z góry krzy-
wiźnie, dla każdego cyklu c ∈ C lf,Lip

∗ (M ;R) istnieje m ∈ N takie, że cykl strm(c)C lf,Lip
∗ (M ;R)

jest dobrze zdefiniowany, m-ty podział barycentryczny strm(c) składa się z sympleksow geode-
zyjnych, [c] = [strm(c)] ∈ H lf,Lip

∗ (M ;R) oraz | strm(c)|1 ¬ |c|1. W szczególności Lipschitzow-
ską objętość symplicjalną można obliczać jedynie na kawałkami wyprostowanych łańcuchach.

Homologie kawałkami gładkie

Homologie kawałkami gładkie to homologie podkompleksu singularnego kompleksu łańcu-
chowego składającego się jedynie z łańcuchów złożonych z sympleksów kawałkami gładkich
(Definicja 3.2.2). Definicję tę można uogólnić na przypadek lokalnie skończony i Lipschit-
zowski. Wprowadzamy również kawałkami gładki wariant homologii Milnora-Thurstona, tzn.
homologii, gdzie łańcuchy są odpowiednimi miarami Borelowskimi na zbiorze sympleksów
singularnych. Są one wyposażone w pół-normę indukowaną przez normę absolutnej wariacji
na miarach. Stosując kawałkową procedurę prostowania do tychże miar łatwo dowodzimy
następującego stwierdzenia (Stwierdzenie 3.2.10).

Stwierdzenie. Niech M będzie zupełną rozmaitością Riemannowsą o ograniczonej z góry
krzywiźnie. Wówczas kawałkami gładkie, lokalnie skończone Lipschitzowskie `1-homologie
oraz kawałkami gładkie Lipschitzowskie homologie Milnora-Thurstona są izometrycznie izo-
morficzne.

0.3. Zastosowania procedury prostowania

Pod koniec pracy, korzystając z kawałkowej procedury prostowania, dowodzone są własności
Lipschitzowskiej objętości symplicjalnej, mianowicie Twierdzenia A, B oraz C.

Ograniczenie dolne przez objętość Riemannowską dla ujemnie zakrzywio-
nych rozmaitości (Twierdzenie A)

Dowód faktu, iż dla zupełnej rozmaitości Riemannowskiej M o krzywiźnie ograniczonej z
góry przez −1 zachodzi nierówność

‖M‖Lip  Cn · vol(M)

dla pewnej stałej Cn > 0 zależnej jedynie od n = dimM , wynika z tego, iż procedura
prostowania (klasyczna) działa dla Lipschitzowskich lokalnie skończonych łańcuchów oraz z
ograniczenia górnego na objętość geodezyjnych sympleksów w przestrzeni ujemnie zakrzy-
wionej.

Nierówność produktowa (Twierdzenie B)

Nierówność

‖M ×N‖Lip ¬
(

dimM + dimN

dimM

)
‖M‖Lip · ‖N‖Lip
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dość łatwo wynika z własności symplicjalnej aproksymacji produktu krzyżowego oraz tego,
że produkt krzyżowy (lokalnie skończonych) klas podstawowych jest klasą podstawową.

Dowód nierówności ‖M‖Lip · ‖N‖Lip ¬ ‖M ×N‖Lip dla rozmaitości o ograniczonej z góry
krzywiźnie jest nieco trudniejszy. Mówimy, że lokalnie skończona rodzina (k+l)-wymiarowych
jednostajnie Lipschitzowskich sympleksów singularnych A na M ×N jest (k, l)-rzadka, jeżeli
rodziny sympleksów AM i AN na M i N złożone z rzutowania pewnych k i l wymiarowych
ścian sympleksów na M i N odpowiednio są lokalnie skończone (Definicja 4.2.1). Ponieważ
produkt krzyżowy jest dobrze określony dla kołańcuchów o Lipschitzowsko zwartych nośni-
kach, mamy nierówność

‖φ× ψ‖A∞ ¬ ‖φ‖AM∞ · ‖ψ‖AN∞
dla dowolnych dwóch kołańcuchów φ ∈ C∗cs,Lip(M,R), ψ ∈ C∗cs,Lip(N,R). Korzystając z zasady
dualności dla Lipschitzowskiej objętości symplicjalnej i powyższej nierówności otrzymujemy
nierówność

‖M ×N‖A  ‖M‖AM · ‖N‖AN .

Jedyne, czego brakuje by udowodnić nierówność produktową to stwierdzenie, iż Lipschitzow-
ską objętość symplicjalną da się obliczać na cyklach o rzadkich nośnikach. To zaś wynika z
zastosowania kawałkowej procedury prostowania dla odpowiednio dobranego zbioru wierz-
chołków prostowanych sympleksów.

Zasada proporcjonalności (Twierdzenie C)

Niech M i N będą dwiema rozmaitościami Riemannowskimi o izometrycznych nakryciach
uniwersalnych. Głównym narzędziem w dowodzie zasady proporcjonalności jest istnienie
wprowadzonego przez Thurstona [33] odwzorowania rozsmarowującego smear∗ między ka-
wałkami gładkim kompleksem singularnym na M i kawałkami gładkim kompleksem Milnora-
Thurstona na N . Odwzorowanie to jest łańcuchowe i nie zwiększa normy, ponadto

〈dvolM , smear∗([M ])〉 :=
∫

PC1(∆n,M)

∫
∆n

σ∗ dvolM d smear∗([M ])(σ) = vol(M),

gdzie [M ] jest klasą podstawową M , zaś PC1(∆n,M) jest zbiorem sympleksów kawałkami
gładkich.

Korzystając z kawałkowej procedury prostowania, dla danego cyklu podstawowego c na
M jesteśmy w stanie skonstruować Lipschitzowski, lokalnie skończony cykl singularny c′ taki,
że [c′] = [smear∗(c)] oraz |c′| ¬ ‖ smear∗(c)‖ (gdzie na cyklach Milnora-Thurstona rozważamy
normę absolutnej wariacji miary). Stąd wniosek, iż

vol(M)
vol(N)

‖N‖Lip ¬ ‖M‖Lip.

Podobną nierówność w drugą stronę możemy łatwo uzyskać zamieniając obie rozmaitości
miejscami w powyższym rozumowaniu.

xi





Introduction

The simplicial volume is a homotopy invariant of manifolds defined for a closed manifold M
as

‖M‖ := inf{|c|1 : c is a fundamental cycle in with real coefficients},

where |·|1 is the `1 norm on C∗(M ;R) with respect to the basis consisting of singular simplices.
Despite relatively simple definition, it has many applications. Most of them use the property
that although the simplicial volume is a homotopy invariant, it has many connections with
more rigid structures on manifolds such as the Riemannian volume.

The simplicial volume was first introduced by Gromov in his proof of Mostov’s rigidity
theorem [26, 33], therefore it is often referred to as the Gromov norm. He proved that the
simplicial volume of a closed hyperbolic manifold is non-zero and proportional to its volume,
that is for any two hyperbolic manifolds of the same dimension one has

‖M1‖
vol(M1)

=
‖M2‖

vol(M2)
.

He used this fact to show that two homotopy equivalent hyperbolic manifolds need to have
the same volume. In particular, the simplicial volume was the ingredient of the proof that
linked the topological structure of a hyperbolic manifold with its geometry. In his remarkable
work [12], he generalised this property, called the proportionality principle, to every pair of
manifolds with isometric universal covers.

Moreover, Gromov showed that the simplicial volume can be applied to much wider variety
of problems, e.g. degree theorems. If f : M → N is a continuous map between compact n-
dimensional manifolds, then

‖N‖ · | deg(f)| ¬ ‖M‖.

Therefore, if ‖N‖ 6= 0 one has the estimate

| deg(f)| ¬ ‖M‖
‖N‖

.

In particular, this implies that manifolds with positive simplicial volume are rigid in the sense
all self maps M →M must be of degree 0 or ±1.

The above estimate on the degree is straightforward, but useless, unless one can compute
or estimate the simplicial volume, or at least decide if it is zero or not. The exact computation
of the simplicial volume is usually a very difficult problem unless it is 0, e.g. in the case of
manifolds with an amenable fundamental group. There are only a few classes of examples of
manifolds for which the simplicial volume is known and positive, including hyperbolic spaces
[12], closed manifolds locally isometric to products of surfaces of genus  2 [4] and connected
sums of these. Fortunately, Gormov introduced some estimates of the simplicial volume in the
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case of Riemannian manifolds. Namely, if the sectional curvature of M satisfies sec(M) ¬ −1
then

‖M‖  Cn vol(M)

for some constant Cn, depending only on the dimension ofM . On the other hand, if Ricci(M) 
−(n− 1) then there exists a constant Dn depending on dimM , such that

‖M‖ ¬ Dn vol(M).

Therefore if f : M → N is a map between n-dimensional closed Riemannian manifolds such
that sec(N) ¬ −1 and Ricci(M)  −(n− 1) then

| deg(f)| ¬ Dn

Cn
· vol(M)

vol(N)
.

Note that the above technique of obtaining non-trivial and useful degree theorems depends
on the examples of manifolds with positive simplicial volume. The only examples described
by Gromov in [12] were manifolds obtained by taking the products and connected sums of
negatively curved manifolds. He used the facts that

‖M‖ · ‖N‖ ¬ ‖M ×N‖ ¬
(

dimM + dimN

dimM

)
‖M‖ · ‖N‖,

and if dimM = dimN  3 then also

‖M#N‖ = ‖M‖+ ‖N‖.

However, Gromov stated the following conjecture.

Conjecture. Let M be a closed Riemannian manifold with sec(M) ¬ 0 and Ricci(M) < 0.
Then ‖M‖ > 0.

The problem is still open. However, there is some progress. Namely, Lafont and Schmidt
showed that the simplicial volume is positive for locally symmetric spaces of non-compact
type [20, 29]. Using the estimates of the simplicial volume by the Riemannian volume and
the proportionality principle, they showed that if N is a locally symmetric space of non-
compact type and Ricci(M)  −(n− 1), then there exists a constant En depending only on
the dimension of N and M such that

|deg(f)| ¬ En
vol(M)
vol(N)

.

There are also other applications of the simplicial volume. Gromov in [12] used it to
estimate the minimal volume, while Thurston in [33] used the simplicial volume to show
that the hyperbolic volume decreases under the hyperbolic Dehn surgery. In the theory of 3-
manifolds, the simplicial volume was also used to recognise graph manifolds [2]. Nowadays, the
simplicial volume is applied to compute the number of multi-tangent trajectories of traversing
vector fields [1].

A natural question to ask is if there is a generalisation of this invariant to non-compact
case. The answer is: yes, and it can be defined for an orientable manifold by

‖M‖ = {|c|1 : c ∈ C lfn (M,R) is a locally finite fundamental cycle}.

The above invariant obviously restricts to the classical simplicial volume for compact mani-
folds. The problems arise when one checks if various properties of the simplicial volume are
valid also for non-compact manifolds. Almost all the techniques that in the compact case can
be used to prove the positivity of the simplicial volume do not work without the assumption
on compactness.
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• There is no lower bound on the simplicial volume (for negatively curved manifolds) of
the form

‖M‖  Cn vol(M).

A counterexample is given by the hyperbolic space. It has infinite volume and constant
negative curvature, but there exist proper maps f : Hn → Hn of arbitrary large degree,
hence ‖Hn‖ = 0.

• The estimate from below on the simplicial volume of the product of manifolds

‖M‖ · ‖N‖ ¬ ‖M ×N‖

does not hold if both manifolds M and N are open. In particular, there is a theorem of
Gromov [12] that if M is the product of three open manifolds, then ‖M‖ = 0. There is
also a similar result that ‖M‖ = 0 if M is a locally symmetric space of Q-rank 3 [25].

On the other hand, non-compact locally symmetric spaces of non-compact type of
Q-rank one have positive simplicial volume [25]. However, very little is known for non-
compact locally symmetric spaces of Q-rank two and products of two open manifolds.

Question. Does the simplicial volume of a product of two open manifolds is either 0
or infinite?

Does the simplicial volume of a non-compact locally symmetric space of Q-rank 2 is
either 0 or infinite?

• The proportionality principle holds in some special cases, e.g. for some families of locally
symmetric spaces of Q-rank 1 [7], but not in general. The easiest example can be given by
the hyperbolic space Hn and any closed hyperbolic n-manifold M . If the proportionality
principle was true, then the fact that ‖M‖ > 0 would imply ‖Hn‖ =∞, but we know it
is 0. The proportionality principle fails even if we restrict our attention to manifolds of
finite volume. Indeed, let M ′ be a non-compact hyperbolic n-manifold of finite volume.
Then although M3 and (M ′)3 are both covered by (Hn)3, we have ‖M‖3 > 0 and
‖M ′3‖ = 0.

As we may observe, the properties that do not generalize to the non-compact case are
exactly these which can be used to show the positivity of the simplicial volume of certain
manifolds. In fact, many manifolds that we would expect to have positive simplicial volume
actually have vanishing one. Therefore applications of the simplicial volume are very limited
in the non-compact case.

To avoid these inconveniences, Gromov proposed in [12] also other variants of the sim-
plicial volume for non-compact manifolds. Namely, he considered the simplicial volume com-
puted on chains consisting of simplices of bounded size.

‖M‖new := inf{|c|1 : c ∈ C lf∗ (M ;R) is a fundamental cycle, ”size”(c) <∞}.

By varying the definition of ’size’, we can obtain various simplicial volumes. One of the
most promising ways of defining ”size” is requiring the uniform Lipschitz constant for every
simplex in a given chain. It is, however, not the only definition that leads to interesting
results. Using another definition that a chain has finite ”size” if all simplices of this chain are
of bounded diameter, Gromov showed the existence of extremal manifolds in every dimension,
i.e. complete Riemannian manifolds with the sectional curvature bounded by ±1 that cannot
be deformed in a way decreasing the volume. But that is another story...
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The Lipschitz definition of ”size” leads to the Lipschitz simplicial volume, defined for a
complete Riemannian manifold M as

‖M‖Lip := inf{|c|1 : c =
∑
i

aiσi ∈ C lf∗ (M ;R) is a fundamental cycle, ∃L<∞∀i Lip(σi) ¬ L}.

This version of the simplicial volume is obviously designed for manifolds with finite volume.
Every fundamental cycle with the Lipschitz constant L has norm at least vol(M)

Ln vol(∆n) , hence
if the volume of M is infinite, so is the Lipschitz simplicial volume. However, because on
compact manifolds every cycle can be approximated by a smooth one without increasing the
`1 norm, and finite smooth chains are Lipschitz, the Lipschitz simplicial volume equals the
classical one for compact manifolds.

In this work we prove the following theorems, presented later as Theorems 2.2.7, 2.2.6
and 2.2.10 respectively. They justify the hope that the Lipschitz simplicial volume is a proper
generalization of the simplicial volume.

Theorem A. If M is a complete Riemannian manifold with sec(M) ¬ −1 then there exists
a constant Cn, depending only on n = dimM , such that

‖M‖Lip  Cn vol(M).

Theorem B (Product inequality). For any two complete Riemannian manifolds M and N
such that sec(M), sec(N) < K <∞ there are inequalities

‖M‖Lip · ‖N‖Lip ¬ ‖M ×N‖Lip ¬
(

dimM + dimN

dimM

)
‖N‖Lip · ‖N‖Lip.

Theorem C (Proportionality principle). If M and N are two complete Riemannian manifold
with sec(M), sec(N) < K <∞ which have isometric fundamental covers then

‖M‖Lip

vol(M)
=
‖N‖Lip

vol(N)
.

The proofs of the product inequality and the proportionality principle are original and
made by the author, who published them also in his present work [32]. However, both these
theorems hold without curvature assumptions by the recent work of Franceschini [14]. The
proof of Theorem A is known for specialists and described here for the sake of completeness,
because it was not described in details before. For the similar reason we prove also the
following theorem, which is denoted in the work as Theorem 2.2.12.

Theorem D. Let M be a complete manifold such that ‖M‖Lip <∞ and π1(M) is amenable.
Then ‖M‖Lip = 0.

The above theorems indicate in particular that the Lipschitz simplicial volume is positive
in many situations when one would expect it. In contrast to the ’natural’ generalisation of the
simplicial volume to the non-compact case, this one has more chances of having interesting
applications.

We present one of such applications, following Löh and Sauer [25]. If N is a Riemannian
locally symmetric space of non-compact type of finite volume, then by [3] there exists a
compact locally symmetric space N ′ with isometric universal cover. The fact that ‖N ′‖ 
Cn · vol(N ′) for some constant Cn > 0 (depending only on n = dimN ′) [20] combined with
the proportionality principle for the Lipschitz simplicial volume yields

‖N‖Lip ¬ Cn vol(N ′).
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Therefore if M is a Riemannian manifold with sec(M) ¬ 1 and Ricci(M)  −(n − 1) then
for any proper Lipschitz map f : M → N , we have

|deg(f)| ¬ Dn

Cn
· vol(M)

vol(N)
.

Let us comment on the proofs of the product inequality and the proportionality principle.
All known proofs of these properties for compact manifolds use bounded cohomology at some
point. It is defined as cohomology of the chain complex C∗b (M,R) of bounded singular chains,
i.e.

Ckb (M ;R) := {φ ∈ Ck(M ;R) : sup
σ∈C(∆k,M)

|φ(σ)| <∞}.

Note that bounded cochains are endowed with the canonical `∞ norm, which induce the
`∞ semi-norm on cohomology classes. For compact manifolds, bounded cohomology is linked
with the simplicial volume by the duality principle

‖M‖ =
1

‖[M ]∗‖∞
,

where [M ]∗ ∈ Hn(M,R) is a fundamental cohomology class. Although computing the `∞

norm of a given class is usually a serious problem, in many cases it simplifies significantly the
computation of the simplicial volume. However, the applications of this tool to non-compact
generalisations of the simplicial volume are often limited. For the ’classical’ generalization of
the simplicial volume, the duality principle holds, but in a much weaker setting, namely

‖M‖A =
1

‖[M ]∗cs‖A∞
,

where [M ]∗cs is a compactly supported fundamental cohomology class, A is any locally finite
family of simplices and the norms ‖ · ‖A and ‖ · ‖A∞ are the `1 semi-norm on (homology classes
of) chains with supports in A and `∞ semi-norm on cohomology computed on the simplices
in A respectively. This principle is not only more complicated than the original one, but
involves also bounded cohomology with compact supports, where the cup product is not well
defined. This flaw is one of the direct reasons why the proof of the product inequality does
not generalize to the non-compact case.

For the Lipschitz simplicial volume, one has the duality principle of the form

‖M‖ALip =
1

‖[M ]∗cs,Lip‖A∞
,

where [M ]∗cs,Lip is fundamental cohomology class with Lipschitz compact support (see Defi-
nition 1.2.20), A is any locally finite family of Lipschitz simplices and the norms ‖ · ‖A and
‖ · ‖A∞ are the `1 semi-norm on (homology classes of) Lipschitz chains with supports in A
and `∞ semi-norm on cohomology computed on the simplices in A respectively. At the first
glance, this version does not seem any better than in the non-Lipschitz case. However, it
is, though not much. The only (but significant) advantage of the cohomology with Lipschitz
compact supports over the cohomology with just compact supports is that the cocycles are
closed under taking the cross product. This allows us to make some progress in proving the
product inequality, but it is not enough. Moreover, it does not help much in establishing
other properties. What distinguishes significantly the Lipschitz and non-Lipschitz simplicial
volumes of non-compact manifolds, is the existence of the straightening procedure.
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The straightening procedure, in the first form was introduced by Dupont in [11], but it
was Thurston [33], who first used it in the context involving the simplicial volume. The main
goal of the procedure is to simplify singular chains in order to make them more suitable for
various computations. The procedure in its standard form was originally defined for hyperbolic
manifolds, but almost without changes can be applied to all non-positively curved manifolds.
It works as follows. Given a manifold M with sec(M) ¬ 0 and a singular simplex, lift it
(in any way) to the universal covering M̃ , which is CAT (0), hence the geodesics there are
unique. Therefore there exists a simplex with the same set of vertices which is geodesic. A
geodesic simplex with a given set of vertices is defined inductively as the geodesic cone over
one of its faces, which are lower dimensional geodesic simplices. In particular, a geodesic
simplex is determined uniquely by its set of vertices. Now, define the straightening of the
original simplex as the image of this unique geodesic simplex under the covering map. One
can check that it defines a chain operator on C∗(M ;R) homotopic to the identity and not
increasing the `1 norm. The first application of the procedure follows form the observation
that if M is negatively curved, then the volume of any geodesic simplex is bounded by a
universal constant depending on a curvature. Hence the simplicial volume must be positive,
because for any fundamental cycle c =

∑
i aiσi one has∑

i

|ai| vol(im(σi))  vol(M).

However, there are many other applications. But before we present them, let us make a
comment on the straightening procedure for non-compact manifolds. For the classical simpli-
cial volume it does not work, because the straightening of a locally finite chain does not need
to be locally finite. The easiest example of such chain is the family of arcs k · eit for t ∈ [0, π],
k ∈ N+, on the complex plane C. It forms a locally finite chain, but its straightening (with
respect to the flat Riemannian metric on R2 ∼= C) is the family [−k, k] × {0} for k ∈ N+,
which is not locally finite. The obstruction lies in the fact that the original chain consists of
simplices of arbitrary large diameter. In the case of the Lipschitz simplicial volume, however,
it is impossible because we require a universal Lipschitz constant for any simplex in a chain.
Therefore the straightening can be generalized without modifications to the Lipschitz case.

Another standard application of the straightening procedure is the possible completion of
Thurston’s proof of the proportionality principle. The main step of the proof for two manifolds
M and N is the use of their common (up to isometry) universal cover to establish the smearing
map from smooth singular homology of M to Milnor-Thurston homology of N . Milnor-
Thurston homology theory is a homology theory in which cycles are compactly supported
finite measures on the singular simplices, endowed with the absolute variation semi-norm. In
particular, an ordinary singular chain is interpreted as a discrete measure. The smearing map
has all the properties that would suffice to prove the proportionality principle, but for the
Milnor-Thurston homology. To prove it for the singular theory, one needs to approximate a
Milnor-Thurston chain by a singular one without increasing the `1 norm. Thurston did not
finish his proof, it was completed later by Löh in [31, 23], but using bounded cohomology
to establish an abstract isometric isomorphism between both mentioned homology theories.
In her later work with Sauer [25], they completed the proof for the Lipschitz simplicial
volume using a geometric approximation constructed by the straightening procedure. The
straightening, together with a careful study of cohomology with Lipschitz compact supports,
allowed them also to prove the product inequality. However, both proofs are valid only for
non-positively curved manifolds.

The main technical part of this dissertation is a generalization of the straightening proce-
dure to the case of manifolds with sectional curvature bounded from above. General idea is
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as follows. Geodesics on positively curved manifolds are not unique in general, but they are
locally unique if they join sufficiently close points. Hence although there is a little (if any)
hope that we could define geodesic simplices with arbitrary sets of vertices, we can still define
them if their vertices are sufficiently close. Therefore given a simplex, we can subdivide it into
sufficiently small pieces, straighten each piece and then glue them all back. The presented
procedure is called the piecewise straightening. There are, however, some technical gaps in
this reasoning that need to be filled. The biggest of them (if there is any way to measure the
size of a gap of a mathematical reasoning) is that in order to define the above procedure for
a locally finite Lipschitz chain on the one hand one needs to subdivide every simplex some
number of times, depending on the injectivity radii of points in its image, but on the other
hand we need to subdivide all the simplices the same number of times. This is possible only if
the injectivity radius of every point of a given manifold M is uniformly bounded from below.
However, we solve this problem by introducing an exponential neighbourhood for every point
of M . For a point x ∈M , it is just a neighbourhood of 0 in the tangent space TxM on which
the exponential map is locally diffeomorphic, with modified metric in such a way that the
exponential map becomes a local isometry. These neighbourhoods were first introduced by
Gromov in [12], however, we present much more detailed study of such spaces. They have
many useful properties, one of them is that their injectivity radii around the origins are uni-
formly bounded from below because of the curvature bound. Now, instead of straightening
the simplices directly on M , we lift them to the appropriate exponential neighbourhoods and
straighten them there.

To end this introduction, let us also make a comment on the additivity of the simpli-
cial volume and possible generalizations to non-compact manifolds. The original result for
compact manifolds, proved in [12] and later in [6, 19], relies heavily on the use of bounded
cohomology. Gromov indicated that the result holds also for the classical simplicial volume in
the case of non-compact manifolds, however, he sketched only the part of the proof, namely
the proof that

‖M#N‖ ¬ ‖M ′, ∂M ′‖+ ‖N ′, ∂N ′‖,
where M ′ and N ′ are manifolds obtained from M and N respectively by removing an embed-
ded disc. Using the results of Löh from [24, Proposition 5.19] and Kuessner from [19] one can
possibly fill in the details of the proof, but it would still rely on bounded cohomology. On the
other hand, taking the connected sum of two manifolds modifies the components only locally,
hence there is a big chance that the additivity holds also for the Lipschitz simplicial volume.
The proof, however, would require establishing either a new, geometric proof of the additivity
in the compact case and generalizing it to the non-compact case, or a clever method that
would allow to restrict the non-compact case to the compact one.

Organization of this work

In Chapter 1 we recall basic notions concerning Riemannian geometry, singular homology
and the amenability of groups. Most of this material is standard and can be skipped by the
reader with basic knowledge on these topics. The only non-standard material is contained in
Section 1.2.3, where Lipschitz homology theories are presented, following [25], and in Section
1.3, where we describe the properties of amenable actions, following [12].

In Chapter 2 we introduce the definition of the simplicial volume and the Lipschitz sim-
plicial volume. We describe also the basic properties of both invariants and some standard
techniques used to study the Lipschitz simplicial volume. These involve the duality principle
and the diffusion of chains. The latter one was introduced by Gromov in [12], however, we
introduce it in an alternative way, in particular we do not use multicomplexes. As a corollary
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we obtain the proof of Theorem D. The proofs of Theorems A, B and C are given in Chapter
4, because more machinery is needed.

Chapter 3 is devoted to the study of the piecewise straightening procedure. It is the main
technical part of this work, the results were obtained by the author and described in [32].
Section 3.2, devoted to the study of the piecewise C1 homology theories is also original. It
does not have any direct connection with the Lipschitz simplicial volume, but we describe
there some technical results which turn out to be useful when combined with the piecewise
straightening procedure.

In Chapter 4 we use the piecewise straightening procedure to prove Theorems A, B and
C. The proof of Theorem A is known for specialists, but has not been described in details
in the literature, therefore we give it for the sake of completeness. The proofs of Theorems
B and C are based on the proofs given in [25] for non-positively curved manifolds. However,
we use the piecewise straightening procedure to generalize them to the case of the manifolds
with curvature bounded form above.
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Chapter 1

Preliminaries

The purpose of this chapter is to remind the reader the notions and facts which will be
used throughout the rest of this work. It involves material from differential and Riemannian
geometry (Section 1.1), homology theory (Section 1.2) and geometric group theory, more pre-
cisely the material concernig the amenability of groups (Section 1.3). Most of the following
definitions and facts are described in the standard textbooks, such as [22, 21] in the case
of Riemannian geometry, [8, 16, 21, 34] in the case of homology and [27, 28] in the case of
amenable groups. However, there is some amount of material concerning Lipschitz homol-
ogy theories (Subsection 1.2.3) that, although elementary, is dedicated to the study of the
Lipschitz simplicial volume and is taken from [25].

1.1. Riemannian geometry

In the following section we recall basic facts and terminology concerning Riemannian ge-
ometry. The material is mostly standard. In Section 1.1.1 we introduce basic concepts of
Riemannian geometry, while in Section 1.1.2 we make a brief introduction to geodesics and
the exponential map. Finally, in Section 1.1.3 we recall how to integrate differential forms
and functions on Riemannian manifolds.

For the rest of this section, we assume that M is a complete, oriented, smooth, n-
dimensional manifold. We will also use the fact that we can view vector fields on M as
C∞(M)-linear maps C∞(M) → C∞(M) satisfying Leibniz rule and use the adequate nota-
tion.

1.1.1. Riemannian metric and curvature

Definition 1.1.1. We say that M is Riemannian if it is equipped with the Riemannian
structure (or the Riemannian metric), i.e. a family of inner products

gx : TxM × TxM → R

for x ∈ M , which are smooth, in the sense that for every two smooth vector fields X,Y ∈
C∞(M,TM) the mapping

x 7→ gx(X(x), Y (x))

is smooth.

We will often denote the inner product of two vectors u, v ∈ TxM simply by 〈u, v〉.
In fact every smooth manifold can be equipped with some Riemannian structure [22,

Exercise 3.1], but we should mention one of the most standard examples.
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Example 1.1.2. Rn+1, viewed as an affine space with a standard inner product is a Rieman-
nian manifold. A little bit more interesting example, though similarly basic, is the singular
simplex ∆n. We view it as a subset ∆n ⊂ Rn+1, where it can be defined as the convex hull
of the standard basis, that is,

∆n = {(x0, ..., xn) ∈ Rn+1 :
n∑
i=0

xi = 1 , xi  0 for i = 0, ..., n}.

We equip the simplex with the metric and Riemannian structure induced from Rn. In par-
ticular, it is a metric space of diameter

√
2.

If not otherwise stated, we will assume that if M is Riemannian, its metric is compatible
with the Remannian structure. To state this properly, let us recall that the length of a smooth
path γ : [0, 1]→M on a Riemannian manifold is

l(γ) :=
∫ 1

0
‖ d
dt
γ(t)‖dt =

∫ 1

0

√
〈 d
dt
γ(t),

d

dt
γ(t)〉dt.

Knowing this, we say that the metric on a complete manifold is induced from its Riemannian
structure if for every two points their distance equals the length of the shortest (smooth)
path joining them, i.e. for every x, y ∈M ,

d(x, y) = inf{l(γ) : γ : [0, 1]→M , γ(0) = x , γ(1) = y}.

Next we would like to define the curvature and some related notions.

Definition 1.1.3. An affine connection on a smooth manifold is a bilinear map

C∞(M,TM)× C∞(M,TM) → C∞(M,TM)

(X,Y ) 7→ ∇XY

such that for any smooth function f ∈ C∞(M) and vector fields X,Y ∈ C∞(M,TM), we
have

1. ∇fXY = f∇XY ;

2. ∇XfY = X(f) · Y + f∇XY .

The above definition could be in fact stated in the case of arbitrary smooth vector bundles
by substituting the second variable (and the output) by smooth sections of a given vector
bundle. However, we will not need such generality.

As in the case of the Riemannian metric, every manifold admits an affine connection. How-
ever, we will be interested in some special connections, namely these satisfying two additional
conditions.

1. Riemannian metric compatibility : for any three vector fields X,Y, Z ∈ C∞(M,TM),

X(〈Y, Z〉) = 〈∇XY,Z〉+ 〈Y,∇XZ〉.

2. Torsion-freeness: for any two vector fields X,Y ∈ C∞(M,TM),

∇XY −∇YX = [X,Y ],

where [X,Y ] is the Lie bracket (i.e. commutator) of vector fields.
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We have the following fact.

Theorem 1.1.4 ([22, Theorem 5.4]). For each Riemannian manifold there exists a unique
torsion-free connection which preserves the Riemannian metric. This connection is called
Levi-Civita connection.

If not otherwise stated, we will assume that every connection we are using on a Riemannian
manifold is the Levi-Civita connection.

Now we are ready to define the (Riemannian) curvature.

Definition 1.1.5. For a Riemannian manifold M the Riemannian curvature tensor is a
bilinear function

R : C∞(M,TM)× C∞(M,TM) → Hom(C∞(M,TM), C∞(M,TM))

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

where ∇ is the Levi-Civita connection.

Remark 1.1.6. Although the domain of the Riemannian curvature tensor is formally the
product of vector fields, in fact the local behaviour of the curvature depends only on certain
tangent vectors. Therefore by the notation

R(u, v)w

for vectors u, v, w ∈ TxM , x ∈M , we will understand the value in x of R(U, V, )W for every
vector fields U, V,W ∈ C∞(M,TM) such that U(x) = u, V (x) = v and W (x) = w. Whenever
we use this notation in different contexts we will understand automatically that the result
does not depend on the choice of corresponding vector fields.

The Riemannian curvature carries a lot of information about a given manifold, but in
many cases less information is required or given. Therefore there are several other definitions
of the curvature based on the Riemannian one. We list only two of them.

Definition 1.1.7. The sectional curvature of a plane π ⊂ TxM , for x ∈M , is

K(π) =
〈R(u, v)v, u〉

‖u‖2‖v‖2 − 〈u, v〉2
.

where u, v ∈ TxM are any two vectors such that π = span{u, v}.
If K(π) ¬ K for all planes π ⊂ TM then we denote this fact by sec(M) ¬ K and we say

that the (sectional) curvature is bounded by K. Moreover we say that a manifold is

• negatively (non-positively) curved if sec(M) < 0 (sec(M) ¬ 0);

• positively (non-negatively) curved if sec(M) > 0 (sec(M)  0);

We list below the most typical examples of simply connected manifolds with a given
curvature.

• Spheres Sn, for n  2, are positively curved.

• Euclidean spaces Rn, for n  1, are flat, i.e. sec(Rn) = 0.

• Hyperbolic spaces Hn, for n  2, are negatively curved.
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The examples presented above are in some sense special-they are simply connected mani-
folds of constant sectional curvatures. Observe that having (non) positive/negative curvature
is a local property, hence it is inherited by all locally isometric images, in particular by cov-
ering maps. This implies e.g. that all tori are flat, and all hyperbolic manifolds are negatively
curved.

Definition 1.1.8. The Ricci curvature tensor is a bilinear map

Ricci : C∞(M,TM)× C∞(M,TM)→ C∞(M)

Ricci(X,Y )(x) := tr(v 7→ R(v,X)Y (x)),

where x ∈M , v ∈ TxM and tr : Hom(TxM,TxM)→ R is the trace operator.
We say that Ricci(M)  K for some K ∈ R if Ricci(v, v)  K for every vector v ∈ TxM ,

x ∈M , such that ‖v‖ = 1.

Note that if sec(M)  K, then if x ∈ M and v1, ..., vn is an orthonormal basis of TxM ,
then

Ricci(vi, vi) =
n∑
j=1

〈R(vj , vi)vi(x), vj(x)〉  (n− 1)K.

1.1.2. Geodesics and exponential map

Using the definition of an affine connection it is easy to give a concise definition of a geodesic.

Definition 1.1.9. A smooth path γ : [0, C] → M on a Riemannian manifold M is called a
geodesic if it is constant (the degenerated case) or it is locally injective and

∇ d
dt
γ

d

dt
γ = 0.

Remark 1.1.10. In the above definition we made some simplifications. First of all, d
dtγ is a

vector field defined only on the image of γ, while to define properly the value of a connection
we need it to be defined in some open neighbourhood of im γ. However, we can choose some
extension of d

dtγ to any open neighbourhood of im γ and the above definition does not depend
on this choice (as in Remark 1.1.6). The other problem with this definition is that it might
not be well stated in the case that γ is not injection. However, if it is locally injective we can
view the condition in the definition as a local one, and if it is not, it must be constant.

This definition of a geodesic coincides partially with more general (and intuitive) definition
of a geodesic as a shortest path joining its endpoints. Namely, geodesics in the Riemannian
sense are the paths which are locally geodesic in the metric sense.

Theorem 1.1.11 ([22, Theorem 6.12]). Let γ : [0, C] → M be a geodesic. Then it is locally
minimizing, i.e. for every t ∈ [0, C] there exists ε > 0 such that for every s ∈ (t− ε, t+ ε) ∩
[0, C], we have

d(γ(t), γ(s)) = l(γ|[t,s]).

Moreover, by the completeness of M , every two points x, y are joined by some (not
necessarily unique) geodesic which minimize the distance between these points [22, Corollary
6.15]. We call such geodesic a shortest geodesic joining x, y ∈ M . If this geodesic is unique,
we denote it by [x, y].

Note that every geodesic γ is locally determined uniquely by a point x ∈ im γ and a
tangent vector v ∈ TxM in this point [22, Theorem 4.10]. This allows us to define the
exponential map.
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Definition 1.1.12. For x ∈M let exp : TxM →M be the map defined as

expx(v) = γxv (1),

where γxv : [0, 1] → M is the unique geodesic such that γ(0) = x and d
dtγ|t=0 = v. We call

this map the exponential map at x.

The exponential map can be defined for any Riemannian manifold in some neighbour-
hood of the zero section M ⊂ TM . However, because M is complete we can do it for the
whole tangent space TM by the Hopf-Rinov theorem [22, Theorem 6.13]. One of the crucial
properties of this map is the following.

Proposition 1.1.13 ([22, Lemma 5.10]). For every x ∈M there exists an open neighbourhood
Ux ⊂ TxM containing 0 such that the map

expx |Ux : Ux →M

is a diffeomorphism. Moreover, the map

TM → M ×M
(x, v) 7→ (x, expx(v))

is a diffeomorphism in some open neighbourhood of the zero section M ⊂ TM .

We will be particularly interested in the existence of the lower bound on the radii of balls
Bx ⊂ TxM for x ∈ M , for which the maps expx |Bx are local diffeomorphisms. Fortunately,
such bounds do exists in the presence of bounded curvature.

Proposition 1.1.14 ([22, Proposition 10.11, Corollary 11.3]). If sec(M) < K, where 0 <
K <∞, then the map

exp : TM → M ×M
(x, v) 7→ (x, expx(v))

is a local diffeomorphism on the set

T π√
K
M = {(x, v) ∈ TM : ‖v‖ < π√

K
}.

If sec(K) ¬ 0, then a much stronger statement is possible.

Theorem 1.1.15 (Cartan-Hadamard Theorem [22, Theorem 11.5]). If M is a complete,
connected manifold such that sec(M) ¬ 0, then for any point x ∈ M the map expx is a
covering map. In particular, the universal covering of M is diffeomorphic to TxM ∼= Rn.

We shall also recall the following definition.

Definition 1.1.16. Let x ∈M . Then the injectivity radius of x is a positive number

injradx(M) := sup{r ∈ R : expx |BTxM (0,r) is a diffeomorphism onto its image}.

Moreover, we can define the injectivity radius of M as

injrad(M) := inf
x∈M

injradx(M).

Because the function x 7→ injradx(M) is continuous, if M is compact, then injrad(M) > 0.
This does not have to be true without the compactness assumption. Moreover, note that if
sec(M) < K, where K > 0, it gives us no information about the injectivity radius of M , even
if M is simply connected. However, if sec(M) ¬ 0 then by Theorem 1.1.15, for every x ∈M
the map expx is a covering map, hence simply-connectedness implies injrad(M) =∞.
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1.1.3. Integration and volume

Having a differential n-form ω ∈ Ωn(M) =
∧n T ∗M on a Riemannian manifold, we can

integrate it as follows.

• If M = Rn then ω is of the form

ω(x) = f(x)dx1 ∧ ... ∧ dxn

for some f ∈ C1(Rn). Then∫
Rn
ω =

∫
Rn
f(x1, ..., xn)dx1...dxn =

∫
Rn
f(x1, ..., xn)dµ(x),

where µ is the Lebesgue measure on Rn.

• If ω is supported on an open subset A ⊂ M contained in the image of some smooth
chart φ : Rn →M then ∫

M
ω =

∫
Rn
φ∗ω.

• If ω is arbitrary, let (ψj)j∈N be a locally finite partition of unity on M such that each
ψj , j ∈ N, is supported in the image of some smooth chart φj : Rn →M , j ∈ N. Then∫

M
ω =

∑
j∈N

∫
M
ψjω =

∑
j∈N

∫
Rn
φ∗j (ψjω).

To define the above integral we do not need the Riemannian structure. However, the
presence of such provides a natural definition of the volume form.

Proposition 1.1.17 ([22, Lemma 3.2]). On any oriented Riemannian manifold M there
exists a unique n-form dvolM ∈ Ωn(M) such that

dvolM (v1, ..., vn) = 1

for any oriented orthonormal basis v1, ..., vn ∈ TxM , where x ∈ M . We call this form the
volume form on M .

Having this form and a smooth function f ∈ C1(M), we can define

vol(M) :=
∫
M

dvolM .

We recall a few classical results concerning the curvature and volume of surfaces. Note
that on a Riemannian surface M the sectional curvature can be considered as a function
sec : M → R.

Theorem 1.1.18 (Gauss-Bonnet formula, [22, Theorem 9.3]). Let ∆ be a triangle with
geodesic edges on a Riemannian surface M and let εi, i = 1, 2, 3, be the exterior angles
of ∆. Then ∫

∆
sec(x) dvolM +

3∑
i=1

εi = 2π.

Because every closed surface can be obtained by gluing such triangles, one can obtain the
following.
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Theorem 1.1.19 (Gauss-Bonnet theorem, [22, 9.7]). If M is a closed oriented Riemannian
surface, then ∫

M
sec(x) dvolM = 2πχ(M).

In particular, if M has the constant curvature K = ±1 then

vol(M) = 2π|χ(M)|.

1.2. Homology and cohomology

The notion of (co)homology is one of the central concepts in the algebraic topology. In the
following section we recall some properties and notions concerning it. The topic is quite
broad, therefore we concentrate on certain specific facts and examples that will be used in
further chapters. In Section 1.2.1, we recall the most basic definitions and examples concerning
homology. In Section 1.2.2, we concentrate on the functorial behaviour of (co)homology and
recall some examples of chain maps. In Section 1.2.3, we introduce Lipschitz homology and
cohomology theories and we show that they are isomorphic to the corresponding non-Lipschitz
ones. In particular, this section contains material which (in spite of its elementariness) is not
classical and is dedicated specifically to the study of the Lipschitz simplicial volume, therefore
we give detailed proofs of mentioned facts. Finally, in Section 1.2.4 we recall the notion of the
fundamental class and in Section 1.2.5 we discuss product structures in various (co)homology
theories, including the Lipschitz ones.

1.2.1. Various (co)homology theories

For the rest of this section we will assume that R is a commutative ring. However, in further
chapters we will use almost only the case R = R. In this particular case, and more generally
if R is a field, many aspects of homology theories simplify a lot. Sometimes, though, we will
be interested in a more general setting.

Definition 1.2.1. A chain complex C∗ (over R) is a sequence of R-modules (Ck)k∈N equipped
with boundary maps ∂ : Ck → Ck−1 for k ∈ N, such that ∂ ◦ ∂ = 0.

We call the R-modules

Zk(C∗) := ker(∂ : Ck → Ck+1) ⊂ Ck

and
Bk(C∗) := im(∂ : Ck+1 → Ck) ⊂ Ck

the cycles and the boundaries of C∗ respectively. The homology of the chain complex C∗ is a
sequence of R-modules

Hk(C∗) := Zk(C∗)/Bk(C∗)

Finally, we call two cycles c, c′ ∈ Ck homologuous if [c] = [c′] ∈ Hk(C∗), i.e. c = c′ + ∂d for
some d ∈ Ck+1.

Similarly, a cochain complex is a sequence of vector spaces (Ck)k∈N, equipped with
coboundary maps δ : Ck → Ck+1 for k ∈ N, such that δ ◦ δ = 0. We also call the R-modules

Zk(C∗) := ker(δ : Ck → Ck+1) ⊂ Ck,
Bk(C∗) := im(δ : Ck−1 → Ck) ⊂ Ck,
Hk(C∗) := Zk(C∗)/Bk(C∗)
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the cocycles, coboundaries and cohomology of C∗ respectively. We call also two cocycles
φ, φ′ ∈ Ck cohomologuous if [φ] = [φ′] ∈ Hk(C∗), i.e. φ = φ′ + δψ for some ψ ∈ Ck−1.

The most interesting example of chain complexes and homology from our view are singular
ones for a topological space. Given the simplex ∆n ⊂ Rn+1 defined as in Example 1.1.2, there
is the sequence of (isometric) embeddings ιi : ∆k−1 → ∆k for i = 0, ..., k defined as

ιi(x0, ..., xk−1) = (x0, ..., xi−1, 0, xi, ..., xk−1).

Example 1.2.2. Let X be a topological space. A singular (k-)simplex is a continuous map
σ : ∆k → X. We have maps ∂i : C(∆k, X)→ C(∆k−1, X) for i = 0, ..., k, defined as

∂i(σ) = σ ◦ ιi.

Let Ck(X;R) be the free R-module with the basis consisting of singular k-simplices. That is,
elements of Ck(X;R) are finite formal sums of singular simplices with coefficients in R. We
extend operators ∂i linearly to ∂i : Ck(X;R)→ Ck−1(X;R) and define

∂ =
k∑
i=0

(−1)i∂i : Ck(X;R)→ Ck−1(X;R).

Then C∗(X;R), together with ∂, forms a chain complex called the singular chain complex of
X. We call its homology the (singular) homology of X with coefficients in R.

Moreover, let Ck(X;R) = Hom(Ck(X,Z);R) and let δ : Ck(X;R)→ Ck+1(X;R), where
k ∈ N, be defined as

δφ(σ) = φ(∂σ),

where σ ∈ C(∆k, X). Then C∗(X;R), together with δ, forms a cochain complex called the
singular cochain complex and we call its cohomology the (singular) cohomology of X with
coefficients in R.

Remark 1.2.3. Although by varying the coefficients of a (co)homology theory one might get
sometimes very interesting results, as mentioned before, we will use further almost always real
(co)homology, i.e. with coefficients in R. In that case we will write for short H∗(X) (H∗(X))
instead of H∗(X;R) (H∗(X;R)).

In the following chapters we will often investigate the geometric properties of singular
chains, therefore we need a little bit more terminology. For a singular chain c =

∑
i aiσi ∈

Ck(X;R) we will denote by supp(c) the set
⋃
i{σi} ⊂ C(∆k, X). More generally, by the

j-skeleton of c for j = 0, ..., k, we will understand the set⋃
i

{σi|F : F is a j-dimensional face of ∆k} ⊂ C(∆j , X).

We recall also that the 0-skeleton of c is called the set of vertices of c and the 1-skeleton is
called the set of edges of c.

A very useful fact about singular homology and cohomology is that we can evaluate the co-
homology classes on the homology classes. Namely, the mappingH∗(X;R)→ Hom(H∗(M ;R), R)
defined as

〈[φ], [c]〉 = φ(c),

where φ ∈ Z∗(X;R) and c ∈ Z∗(X;R) for some k ∈ N, does not depend on the choice
of representatives. Indeed, if c′ = c + ∂d and φ′ = φ + δψ for some d ∈ Ck+1(X;R) and
ψ ∈ Ck−1(X;R) then

φ′(c′) = (φ+δψ)(c+∂d) = φ(c)+φ(∂c)+δψ(c)+δψ(∂d) = φ(c)+δφ(c)+ψ(∂c)+ψ(∂∂d) = φ(c).
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There are also other classical variants of (co)homology that will be used throughout the
next chapters. For a topological space X let K(X) be the family of compact sets K ⊂ X.

Definition 1.2.4. Let X be a locally compact space and let C lf∗ (X;R) be the chain complex
of (possibly infinite) sums of singular simplices such that for every compact set K ⊂ X only
finitely many simplices intersect K. That is,

C lf∗ (X;R) := {
∑
i∈N

aiσi : ai ∈ R, σi ∈ C(∆∗, X) ; ∀K(X)#{σ : imσ ∩K 6= ∅} <∞}.

We call it the locally finite singular chain complex and the corresponding homology theory
H lf
∗ (X;R) locally finite homology.

The corresponding ’dual’ cohomology theory (in the sense that one can evaluate cocycles
on locally finite cycles) is cohomology with compact supports.

Definition 1.2.5. For a locally compact space X let C∗cs(X;R) ⊂ C∗(X;R) be the cochain
complex consisting of cochains with compact supports, i.e.

C∗cs(X;R) := {φ ∈ C∗(X;R) : ∃K∈K(X)(im(σ) ∩K = ∅)⇒ φ(σ) = 0}.

We call the corresponing cohomology theory H∗cs(X;R) cohomology with compact supports.

The next homology theory is an interesting generalisation of the classical real singular
homology.

Definition 1.2.6. Let Ck(X) be the set of compactly supported Borel measures on C(∆k, X)
endowed with the compact-open topology and let ∂ : Ck(X)→ Ck−1(X), for k ∈ N, be defined
as

(∂µ)(σ) := µ(∂σ),

where σ ∈ Ck(X). Then (Ck(X), ∂) forms a chain complex called the Milnor-Thurston chain
complex and we call the corresponding homology theory H∗(X) Milnor-Thurston homology.

Note that we can evaluate ordinary real singular cochains on Milnor-Thurston chains by
the formula

φ(µ) =
∫
C(∆k,X)

φ(σ)dµ(σ),

where φ ∈ Ck(X) and µ ∈ Ck(X). The value of φ(µ), as in the case of singular homology,
does not depend on the choice of respective representatives.

There is also one more classical cohomology theory that will be used, namely de Rham
cohomology. It is not based on any singular chain complex as the previous examples and is
defined only for smooth manifolds.

Definition 1.2.7. Let M be a smooth manifold and let Ωk(M), for k ∈ N, be the space of
smooth sections of

∧k T ∗M , i.e. of the k-th exterior power of the cotangent bundle of M .
Then for k ∈ N we have the operator d : Ωk(M) → Ωk+1(M) defined for ω ∈ Ωk(M) and
vector fields V0, ..., Vk on M as

dω(V0, ..., Vk) =
k∑
i=0

(−1)iVi(ω(V0, ..., V̂i, ..., Vk))

+
∑

0¬i<j¬k
(−1)i+jω([Vi, Vj ], V0, ..., V̂i, ..., V̂j , ..., Vk),
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where V̂i denotes that we omit a corresponding term in the sequence, i.e.

(V0, ..., V̂i, ..., Vk) = (V0, ..., Vi−1, Vi+1, ..., Vk).

One can check that with this operator Ω∗ forms a cochain complex, and the corresponding
cohomology theory H∗dR(M) is called de Rham cohomology.

1.2.2. Chain maps and homotopies

This section, in which some functorial properties of (co)homology are described, is primarily
a reminder of certain examples of chain maps, which will be used throughout the rest of this
dissertation.

Definition 1.2.8. Let (C∗, ∂C) and (D∗, ∂D) be two chain complexes. A map f : C∗ → D∗
is called a chain map if f(Ck) ⊂ Dk and it commutes with the boundaries:

∂D ◦ f = f ◦ ∂C .

We say that two chain maps f, g : C∗ → D∗ are (chain) homotopic if there exists an
operator H : C∗ → D∗+1 such that

H∂C + ∂DH = f − g

called a (chain) homotopy between f and g.

Proposition 1.2.9 ([34, Lemma 1.4.5]). A chain map f : C∗ → D∗ induces a homomorphism
on homology spaces f∗ : H∗(C∗)→ H∗(D∗). Moreover, if two chain maps f, g : C∗ → D∗ are
homotopic then f∗ = g∗.

Example 1.2.10 ([16, Proposition 2.9, Theorem 2.10]). If f : X → Y is a continuous
map between topological spaces, f induces maps on the corresponding chain and cochain
complexes

f∗ : C∗(X)→ C∗(Y ) f∗(σ) = f ◦ σ;

f∗ : C∗(Y )→ C∗(X) f∗(φ)(σ) = φ(f ◦ σ).

which are chain maps, thus inducing homomorphisms

f∗ : H∗(X)→ H∗(Y )

and
f∗ : H∗(Y )→ H∗(X).

Moreover, if f, g : X → Y are two maps homotopic to each other, there exist a homotopy
H(f, g)∗ : C∗(X)→ C∗+1(Y ) (H(f, g)∗ : C∗(Y )→ C∗−1(X)) between f∗ and g∗ (f∗ and g∗).

The same statements are true for locally finite homology and cohomology with compact
supports, but we need to assume additionally the properness of maps and homotopies.

The proof that homology is invariant under homotopy equivalences is classical and (after
certain modifications) is applied in the proofs of many other ’classical’ facts concerning ho-
mology of spaces. However, we will sometimes need some of the technical aspects of this proof.
Therefore we introduce the following lemma, which follows from the mentioned methods.
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Lemma 1.2.11. Let C(1)
∗ ⊂ C(2)

∗ ⊂ C lf∗ (M ;R) be two chain subcomplexes and let

Σj
k := {σ ∈ C(∆k,M) : σ ∈ C(j)

∗ }

for j = 1, 2. Let also N ∈ N∪{∞} and let Hσ : ∆k× I → X be a system of maps for σ ∈ Σ1
k,

k ¬ N , such that for each k ¬ N , σ ∈ Σ1
k and i = 0, ...k,

• Hσ|∆k×{0} = σ;

• Hσ|∂i∆k×I depends only on H∂iσ and Hσ|∂i∆k×{1} = H∂iσ|∆k−1×{1};

• for any chain c =
∑
i aiσi ∈ C

(2)
k , the chain

∑
i aiP (Hσi) ∈ C

(2)
k+1, where P : C(∆k ×

I,X) → Ck+1(X;R) is the prism operator defined e.g. in [16, Proof of Theorem 2.10]
(see Section 1.2.5 for details). In particular, Hσ|∆k×{1} ∈ Σ2

k.

Then the inclusion of chains ι∗ : C(1)
∗¬N → C

(2)
∗ and the map η∗ : C(1)

∗¬N → C
(2)
∗ defined for

k ¬ N as
ηk(
∑
i

aiσi) =
∑
i

aiHσi |∆k×{1},

are chain homotopic.

Proof (sketch). Note that η∗ is a chain map, because for every simplex σ ∈ Σ1
k we have

ηk(∂σ) =
k∑
i=0

(−1)kH∂iσ|∆k−1×{1} =
k∑
i=0

(−1)kHσ|∂i∆k×{1} = ∂ηk(σ).

One can check ([16, Proof of Theorem 2.10]) that a homotopy h : C(1)
k (X;R)→ C

(2)
k+1(X;R)

between η∗ and ι∗ for k ¬ N is given by

h(
∑
i

aiσi) =
∑
i

aiP (Hσi).

Remark 1.2.12. The above lemma can be stated also in the case of subcomplexes of the
Milnor-Thurston chain complex or its variants without any changes in the proof. We need
only to assume that Hσ depend in the Borel way on σ and for any compact set A ⊂ C(∆k,M)
the set ⋃

σ∈A
suppP (Hσ) ⊂ C(∆k+1,M)

has compact closure. In particular, for µ ∈ Ck(X), by P (Hµ) we understand the measure on
C(∆k+1, X) which is a sum of push forwards of µ under the maps σ 7→ Hσ(∆′) ∈ C(∆k+1, X)
for ∆′ ∈ suppP (∆k × I) (see section 1.2.5). More precisely, for a Borel set A ⊂ C(∆k+1, X)
we have

P (Hµ)(A) =
∑

∆′∈suppP (∆k×I)
µ({σ : Hσ(∆′) ∈ A}).

Now we give a few more concrete examples of chain maps.
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Example 1.2.13. Let M be a smooth manifold and let Csm∗ (M ;R) be the chain complex
of smooth chains, i.e. consisting of smooth singular simplices. Then the inclusion of chains
ι∗ : Csm∗ (M ;R)→ C∗(M ;R) induces an isomorphism on homology. To see this, note that by
[22, Theorem 6.19] every singular simplex σ is homotopic to some smooth simplex, and if ∂σ
is smooth, then we can choose this homotopy to be the identity on the boundary. Therefore
for C(1)

∗ = C
(2)
∗ = C∗(M ;R), we can construct operators Hσ satisfying all the conditions of

Lemma 1.2.11 by induction on k such that Hσ|∆∗×{1} are smooth, and if σ is smooth then
P (Hσ) is a smooth chain. Then the chain map η∗ : C∗(M ;R) → Csm∗ (M ;R) (where use
the notation from Lemma 1.2.11) induces an inverse to the map Hsm

∗ (M ;R) → H∗(M ;R),
because both ι∗ ◦ η∗ and η∗ ◦ ι∗ are chain homotopic to identities by Lemma 1.2.11. The same
applies to the smooth and ordinary singular cohomology theories.

Example 1.2.14. Because we can treat every real singular cycle as a discrete measure on
the set of singular simplices, there is an inclusion of chain complexes C∗(X)→ C∗(X) which
is a chain map. The induced map on the homology is an isomorphism for CW-complexes [35,
Theorem 5.0] (and by [23] isometric with respect to the `1 semi-norm on C∗(X) and absolute
variation semi-norm on C∗(X), see Sections 2.1 and 3.2.2 for more details), but we will not
use this fact.

Example 1.2.15. Another example of a chain map, which is quite important to us, is the
barycentric subdivision operator S : C∗(X)→ C∗(X). It has the following properties.

1. S is homotopic to IdC∗(X).

2. S(∆n) =
∑
i aiσi, where every σi ∈ C(∆n,∆n) is an affinely embedded simplex such

that
diam(imσi) ¬

n− 1
n

diam(∆n).

3. There exists a chain homotopy T : C∗(X) → C∗+1(X) between S and IdC∗(X) such
that for any singular simplex σ ∈ C(∆n, X),

T (σ) =
∑
i

aiσi =
∑
i

ai(σ′ ◦ σ′i),

where σ′i ∈ C(∆n+1,∆n × I) are affine embeddings and σ′ ∈ C(∆n × I,X) is defined
by σ′(x, t) = σ(x).

See [16, Proposition 2.21] for more details. The second property implies in particular that
the diameters (and Lipschitz constants, if a given simplex is Lipschitz) of simplices obtained
by the iterated barycentric subdivision tend uniformly to 0. Moreover, if σ is Lipschitz with
the Lipschitz constant less than L, then all the simplices in S(σ) and T (σ) are Lipschitz with
the Lipschitz constants less than L′ for some L′ <∞ depending only on L.

Example 1.2.16. The symmetric group Sn+1 acts on the set of singular simplices C(∆n,M)
by permuting the order of the vertices of ∆n. That is, for s ∈ Sn, we define the map s∆ :
∆n → ∆n as the unique affine map such that

s∆(vi) = vs(i)

for i = 0, ..., n, where vi is the i-th vertex of ∆n, and s(σ) = σ ◦ s∆. Then the map Alt :
C∗(X)→ C∗(X) defined for a singular simplex σ ∈ C(∆k, X) as

Alt(σ) :=
1

(k + 1)!

∑
s∈Sk+1

sgn(s) · s(σ),
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where sgn(s) is the sign of s, is a chain map. Moreover, it is chain homotopic to the identity
on C∗(X) [15, Appendix B].

Example 1.2.17. Another very interesting example of a chain map is the de Rham map

dR∗ : Ω∗(M)→ C∗sm(M).

It is defined for a differential k-form ω ∈ Ωk(M) as

dR∗(ω)(σ) =
∫

∆k
σ∗ω,

where σ : ∆k →M is a smooth singular simplex. One can check that this is a chain map by
the Stokes theorem [21, Theorem 11.31]. Moreover, by the de Rham theorem [21, 11.34] it
induces an isomorphism on cohomology groups

H∗dR(M) ∼= H∗sm(M) ∼= H∗(M).

1.2.3. Lipschitz homology and cohomology

There is a variant of homology that we will be particularly interested in. It is Lipschitz
homology, which is obtained simply by considering only Lipschitz singular simplices. Let M
be a connected Riemannian manifold and let c =

∑
i aiσi ∈ C∗(X) (or C lf∗ (M)) be a (locally

finite) singular chain. The Lipschitz constant of c is the number

Lip(c) := sup
i

Lip(σi),

where Lip(σi) is the (optimal) Lipschitz constant of σi, i.e. if it is Lipschitz and +∞ otherwise.
If Lip(c) <∞, we call this chain Lipschitz.

Definition 1.2.18. Let CLip
∗ (M) ⊂ C∗(M) be the chain complex consisting of Lipschitz

chains:
CLip
∗ (M) := {c ∈ C∗(M) : Lip(c) <∞}.

We call this chain complex the Lipschitz chain complex and the corresponding homology
theory HLip

∗ (M) Lipschitz homology.
Similarly, we call the corresponding chain complex C lf,Lip

∗ (M) ⊂ C lf∗ (M) Lipschitz locally
finite chain complex and the homology theory H lf,Lip

∗ (M) Lipschitz locally finite homology.

Because in the case of CLip
∗ (M) any chain is a finite linear combination of simplices,

Lipschitz chains are exactly these which contain only Lipschitz simplices. However, in the case
of C lf,Lip

∗ (M) the assumption that for a given chain all the simplices have the same bound
on the Lipschitz constant is significant. Note that these homology groups are functorial with
respect to Lipschitz (and proper, in the locally finite case) homotopy classes of maps.

For technical reasons, we will also use the following variant of Lipschitz homology. For
L <∞ let

C<L∗ (M) := {c ∈ C∗(M) : Lip(c) < L}.

be the chain complex of L-Lipschitz chains. We will denote the homology of the above chain
complex by H<L

∗ (M). There is also the corresponding locally finite variant H lf,<L
∗ (M) defined

in a similar way.
In fact these theories are isomorphic to the non-Lipschitz ones.
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Theorem 1.2.19 ([25, Theorem 3.3, Lemma 3.5]). Let M be a connected Riemannian man-
ifold. Then the natural inclusions of chains CLip

∗ (M) → C∗(M) and C lf,Lip
∗ (M) → C lf∗ (M)

induce isomorphisms HLip
∗ (M)→ H∗(M) and H lf,Lip

∗ (M)→ H lf
∗ (M).

There is also a ’dual’ cohomology theory defined as follows.

Definition 1.2.20. Let φ ∈ Hom(CLip
∗ (M),R). We say that φ has Lipschitz compact support

if for every L <∞ it has compact support when restricted to L-Lipschitz simplices, i.e. there
exists a compact set KL ⊂M depending on L, such that

∀σ∈C(∆∗,M) ,Lip(σ)<L(im(σ) ⊂M \KL)⇒ φ(σ) = 0.

We denote the cochain complex of Lipschitz compactly supported cocycles C∗cs,Lip(M) ⊂
Hom(CLip

∗ ,R) and call the corresponding cohomology theory H∗cs,Lip(M) cohomology with
Lipschitz compact supports.

Also in this case the above theory turns out to be isomorphic to the corresponding non-
Lipschitz one.

Theorem 1.2.21 ([25, Theorem 3.8]). Let M be a connected Riemannian manifold. Then
the natural inclusion of cochains C∗cs(M) → C∗cs,Lip(M) induces an isomorphism H∗cs(M) ∼=
H∗cs,Lip(M).

1.2.4. Fundamental class

It is well known fact that the homology of the disc relative to its boundary is one dimensional,
i.e. Hn(Dn, Sn;Z) ∼= Z [16, Example 2.17]. This implies that if M is an n-dimensional man-
ifold, then for every x ∈ M one has Hn(M,M \ {x}) ∼= Z. Moreover, we have the following
fact

Theorem 1.2.22 ([16, Theorem 3.26(a)]). If M is a closed, connected, orientable manifold,
the restriction map Hn(M,Z)→ Hn(M,M \ {x}) is an isomorphism for every x ∈M .

Let [M ] ∈ Hn(M,Z) be an element such that its image in every group Hn(M,M \ {x}),
x ∈ M , is a generator (which can be chosen in a canonical way if M is oriented). We call
this element the fundamental class of M and every cycle that represents it a fundamental
cycle. Because most of the time we will use only homology with real coefficients, by [M ] ∈
H∗(M) we will also denote the image of the fundamental class under the change of coefficients
homomorphism H∗(M,Z) → H∗(M,R) and also call it the fundamental class. It would be
clear from the context if we are dealing with real or integral fundamental class/cycle.

In the case of cohomology, there is an important result binding e.g. singular homology
and cohomology.

Theorem 1.2.23 ([8, Theorem V.7.1]). Let C∗ be a chain complex of free R-modules, where R
is a principal ideal domain, and let C∗(A) := Hom(C∗;A) for an R-module A be an associated
cochain complex. Then for every k ∈ N, there is an exact sequence

0→ ExtR(Hk−1(C∗), A)→ Hk(C∗(A))→ Hom(Hk(C∗), A)→ 0.

In particular, if R is a field then ExtR(Hk−1(C∗), R) = 0 and Hk(C∗(R)) ∼= (Hk(C∗))∗.

By the above theorem, we know that H∗(M) ∼= Hom(H∗(M),R). Let [φ] be the unique
class such that φ([M ]) = 1. We call this class the fundamental cohomology class.

Fundamental classes are also present in other theories. We assume that M is a connected,
oriented manifold.
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• For the relative homology there is the fundamental class [M,M \K] ∈ H∗(M,M \K)
for any connected compact subset K ⊂M [16, Lemma 3.27(a)].

• For non-compact manifolds there is the fundamental class [M ]lf ∈ H lf
∗ (M) [24, The-

orem 5.4]. Dually, we have the compactly supported fundamental cohomology class
[M ]∗cs ∈ H∗cs(M) [24, Corollary 5.7].

• By Theorem 1.2.19, there is the locally finite Lipschitz fundamental class [M ]Lip ∈
H lf,Lip
∗ (M), and by Theorem 1.2.21, there is the Lipschitz fundamental cohomology

class [M ]∗Lip ∈ H∗cs,Lip(M).

• Similarily, if M is smooth, closed manifold, then by Example 1.2.13 there exist the
smooth fundamental class in Hsm

∗ (M) and smooth fundamental cohomology class in
H∗sm(M).

• In the case of de Rham cohomology, we know that by the de Rham theorem (Example
1.2.7) there exists the fundamental cohomology class. On the other hand, there is a
canonical cocycle in Ωn(M), namely the volume form. One could ask how this cocycle
is related to the fundamental class. It turns out that

〈dR∗(dvolM ), c〉 =
∫
c
dvolM =

∫
M

dvolM = vol(M)

for every smooth fundamental cycle c ∈ Csmn (M), hence [dR∗(dvol)] = vol(M) · [M ]∗.
This fact can be used to recognise fundamental cycles.

More generally, if ω ∈ Ωn(M) is a form with the support in a compact set K, then
dR∗(ω) lies in C∗sm(M,M \K) and

〈dR∗(ω), [M,M \K]〉 =
∫
K
ω =

∫
M
ω.

In fact, the volume form can be used to detect fundamental cycles also in the locally
finite, Lipschitz case.

Proposition 1.2.24 ([25, Proposition 4.4]). Let M be a Riemannian n-manifold, and let
c =

∑
k∈N akσk ∈ C lf,Lip

n (M) be a cycle with |c|1 < ∞. Then c is a fundamental cycle if and
only if ∑

k∈N
ak · 〈dvolM , σk〉 = vol(M)

1.2.5. Products

In this section we would like to present various products in singular (co)homology. Before we
do that, let us present how to subdivide the product of simplices into simplices, following [16,
Chapter 3.B]. To construct such a subdivision, it is more convenient to present the simplex
in an alternative way. We will present the k-simplex as a subset of Rk as

∆̇k := {(x1, ..., xk) ∈ Rk : 0 ¬ x1 ¬ ... ¬ xk ¬ 1}.

Note that there is the diffeomorphism g : ∆k → ∆̇k defined as

g(x0, ...., xk) = (x0, x0 + x1, ...,
k−1∑
i=0

xi)
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with an inverse
g−1(y1, ..., yk) = (y1, y2 − y1, ..., yk − yk−1, 1− yk).

Therefore without loss of generality we can identify ∆k with ∆̇k.
The product ∆̇k × ∆̇l is the set

{(x1, ..., xk, y1, ..., yl) ∈ Rk+l : 0 ¬ x1 ¬ ... ¬ xk ¬ 1 ; 0 ¬ y1 ¬ ... ¬ yl ¬ 1}.

Let Zk,l be the set of such permutations of the sequence (1, ..., k+l) that preserve the orders of
(1, ..., k) and (k+1, ..., k+ l). That is, for z ∈ Zk,l, if z(i1) = j1 and z(i2) = j2 for i1 ¬ i2 ¬ k,
then j1 ¬ j2, and similarly if k < i1 ¬ i2. Note that for any permutation z ∈ Zk,l, the set

∆z := {(x1, ..., xk+l) ∈ Rk+l : 0 ¬ xz(1) ¬ ... ¬ xz(k+l) ¬ 1}

is a subset of ∆̇k × ∆̇l diffeomorphic to ∆̇k+l. Moreover,⋃
z∈Zk,l

∆z = ∆̇k × ∆̇l,

hence to the product of simplices ∆̇k×∆̇l we can assign the singular k+ l-chain
∑
z∈Zk,l ∆z ∈

Ck+l(∆̇k × ∆̇l). For topological spaces X, Y , this allows us to define the Prism operator

P : C(∆k, X)× C(∆k, Y ) → Ck+l(X × Y )

σ × τ 7→ (σ × τ)∗(
∑
z∈Zk,l

∆z)

for k, l ∈ N.
Note also that if X,Y are metric spaces, then if the simplices σ : ∆k → X and τ : ∆l → Y

are Lipschitz, then P (σ × τ) is a Lipschitz chain with the Lipschitz constant depending only
on k, l, Lip(σ) and Lip(τ).

The above construction allows us to define the cross product in various homology theories:

× : Hk(X)⊗Hl(Y ) → Hk+l(X × Y ),

× : H lf
k (X)⊗H lf

l (Y ) → H lf
k+l(X × Y ),

× : H lf,Lip
k (X)⊗H lf,Lip

l (Y ) → H lf,Lip
k+l (X × Y ),

for k, l ∈ N. It is defined on the chain level by the Eilenberg-Zilber map∑
i

aiσi ⊗
∑
j

bjτj 7→
∑
i,j

aibjP (σi × τj).

It is a classical fact that for two discs Dm, Dn the cross product of fundamental cycles in
Cm(Dm, ∂Dm) and Cn(Dn, ∂Dn) yields a fundamental cycle in Cm+n(Dm+n, ∂Dm+n). From
the local definition of the fundamental cycle, the following proposition follows.

Proposition 1.2.25. Let c1 ∈ C∗(M) and c2 ∈ C∗(N) be fundamental cycles of manifolds
M and N respectively. Then c1 × c2 is a fundamental cycle of M ×N . The same applies to
locally finite and Lipschitz locally finite fundamental cycles.

Now we would like to examine the cross product in cohomology. It is constructed with
the use of the Alexander-Whitney map

AW : Cn+m(X × Y ) →
∑

k+l=n+m

Ck(X)⊗ Cl(Y )

σ 7→
∑

k+l=n+m

πX ◦ σck ⊗ πY ◦ lbσ,
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where σ ∈ C(∆n+m, X × Y ), πX : X × Y → X and πY : X × Y → Y are the canonical
projections, σck is the k-dimensional face of σ spanned by the first k + 1 vertices and lbσ is
the l-dimensional face of σ spanned by the last l + 1 vertices. We define the cohomological
cross product on the cochain level as

(φ× ψ)(σ) = (φ⊗ ψ)(AW (σ)) = φ(πX ◦ σcn) · ψ(πY ◦ mbσ).

for φ ∈ Cn(X), ψ ∈ Cm(Y ) and σ ∈ C(∆n+m, X×Y ). This induces the cross product on the
cohomology level

× : H∗(X)⊗H∗(Y )→ H∗(X × Y ).

There is also a cross product in cohomology with compact supports, which is induced by the
relative cross product

× : H∗(X,X \KX)⊗H∗(Y, Y \KX)→ H∗(X × Y, (X × Y ) \ (KX ×KY )),

where KX ⊂ X and KY ⊂ Y are compact. However, this cross product is not defined directly
on the cochain level. One may observe that if φ ∈ C∗(X,X \KX) and ψ ∈ C∗(Y, Y \KY ),
then φ×ψ ∈ C∗(X × Y )/(C∗((X \KX)× Y ) +C∗(X × (Y \KY ))), i.e. it is a cochain which
vanishes on the chains supported on C∗(X \ KX) × Y and C∗(X × (Y \ KY )). Using the
barycentric subdivision operator and the fife lemma [8, Lemma IV.5.10] one can show (see
[16, Chapter 3.2] for more details) that

H∗(X × Y, ((X \KX)× Y ) + (X × (Y \KY ))) ∼= H∗(X × Y, (X × Y ) \ (KX ×KY )).

As a result the cross product is defined only on the level of cohomology. However, in the
case of cohomology with Lipschitz compact supports the cross product can be defined on the
cochain level.

Proposition 1.2.26 ([25, Lemma 3.15]). Let X and Y be two complete metric spaces. Then
the cross product

Cn(X)⊗ Cm(Y ) → Cn+m(X × Y )
φ⊗ ψ 7→ φ× ψ

restricts to the cross product Cncs,Lip(X)⊗ Cmcs,Lip(Y )→ Cn+m
cs,Lip(X × Y ).

1.3. Amenability

We will need a few facts concerning the amenability of groups. The amenability of groups can
be defined both analytically and geometrically, and its intuitive meaning is that the group
allows certain averaging constructions. We present here only a few facts and definitions that
are sufficient for our applications, for more information and examples see [27, 28].

Definition 1.3.1. A group G is amenable if it admits a G-invariant mean, i.e. an element
µ ∈ (`∞(G))∗, such that

1. µ(1G) = 1;

2. µ(g · f) = µ(f) for every g ∈ G, f ∈ `∞(G).

In most cases only finitely generated amenable groups are considered. Then one has nice
alternative characterisations. However, some of these characterisations can be stated also in
the general case. Recall that we say that an element µ ∈ `1(G) is a probability measure, if it
is non-negative and

∑
g∈G µ(g) = 1. The following theorem, although not stated as above in

[27], is in fact proved there.
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Proposition 1.3.2 ([27, Theorem 3.3.2]). If G is amenable, then for any ε > 0 and any
finite set Γ ⊂ G there exists a finitely supported probability measure µ ∈ `1(G) such that

sup
g∈Γ
‖µ− g · µ‖1 ¬ ε.

Remark 1.3.3. Note that if µ ∈ `∞(G) is a mean invariant with respect to the left action
of G on `∞, the mean defined as

µr(f) = µ(inv(f)),

where inv(f)(g) = f(g−1) for g ∈ G, defines an invariant mean with respect to the right
action of G on `∞(G). The same applies to the above proposition, namely it is also valid for
the right action on `1(G).

The simplest class of examples of amenable groups are finite groups. It can be checked
that an invariant mean for a finite group G is given by

µ(f) =
1
|G|

∑
g∈G

f(g).

However, one can obtain much more examples using the following facts.

Proposition 1.3.4 ([28, Proposition 3.55]). Let

1→ A→ B → C → 1

be an exact sequence of groups. Then

1. if B is amenable, then A and C are;

2. if A and C are amenable, then B is.

Proposition 1.3.5 ([10, Theorem 3.4]). The direct limit (over any, non necessarily countable,
linearly ordered system) of amenable groups is an amenable group. In particular, if (Gj)j∈J
is a family of amenable groups for any indexing set J , then

⊕
j∈J Gj is amenable.

The following proposition is a characterisation of amenability used by Gromov in [12].
Note that if G acts on a set X, then `1(G) acts on `1(X) by

(µ ∗ f)(x) =
∑
g∈G

µ(g)f(g−1x),

where µ ∈ `1(G) and f ∈ `1(X). Certainly, ‖µ ∗ f‖1 ¬ ‖µ‖1 · ‖f‖1.

Proposition 1.3.6 ([12, Section 4.2]). Let f : X → R be a finitely supported function and
let G be an amenable group acting transitively on the set X. Then for every ε > 0 there exists
a finitely supported probability measure µ on G such that

‖µ ∗ f‖1 ¬ ε+ |
∑
x∈X

f(x)|.

Corollary 1.3.7. Let f : X → R be a finitely supported function and let G be an amenable
group acting on the set X with a finite set of orbits X0, ..., XN ⊂ X. Then for every ε > 0
there exists a finitely supported probability measure µ on G such that

‖µ ∗ f‖1 ¬ ε+
N∑
i=1

|
∑
x∈Xi

f(x)|
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Proof. Consider fi = f |Xi ∈ `1(Xi) for i = 1, ..., N . In particular, ‖f‖ =
∑N
i=1 ‖fi‖1. By

induction, choose finitely supported probability measures µk ∈ `1(G) for k = 1, ..., N , such
that

‖µk ∗ (... ∗ µ1 ∗ fk)‖1 ¬
ε

N
+ |

∑
x∈Xk

µk−1 ∗ ...µ1 ∗ fk(x)| = ε+ |
∑
x∈Xi

fk(x)|.

Then for µ = µN ∗ ... ∗ µ1, we have

‖µ ∗ f‖1 = ‖µN ∗ ... ∗ µ1 ∗ f‖1 =
N∑
i=1

‖µN ∗ ...µ1 ∗ fi‖1

¬
N∑
i=1

‖µN‖1 · ...‖µi+1‖1 · ‖µi ∗ ...µ1 ∗ fi‖1

¬
N∑
i=1

(
ε

N
+ |

∑
x∈Xi

fi(x)|) = ε+
N∑
i=1

|
∑
x∈Xi

f(x)|.
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Chapter 2

Simplicial volume

In this chapter we present the simplicial volume, its variants and some methods used to study
them. In Section 2.1 we introduce the notion of the simplicial volume and describe some of
its most crucial properties. In Section 2.2 we study generalizations of the simplicial volume
to the non-compact case. In particular, we define the Lipschitz simplicial volume and state
the results concerning this invariant. Section 2.3 is devoted to the presentation of the duality
principle and its Lipschitz variant [12, 25], which are very important tools in the study of the
standard and Lipschitz simplicial volumes. Finally, in Section 2.4 we introduce the diffusion
technique which is also a useful tool in various computations concerning the simplicial volume.
In particular, we prove Theorem D form the introduction. The diffusion of chains was first
described by Gromov [12], but we define it in an alternative way.

2.1. Simplicial volume of compact manifolds

Let X be a topological space. Then we can introduce the `1 norm on the space C∗(X) by

|
∑
i

aiσi|1 =
∑
i

|ai|.

This norm allows us to define the semi-norm on H∗(X) by

‖[c]‖1 = inf{|c′|1 : c′ ∈ C∗(X) ; [c] = [c′] ∈ H∗(X)}.

This short introduction leads us to one of the most important definitions of this work.

Definition 2.1.1. Let M be a closed, oriented manifold. Then the simplicial volume of M
is

‖M‖ := ‖[M ]‖1.

However, the simplicial volume can be defined also for manifolds with boundary as
‖[M,∂M ]‖1, and for non-orientable manifolds by

‖M‖ =
1
2
‖M̃2‖,

where ‖M̃2‖ denotes a double oriented covering of M .
To get a better feeling how the simplicial volume behaves, let us consider two basic

examples, following [12].
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Example 2.1.2. We will show that ‖S1‖ = 0. Let γn : I → S1 be defined as γn(t) = e2nπit.
Then for every n ∈ N+ we have the fundamental cycle

cn =
1
n
γn,

which satisfies |cn|1 = 1
n . Therefore ‖S1‖ = 0.

Example 2.1.3. We will show that for a closed surface Σg of genus g  2 one has

‖Σg‖ = 4(g − 1) = 2|χ(Σg)|.

Because the universal cover of Σg is isometric to H2, we can equip Σg with a Riemannian
metric of constant curvature −1. For a singular simplex σ : ∆2 → Σg let str(σ) : ∆2 → Σg be
the singular simplex which is the projection of a geodesic simplex in Σ̃g = H2 with the same
vertices as some lift of σ to Σ̃g. In particular, by Theorem 1.1.18,

vol(im str(σ)) ¬ vol(im(s̃tr(σ))) < π.

If c =
∑
i aiσi is a fundamental cycle, then the cycle c′ =

∑
i ai str(σi) is also fundamental,

with |c′|1 ¬ |c|1. Moreover, by Gauss-Bonnet theorem (Theorem 1.1.19),

π|c′|1 >
∑
i

|ai| vol(im str(σi))  vol(Σg) = 2π|χ(Σg)|.

Hence ‖Σg‖  2|χ(Σg)| = 4(g − 1).
On the other hand, present Σg as an 4g-gon with identified edges. Then it can be subdi-

vided into 4g−2 triangles, hence ‖Σg‖ ¬ 4g−2. Moreover, for every n  1 there exists a finite
n-folded covering Σn(g−1)+1 → Σg, hence using the similar triangulation of 4(n(g−1)+1)-gon
into 4n(g − 1) + 2 triangles, we obtain

‖Σg‖ ¬ inf
n∈N

4n(g − 1) + 2
n

= 4(g − 1).

We list now some crucial properties of the simplicial volume.

1. Functoriality

Let f : M → N be a continuous map of n-dimensional closed manifolds. Then because
f∗([M ]) = deg(f) · [N ], we have

‖N‖ · | deg(f)| ¬ ‖M‖.

Corollary 2.1.4. If ‖N‖ > 0 then for any map f : M → N ,

| deg(f)| ¬ ‖M‖
‖N‖

.

As one can see, the above corollary is quite useless, unless one could decide if the
simplicial volume of a given manifold is 0 or not. The exact value or some fine estimate
would be even better, but even in the case where we know only that ‖N‖ 6= 0 we can
deduce that there exists an upper bound on the degree of any map from any given
closed manifold M . In particular, if ‖N‖ 6= 0 then N is inflexible, i.e. the only self-
maps f : N → N are of degree 0 or ±1. However, the converse is false, because there
exist inflexible manifolds with vanishing simplicial volume [9]. Therefore the vanishing
of the simplicial volume does not give us any new information and we are particularly
interested in the examples of manifolds with non-zero simplicial volume.
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2. Product inequality

Although there is no known formula for the simplicial volume of the product of mani-
folds, there exist some estimates comparing this simplicial volume with the simplicial
volumes of factors.

Theorem 2.1.5 ([12, Section 1.1]). If M and N are closed manifolds, then

‖M‖ · ‖N‖ ¬ ‖M ×N‖ ¬
(

dimM + dimN

dimM

)
‖M‖ · ‖N‖.

However, it is an open question if the above estimates are optimal. The only exact
computation of the simplicial volume of a product of manifolds M1 and M2 such that
‖M1 ×M2‖ > 0 was made by Bucher in [4], stating that if M1 and M2 are two closed
surfaces then

‖M ×N‖ =
3
2
‖M‖ · ‖N‖.

There are also some generalisations of these inequalities to the case of surface bundles,
see [13, 5] for details.

3. Relations with volume

In the presence of certain curvature conditions, the simplicial volume, in spite of being
a homotopy invariant, has strong connections with the Riemannian volume.

Theorem 2.1.6 ([12, Section 1.2]). Let M be a closed Riemannian manifold such that
sec(M) ¬ −1. Then there exists positive constant Cn, depending only on dimM , such
that

‖M‖  Cn vol(M).

In fact, this is true also if M is a closed locally symmetric space of non-compact type
[20, 29].

On the other hand, we have the following.

Theorem 2.1.7 ([12, Section 2.4 and 2.5]). If M is a closed Riemannian manifold with
Ricci(M)  −(n− 1), then

‖M‖ ¬ n! · vol(M).

These two theorems, together with functorial properties of the simplicial volume, are
sufficient to yield a non-trivial degree theorem.

Corollary 2.1.8. Let f : M → N be a continuous map between two closed Riemannian
n-manifolds such that Ricci(M)  −(n− 1) and sec(N) ¬ −1 (or N is a closed locally
symmetric space of non-compact type). Then there exists a constant Dn, depending only
on n, such that

|deg(f)| ¬ Dn
vol(M)
vol(N)

.

4. Proportionality principle

The theorems in the previous point might indicate that the simplicial volume is in some
sense proportional to the Riemannian volume. The following theorem is some kind of
confirmation to such suspicions.
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Theorem 2.1.9 ([12, Section 2.3]). Let M and N be closed Riemannian manifolds with
isometric universal covers. Then

‖M‖
vol(M)

=
‖N‖

vol(N)
.

5. Connected sums

Another source of manifolds with positive simplicial volume are the connected sums of
such manifolds.

Theorem 2.1.10 ([12, Section 3.5]). Let M and N be closed n-dimensional manifolds,
where n  3. Then

‖M#N‖ = ‖M‖+ ‖N‖.

6. Vanishing on amenable manifolds

Unfortunately, there are many manifolds with trivial simplicial volume. The theorem
below yields a large class of such examples.

Theorem 2.1.11 ([12, Sections 3.1-3.3]). If M is a closed manifold and π1(M) is
amenable, then

‖M‖ = 0.

In fact, a stronger statement is true. Namely if there exists an amenable open cover of
M with multiplicity ¬ dimM , then ‖M‖ = 0 [12, Section 4.2].

2.2. Simplicial volume of non-compact manifolds

Let us now examine the non-compact case. Let M be a complete, connected, oriented n-
manifold. Then we can define the simplicial volume of ‖M‖ just as

‖M‖ := ‖[M ]lf‖1,

where [M ]lf ∈ H lf
n (M) is the locally finite fundamental class. Note that because we are

using locally finite homology, it is invariant with respect to proper homotopy equivalences.
Although some of the properties of the simplicial volume for compact manifolds generalise to
the non-compact case, some of them do not. We list some of these.

• If M and N are complete manifolds then

‖M ×N‖ ¬
(

dimM + dimN

dimM

)
‖M‖ · ‖N‖.

However, the inequality
‖M‖ · ‖N‖ ¬ ‖M ×N‖

does not hold in general. In fact, the simplicial volume of a products is in many cases
zero by the following theorem.

Theorem 2.2.1 ([12, Section 4.2]). Let M1, M2, M3 be open manifolds. Then

‖M1 ×M2 ×M3‖ = 0.
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One could ask what happens if we take the product of two open manifolds. However,
very little is known. In particular, the question whether the simplicial volume of a
product of two open manifolds M1 ×M2 can be finite and positive is still open.

• As in the compact case, there exists a constant Cn > 0 depending only on dimension
of M , such that if M is a Riemannian manifold with Ricci(M)  −(n− 1) then

‖M‖ ¬ Cn vol(M).

On the other hand, there is no lower bound on the simplicial volume in terms of the
Riemannian volume in general. For example, for the hyperbolic space Hn for n  2 one
has sec(Hn) ¬ −1 and vol(Hn) =∞, while ‖Hn‖ = 0 because there exist proper maps
Hn → Hn of arbitrary large degree.

• The proportionality principle does not hold in the non-compact case, even for Rie-
mannian manifolds of finite volume. To see this, let M be a complete, non-compact
hyperbolic manifold of finite volume. Let also M ′ be a closed hyperbolic manifold of
the same dimension. Then M and M ′ have isometric universal covers, but by Theorems
2.1.5 and 2.2.1,

‖(M ′)3‖
vol((M ′)3)

6= 0 =
‖M3‖

vol(M3)
.

As we can see, although some properties are inherited by the simplicial volume in the
non-compact case, some of those which are particularly interesting to us (because they yield
some examples of manifolds with non-zero simplicial volume) in most cases do not hold any
more. Therefore Gromov in [12] introduced a metric version of the simplicial volume.

Definition 2.2.2. Let M be a complete oriented Riemannian manifold with vol(M) < ∞.
Then the Lipschitz simplicial volume of M is

‖M‖Lip := ‖[M ]Lip‖1.

Note that this definition makes sense only for manifolds with vol(M) < ∞, because in
the other case one must have ‖M‖Lip =∞. Indeed, we have the following lemma.

Lemma 2.2.3 ([25, Proposition 4.4(1)]). For every L-Lipschitz singular simplex on M , we
have

〈dvolM , σk〉 ¬ Ln vol(∆n).

Now, let c =
∑
i aiσi ∈ C lf,Lip

n (M) be a fundamental cycle. Then on the one hand one has
vol(M) =∞, but on the other hand, by the above lemma and Proposition 1.2.24,

vol(M) = 〈dvolM , c〉 ¬
∑
i

|ai| vol(σi) ¬
∑
i

|ai|Lip(c)n vol(∆n).

It follows that
∑
i |ai| =∞.

To see that the above definition truly generalises the definition of the simplicial volume,
we prove the following.

Proposition 2.2.4. Let M be a smooth compact manifold. Then ‖M‖Lip = ‖M‖.

Proof. By Example 1.2.13, smooth homology is isomorphic to ordinary singular homology.
Moreover, by the proof of Lemma 1.2.11, the simplicial volume can be computed only on
smooth chains. Because every finite smooth chain is Lipschitz, the proposition follows.
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However, in contrast to the ’naive’ generalization of the simplicial volume, the Lipschitz
simplicial volume seems to satisfy a lot of properties of the classical one also in the non-
compact case.

1. Functoriality

The functorial behaviour of the Lipschitz simplicial volume is very similar to that of the
simplicial volume. The only difference is that it is functorial with respect to Lipschitz
proper maps. In particular, we have the following proposition.

Proposition 2.2.5. If ‖N‖Lip > 0 then for any Lipschitz proper map f : M → N ,

|deg(f)| ¬ ‖M‖Lip

‖N‖Lip
.

Again, the above proposition is not very useful unless we can estimate somehow ‖ ·‖Lip,
or at least give examples of manifolds with positive Lipschitz simplicial volume.

2. Product inequality

In contrast to the standard generalisation of the simplicial volume, the product inequal-
ity for the Lipschitz simplicial volume holds.

Theorem 2.2.6 ([32, Theorem 1.3]). Let M and N are closed manifolds with sec(M), sec(N) <
K <∞. Then

‖M‖Lip · ‖N‖Lip ¬ ‖M ×N‖Lip ¬
(

dimM + dimN

dimM

)
‖M‖Lip · ‖N‖Lip.

The proof is postponed to Section 4.2. It has been proved recently by Franceschini [14]
that it is true also without the curvature assumption .

3. Relations with volume

Theorem 2.2.7. Let M be a complete Riemannian manifold such that sec(M) ¬ −1.
Then there exists positive constant Cn, depending only on dimM , such that

‖M‖Lip  Cn · vol(M).

The proof of the above theorem is postponed to Section 4.1.

Using the proportionality principle for the Lipschitz simplicial volume, one can prove
the above estimate also if M is a complete locally symmetric space [25, Corollary 1.6].

There is also an estimate from above for the Lipschitz simlicial volume by the Rieman-
nian volume. However, we need to add an additional curvature assumption.

Theorem 2.2.8 ([25, Theorem 1.8]). Let M be a complete Riemannian manifold such
that Ricci(M)  −(n− 1) and sec(M) ¬ 1. Then there exists a constant Dn, depending
on n = dimM , such that

‖M‖ ¬ Dn vol(M)

Using the above two theorems, we can generalize the corresponding degree theorem to
the non-compact case.
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Corollary 2.2.9 ([25, Theorem 1.10]). Let f : M → N be a proper Lipschitz map
between two complete Riemannian n-manifolds of finite volume such that Ricci(M) 
−(n − 1) and sec(N) ¬ −1 (or N is a closed locally symmetric space of non-compact
type). Then there exists a constant Dn, depending only on n, such that

|deg(f)| ¬ Dn
vol(M)
vol(N)

.

4. Proportionality principle

For the Lipschitz simplicial volume, the proportionality principle generalizes to the
non-compact case.

Theorem 2.2.10 ([32, Theorem 1.4]). Let M and N be complete Riemannian manifolds
of finite volume with isometric universal covers such that sec(M), sec(N) < K < ∞.
Then

‖M‖Lip

vol(M)
=
‖N‖Lip

vol(N)
.

The proof is postponed to Section 4.3. This theorem has been also recently generalized
in [14] to the case of manifolds without curvature bounds.

5. Connected sums

This case is still open. However, because taking the connected sum of two manifolds is
an operation that modifies both manifolds locally, there is a chance that the Lipschitz
simplicial volume behaves similarly as the classical simplicial volume of a compact
manifold. Moreover, in some special cases the additivity with respect to connected
sums can be deduced from existing theorems.

Proposition 2.2.11. Let M and N be two manifolds of the same dimension n  3
which are homeomorphic to the interiors of compact manifolds with boundaries consist-
ing of components with amenable fundamental groups. Assume moreover that ‖M‖Lip

and ‖N‖Lip are finite. Then

‖M#N‖Lip = ‖M‖Lip + ‖N‖Lip.

Proof (sketch). By [18, Corollary 1.4], we know that if ‖M‖Lip, ‖N‖Lip < ∞, M ∼= V
and N ∼= W , where V and W are compact manifolds with amenable boundary com-
ponents, then ‖M‖Lip = ‖V, ∂V ‖ and ‖N‖Lip = ‖W,∂W‖. Moreover, by [19, Theorem
1],

‖V#W,∂V ∪ ∂W‖ = ‖V, ∂V ‖+ ‖W,∂W‖.

Observe that using again [18, Corollary 1.4], the left-hand side of the above equality
equals ‖M#N‖Lip.

6. Vanishing on amenable manifolds

Vanishing results for the Lipschitz simplicial volume are quite similar to those in the
compact case. One has the following theorem.

Theorem 2.2.12. Let M be a complete manifold such that ‖M‖Lip <∞. If π1(M) is
amenable then

‖M‖ = 0.
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The proof is postponed to Section 2.4.

Note, however, that there are amenable manifolds such that ‖M‖Lip = ∞ in every
dimension. Consider for example Mn = Sn−1×R for n ∈ N+. Then π(Mn) is amenable
(in fact trivial for n 6= 1), but vol(Mn) =∞, hence ‖M‖Lip =∞.

2.3. Duality

One of the most important tools in the study of the simplicial volume is bounded cohomology,
which is linked to the simplicial volume by the duality principle. Bounded cohomology is co-
homology of the complex of bounded cochains, which is a subcomplex of the standard singular
chain complex. It turns out that the `1 semi-norm of homology classes can be expressed by a
semi-norm of corresponding bounded cohomology classes. Almost all the techniques used for
the simplicial volume can be translated to the language of bounded cohomology. Moreover, in
many cases bounded cohomology is easier to study. In particular, if an amenable group acts
on a set of bounded cochains, we can average this action. This opportunity is exploited in
many problems where the amenability of certain subspaces is present [6, 12, 19, 18]. Another
application of the duality between the simplicial volume and bounded cohomology in which
we are interested in, is the product inequality.

We will not need bounded cohomology itself here. To our applications, it suffices to define
the `∞ semi-norm on singular cochains. Let φ ∈ Ck(M) for k ∈ N. Then we define the
(possibly infinite) `∞ norm of φ as

‖φ‖∞ = sup
σ∈C(∆k,M)

|φ(σ)|.

If this norm is finite, we say that φ is bounded. This norm induce the `∞ semi-norm on H∗(M)
as

‖[φ]‖∞ = inf{‖φ′‖∞ : [φ′] = [φ] ∈ H∗(M)}.
Obviously, the above semi-norm can be infinite.

We mentioned that the simplicial volume and bounded cohomology are connected by the
duality principle. We present it below.

Theorem 2.3.1 (Duality principle, [12, Section 1.1]). Let M be a closed oriented manifold.
Then

‖M‖ =
1

‖[M ]∗‖∞
,

where [M ]∗ ∈ Hn(M) is the fundamental cohomology class.

There is also a version of the duality principle for the Lipschitz simplicial volume. Unfor-
tunately, it is slightly more complicated than the classical one. First of all, the space ’dual’
to the space of locally finite chains is the space of bounded cochains with compact supports,
which is usually more complicated to study than the space of just bounded cochains. The
reason is that it is difficult to express having a compact support in the analytical setting.

We will denote by Slf,Lip
k (M) the family of subsets of C(∆k,M) such that A ∈ Slf,Lip

k

if and only if it is locally finite, in the sense that for any given compact subset K ⊂ M we
have #{σ ∈ A : σ ∩K 6= ∅} < ∞, and consists of L-Lipschitz simplices for some L < ∞,
depending on A. If A ∈ Slf,Lip

k , we define the `1 norm relative to A of a singular locally finite
Lipschitz chain c =

∑
i aiσi ∈ C

lf,Lip
k (M) as

|c|A1 :=

{
|c|1 if supp(c) ⊂ A,
∞ otherwise.

,
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where supp(c) =
⋃
i{σi} ⊂ C(∆k,M). It induces a semi-norm on H lf,Lip

k (M) by

‖[c]‖A1 := inf{|c′|A1 : [c′] = [c] ∈ H lf,Lip
k (M)}.

In particular, we will denote by ‖M‖A the simplicial volume relative to A, i.e.

‖M‖A := ‖[M ]‖A1 .

It is a straightforward observation that

‖M‖Lip = inf
A∈Slf,Lipn

‖M‖A.

We have also dual norms for cocycles with Lipschitz compact supports. They are defined
as

‖φ‖A∞ := sup
σ∈A
|φ(σ)|

for A ∈ Slf,Lip
k . We will denote by ‖ · ‖A∞ also the corresponding semi-norm on cohomology.

Theorem 2.3.2 ([25, Proposition 3.12]). Let M be an oriented, connected Riemannian man-
ifold and let A ∈ Slf,Lip

n (M). Then

‖M‖A =
1

‖[M ]∗Lip‖A∞
,

where [M ]∗Lip is the Lipschitz compactly supported fundamental class.

2.4. Diffusion of chains

Another technique, invented by Gromov in [12], is the diffusion of chains. The philosophy of
this method is to use certain paths to mix vertices of a given chain and observe how does
this procedure affect the coefficients of the simplices in this chain. Under some assumptions
(concerning amenability), some coefficients might (almost) vanish. This method can be used
to exclude certain simplices from the calculation of the simplicial volume. Because it works
purely on the geometric level, it can be easily adapted to the Lipschitz case when used locally
and yield a proof of Theorem 2.2.12.

The diffusion technique has several variants, we will use the following one.

Proposition 2.4.1. Let M be a Riemannian manifold and let K ⊂ M be a path-connected
compact set such that the image of the map π1(K)→ π1(M) is amenable. Then for any cycle
c =

∑
i aiσi ∈ C lf,Lipk (M) such that every simplex σ ∈ supp(c) satisfying σ ∩ K 6= ∅ has

distinct vertices, we have
‖[c]‖1 ¬

∑
{i : σi has no edge in K}

|ai|.

Remark 2.4.2. In fact the inequality in the above proposition is true without the assumption
on the distinctiveness of vertices. However, the proof is much longer and more technical, and
the above version is sufficient for our applications.

Corollary 2.4.3. Let M be a Riemannian manifold and let K ⊂ M be a path-connected
compact uncountable set such that the image of the map π1(K)→ π1(M) is amenable. Then
for any cycle c =

∑
i aiσi ∈ C

lf,Lip
k (M), we have

‖[c]‖1 ¬ k!
∑

{i : σi 6⊂K}
|ai|.

37



Proof. Note that by homotoping finitely many simplices while keeping their vertices fixed,
we can assume that for every simplex σ ∈ supp(c) such that σ ∩ K 6= ∅, its barycentric
subdivision S(σ) consists of simplices with distinct vertices (here we use the assumption that
K is uncountable). Let S(c) =

∑
j a
′
jσ
′
j . We have

‖[c]‖1 = ‖[S(c)]‖1 ¬
∑

{j : σ′j has no edge in K}
|a′j | ¬

∑
{j : σ′j 6⊂K}

|a′j |

¬
∑

{i : σi 6⊂K}

∑
{σ′j∈supp(S(σi))}

|ai| ¬
∑

{i : σi 6⊂K}
k! · |ai|.

To prove Proposition 2.4.1 we will need a few ingredients. Some of them, which have been
already introduced, are the alternation of chains and diffusion of a function in the sense of
Corollary 1.3.7. The last one is the pre-straightening of chains. Let ΣK =

⋃
k∈N Σk

K , where
Σk
K ⊂ Lip(∆k,M) for k ∈ N, be a family of Lipschitz simplices satisfying:

1. Σ0
K = M ;

2. if σ ∈ Σk
K and σ′ = ∂iσ for some i = 0, ..., k then σ′ ∈ Σk−1

K ;

3. Σk
K is closed under the action of Sk+1 for k ∈ N;

4. if a Lipschitz singular k-simplex σ satisfies ∂iσ ∈ Σk−1
K , for i = 0, ..., k, then there exists

a unique simplex pstr(σ) ∈ Σk
K with the same boundary which is Lipschitz homotopic

to σ relative to ∂σ = ∂ pstr(σ). Moreover, if im(σ) ⊂ K, then im pstr(σ) ⊂ K.

Such a family always exists and can be easily constructed by induction on k ∈ N. We will
call any such family the family of pre-straight simplices (with respect to K).

Definition 2.4.4. We say that a chain c is ΣK-admissible if every simplex σi ∈ supp(c) such
that σi ∩K 6= ∅ is contained in ΣK .

Lemma 2.4.5. Every locally finite Lipschitz chain c is homologuous in C lf,Lip
∗ (M) to a ΣK-

admissible chain pstr∗(c).

Proof. First of all we construct a system of Lipschitz homotopies Hσ : ∆k × I → M for
σ ∈

⋃
k∈N Lip(∆k,M) such that

1. Hσ|∆k×{0} = σ;

2. Hσ|∆k×{1} ∈ Σk
K ;

3. for every k ∈ N and i = 0, ..., k, one has

Hσ|∂i∆k×I(x, t) = H∂iσ(x,min{2t, 1}).

We define Hσ by induction on k ∈ N. We can define Hσ(x, t) = x for 0-simplices σ. Let
Hσ be defined for all simplices σ ∈

⋃
j<k Lip(∆k,M) and let σ′ ∈ Lip(∆k,M). Then we define

H ′σ′ : ∆k × {0} ∪ ∂∆k × I by
H ′σ′ |∆k×{0} = σ′

and
H ′σ′ |∂i∆k×I = H∂iσ′
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for i = 0, ..., k. Because there exists a Lipschitz retraction rk : ∆k × I → ∆k ×{0}∪ ∂∆k × I,
we define H ′′σ′ : ∆k × I →M as

H ′′σ′(x, t) = H ′σ′(rk(x, t)).

Let σ′′ = H ′′σ′ |∆k×{1}. Then ∂σ′′ is a sum of simplices in Σk−1
K , hence there exists a unique

simplex pstr(σ′′) ∈ Σk
K which is Lipschitz homotopic to σ′′ relative to ∂∆k. Let H ′′′σ′′ : ∆k × I

be such homotopy. We define Hσ′ as

Hσ(x, t) =

{
H ′′σ′(x, 2t) t ∈ [0, 1

2 ]

H ′′′σ′′(x, 2t− 1) t ∈ [1
2 , 1]

.

Having the homotopies Hσ, a naive way of defining the pre-straightening of c =
∑
i aiσi ∈

C lf,Lip
∗ (M) is

pstr∗(c) =
∑
i

aiHσi |∆k×{1}.

However, the resulting chain could be non-Lipschitz because we have no control over the
Lipschitz constants of Hσi |∆k×{1}. On the other hand, we are interested in modifying only
the simplices which have non-empty intersection with K. Let

A :=
⋃

{i : σi∩K 6=∅}
im(σi),

and let fc ∈ Lip(M,R) be a compactly supported Lipschitz function such that fc|A = 1.
Define

pstr∗(c) :=
∑
i

aif#Hσi |∆k×{1},

where f#Hσi(x, t) = Hσi(x, f(σ(x)) · t) for x ∈ ∆k and t ∈ [0, 1]. Note that the pre-
straight chain defined above is a Lipschitz chain homotopic to c by the chain homotopy∑
i aiP (f#Hσi), where P is the prism operator from Section 1.2.5. Moreover, the simplices

in pstr∗(c) which intersect K are contained in Σk
K .

Now let Π(M,K) be a set of (not necessarily continuous) maps K 3 x 7→ [γx], where [γ]
is a homotopy class (in M) of a path γ : I → K relative to its endpoints, such that

1. γx(0) = x for every x ∈ K;

2. the map x 7→ γx(1) is a bijection of K.

3. ([γx])x∈K ∈ Π(M,K) has finite support, in the sense that for all but finitely many
x ∈ K the path γx is constant.

Π(M,K) forms a group, where the multiplication is induced by the concatenation of paths.
More precisely, if ([γx])x∈K , ([γ′x])x∈K ∈ Π(M,K), then

([γx])x∈K · ([γ′x])x∈K = ([γ′x ∗ γγ′x(1)])x∈K ,

where ∗ is the concatenation of paths. Note that Π(M,K) acts on Σk
K . For g = (γx)x∈K ∈

Π(M,K) and σ ∈ Σk
K we define this action as follows. Let v0, ..., vk be the vertices of σ

and let σ0 be a simplex obtained by homotopically extending each edge [vi, vj ] to an edge
γ−1
vi ∗ [vi, vj ]∗γvj (where we use the convention γx(t) = x for x /∈ K, t ∈ [0, 1]), then extending

this homotopy (defined on the 1-skeleton of ∆k) to the whole ∆k. Next we homotopy σ0
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successively to simplices σ1, ..., σk such that for i = 1, ..., k the homotopy between σi−1 and
σi fixes the i − 1-skeleton of ∆k and the image of i-skeleton of ∆k under σi is contained in
Σi
K .

Note also that if we repeat the above construction on a chain instead of a single simplex,
we will define the action of Π(M,K) on ΣK-admissible chains, which will satisfy [g · c] =
[c] ∈ H lf,Lip

∗ (M) for a cycle c ∈ C lf,Lip
∗ (M) and g ∈ Π(M,K). In particular, for a cycle

c ∈ C lf,Lip
∗ (M) and a finitely supported probability measure µ ∈ `1(Π(M,K)), we have

[µ ∗ c] = [
∑

g∈Π(M,K)

µ(g)g · c] = [c].

Proof of Proposition 2.4.1. Let

T := {σ ∈ Lip(∆k,M) : σ has an edge in K}.

Let also c′ =
∑
j a
′
jσ
′
j = Alt(pstr∗(c)). It is homologuous to c and by the constructions of

both operators one has |c′|1 ¬ |c|1. Moreover, by the definition of the pre-straigtening we
obtain ∑

{j : σ′j /∈T}
|a′j | ¬

∑
{i : σi /∈T}

|ai|.

Therefore it is enough to prove the statement for c′ instead of c.
There is a short exact sequence of groups

1→
⊕
x∈K

im(π1(K,x)→ π1(M,x))→ Π(M,K)→ Sfin(K)→ 1,

where Sfin(K) is a group of finitely supported permutations ofK0. Both
⊕
x∈K im(π1(K,x)→

π1(M,x)) and Sfin(K) are the direct limits of amenable groups, hence they are amenable by
Proposition 1.3.5. It implies the amenability of Π(M,K) by Proposition 1.3.4. Consider the
action of Π(M,K) on the set

⋃
g∈Π(M,K)

⋃
{σ∈supp(c)∩T} g · σ. Then it obviously has a finite

set of orbits X1, ..., XN . Therefore by Corollary 1.3.7, for every ε > 0 there exists a finitely
supported probability measure µ ∈ Π(M,K) such that if µ ∗ c′ =

∑
p a
′′
pσ
′′
p then

∑
{p : σ′′p∈T}

|a′′p| ¬ ε+
N∑
l=1

|
∑

{j : σ′j∈Xl}
a′j |.

Because ε is arbitrary and the action of Π(M,K) does not affect simplices not in T , we have

‖[c]‖1 ¬
∑

{i : σi /∈T}
|ai|+

N∑
l=1

|
∑

{j : σ′j∈Xl}
a′j |.

Therefore it suffices to show that for every l = 1, ..., N , we have
∑
{j : σ′j∈Xl}

a′j = 0.

Let σ′j ∈ T , then it has an edge e contained in K. Note that because the vertices of σ′j are
distinct, if s ∈ Sk+1 is the transposition that interchanges the endpoints of e then the simplex
s · σ′j is in the same orbit of the action of Π(M,K) as σ′j . To see this, define g = (γx)x∈K as

γx(t) =


e(t) x = e(0);

e(1− t) x = e(1);

x x 6= e(0), e(1).

Then g · σ = s · σ. However, c′ = Alt(c′), therefore the coefficients of σ′j and s · σ′j cancel
out.
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As a corollary, we get the desired vanishing result for the Lipschitz simplicial volume.

Proof of Theorem 2.2.12. Let c =
∑∞
i=1 aiσi be any Lipschitz fundamental cycle for M such

that |c|1 <∞. Then for every ε > 0 there exists N ∈ N such that

∞∑
i=N+1

|ai| < ε.

Let K =
⋃N
i=1 im(σi). It is a compact subset of M as a finite sum of compact sets. By

Corollary 2.4.3, one obtains
‖M‖Lip = ‖[c]‖1 ¬ n! · ε.

Because ε was arbitrary, one has ‖M‖Lip = 0.

Corollary 2.4.6. Let M be a complete Riemannian manifold with vol(M) <∞, sec(M) ¬ 1
and Ricci(M)  −(n− 1). Then if π1(M) is amenable, then ‖M‖Lip = 0.

Remark 2.4.7. In fact, the diffusion technique was originally designed by Gromov to study
the classical simplicial volume of non-compact manifolds. He used locally finite diffusion [12]
and obtained much more general statement.

Theorem ([12, Vanishing-finiteness Theorem 4.2]). Let M be an n-dimensional manifold
with an amenable precompact open cover U = Ui, i ∈ N such that

1. Ui →∞ in the sense for every compact set K one has

#{Ui ∈ U : Ui ∩K 6= ∅} <∞;

2. the multiplicity of the cover U is at most n;

3. M is amenable at infinity, i.e. for every compact set K ⊂M there exists a compact set
K ′ ⊃ K such that im(π1(M \K ′)→ π1(M \K)) is amenable.

Then ‖M‖ = 0.

The outline of the proof is as follows. Consider a triangulation of M such that the star
of every simplex is contained in one of the sets Ui, i ∈ N. Then one can subdivide M into
disjoint Borel subsets Vj ∈M , j ∈ N, such that each of them is contained in some Ui, i ∈ N.
Moreover, because the multiplicity of U is at most n, one can choose (Vj)j∈N such that every
simplex has at least one edge in some of these sets. Then one can modify the cycle defined
by the triangulation such that it has arbitrary small norm, using locally finite diffusion, i.e.
locally finite generalization of Proposition 2.4.1 for the family (Vj)j∈N.

In the Lipschitz case the above approach is not possible because when applying locally
finite diffusion one cannot control the Lipschitz constant globally. However, the proof that
the simplicial volume of a manifold with an amenable fundamental group is 0 generalises to
the Lipschitz case, provided the Lipschitz simplicial volume is finite.
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Chapter 3

Piecewise straightening procedure

In this chapter we define and investigate the piecewise straightening procedure, which is the
main technical result in this work. In Section 3.1 we describe the piecewise straightening itself,
while in Section 3.2 we describe piecewise C1 homology and piecewise C1 Milnor-Thurston
homology.

3.1. Piecewise straightening

The straightening procedure on non-positively curved manifolds is well described and applied
successfully to many problems. Roughly speaking, given a complete, simply connected Rie-
mannian manifold M with non-positive curvature and a singular simplex σ : ∆k → M with
vertices x0, ..., xk, the straightening of this simplex is the geodesic simplex [x0, ..., xk], which
is defined inductively to be the geodesic join of xk with the geodesic simplex [x0, ..., xk−1].
Because geodesics on M joining points are unique, there exists a (unique) geodesic homotopy
between σ and [x0, ..., xk] which is defined as the geodesic join [σ, [x0, ..., xk]]. We can apply
the same procedure to a singular simplex σ on non necessarily simply-connected Rieman-
nian manifold M with non-positive curvature by taking a lift of σ to the universal cover
σ̃ : ∆k → M̃ , applying straightening there and pushing down the result. It can be shown that
this procedure does not depend on the choice of the lift, hence it commutes with boundaries
and defines a chain operator inducing an isomorphism on homology. The same applies to
locally finite Lipschitz chains and homology. The straightening procedure has also the advan-
tage that it does not increase the l1 norm of chains, therefore the isomorphism on homology
turns out to be isometric. As a result, the simplicial volume can be computed by considering
only straight chains. This fact, together with a careful control of the set of vertices of a given
chain, is the key to prove e.g. the proportionality principle and the product inequality for the
Lipschitz simplicial volume, assuming all the involved manifolds have non-positive curvature.

However, if we consider simply connected Riemannian manifolds with sec(M) < K <∞,
where K > 0, the geodesics do not have to be unique any more. They are unique locally,
but unfortunately not uniformly, even if we pass to the universal cover. Therefore the crucial
problem in defining the piecewise straightening procedure on M is the choice of a suitable
space in which we have such uniform local uniqueness of geodesics. If such a space is provided,
one can define piecewise straightening by barycentrically subdividing given singular chain,
straighten every small simplex and glue the straightened simplices back together.

In Section 3.1.1, for every point of M we construct an ’exponential neighbourhood’ of
it which is a space admitting a local isometry to M for which there exists a uniform lower
bound (depending on K) of the injectivity radius of points in some (uniform) neighbourhood
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of the origin. This system of spaces and local isometries on M admits also transition maps (at
least locally) which allow one to apply some local constructions independently of the choice
of a point for which we consider its exponential neighbourhood. The construction is sketched
in [12, 4.3(B)], however, we provide a more detailed approach. In Section 3.1.2, we recall
basic notions concerning geodesic simplices and joins and prove that under some curvature
and diameter conditions the geodesic join of Lipschitz maps is also Lipschitz. Finally, in
Section 3.1.3, we define the piecewise straightening procedure for locally finite Lipschitz
chains.

To clarify the notation, we will denote by BM (x, r) the open ball in a space M centred at
x with radius r, and more generally by BM (X, r) the open r-neighbourhood of a set X ⊂M .
We consider also all Riemannian manifolds as metric spaces with metric induced by the
Riemannian structure.

3.1.1. Exponential neighbourhoods

Let M be a connected, complete n-dimensional Riemannian manifold with sec(M) < K,
where K > 0.

Definition 3.1.1. Let x ∈ M and let r ¬ π√
K

. Consider the open ball BTxM (0, r) in the
tangent space TxM . Then the exponential map expx : BTxM (0, r) → M is an immersion by
Proposition 1.1.14. We endow BTxM (0, r) with the Riemannian metric induced from M by
expx and obtain a space Vx(r) which we call the r−exponential neighbourhood of x with a
distinguished point x̄ ∈ Vx(r), which corresponds to 0 in BTxM (0, r) and the canonical local
isometry px : Vx(r)→M such that px(x̄) = x.

If r = π√
K

we will denote this space for short as Vx.

The spaces Vx are not complete. However, the closures of the open balls BVx(x̄, r) for any
r < π√

K
are complete as metric spaces and for y ∈ Vx(r) the map expy : TyVx → Vx is defined

for vectors of length less than π√
K
− r. As we will see next, these spaces have all the desired

properties described in the introduction of this section. First of all we check that there exists
a uniform lower bound on the injectivity radii of points around the origins of Vx.

Proposition 3.1.2. Let x ∈M and let y ∈ Vx( π
4
√
K

). Then the injectivity radius of y in Vx
is at least π

4
√
K

.

Proof. If y ∈ BVx(x̄, π
4
√
K

) then the exponential map expy : TyVx → Vx is defined for vectors

of length less than 3π
4
√
K

. Indeed, if z ∈ BTyVx(0, 3π
4
√
K

), then

dVx(x̄, expy(z)) ¬ dVx(x̄, y) + dVx(y, expy(z)) =
π

4
√
K

+
3π

4
√
K

<
π√
K
,

hence expy(z) ∈ Vx. Because of the curvature bound, expy |BTyVx (0, 3π
4
√
K

) is an immersion by

Proposition 1.1.14, so we only need to prove that it is injective on BTyVx(0, π
4
√
K

).
Denote by V ′y the space BTyVx(0, π

2
√
K

) endowed with the Riemannian metric induced
from Vx (so the exponential map expy : V ′y → Vx becomes a local isometry) with a dis-
tinguished point ȳ corresponding to 0 in TyVx. Let z1, z2 ∈ BV ′y (ȳ, π

4
√
K

) be such that
expy(z1) = expy(z2) = z and let x̃ ∈ BV ′y (ȳ, π

4
√
K

) be some lift of x̄, i.e. any point satis-
fying expy(x̃) = x̄. Such a point exists in BV ′y (ȳ′ π

4
√
K

) because dVx(x̄, y) < π
4
√
K

, but need
not be unique. Since x̃, z1, z2 ∈ BV ′y (ȳ, π

4
√
K

), dV ′y (x̃, z1) < π
2
√
K

and expz1 is defined on
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BTzV ′y (0, π
2
√
K

), hence there exists a geodesic γ1 in V ′y joining z1 and x̃. Similarly, there is
a geodesic γ2 joining z2 and x̃. Because expy is a local isometry on V ′y , both expy(γ1) and
expy(γ2) are geodesics joining x̄ and z inside Vx. But by the construction of the exponential
map and the space Vx, all geodesics joining x̄ and any other point inside Vx are unique. In
particular, expy(γ1) = expy(γ2). We use again the fact that expy is a local isometry around x̃
to see that both geodesics γ1 and γ2 have the same tangent line in x̃ and the same direction,
hence (without loss of generality) γ1 is a subgeodesic of γ2. Moreover, because expy does not
change the length of geodesics, we have in fact γ1 = γ2, hence z1 = z2.

Secondly, we check the existence of ’transition maps’ which will allow us to perform local
constructions on the spaces Vx independently of x ∈M .

Proposition 3.1.3. Let x, y ∈ M be such that dM (x, y) < π
4
√
K

. Let also y′ be any lift
of y to Vx( π

4
√
K

). Then there exists a locally isometric diffeomorphism Iy′,x : Vy( π
4
√
K

) →
BVx(y′, π

4
√
K

) such that we have a commutative diagram

Vy( π
4
√
K

)
Iy′,x //

py
##

BVx(y′, π
4
√
K

)

px
yy

M

Proof. By Proposition 3.1.2, we know that expy′ provides a diffeomorphism

expy′ : BTy′Vx(0,
π

4
√
K

)→ BVx(y′,
π

4
√
K

) ⊂ Vx

which becomes a local isometry after a change of the Riemannian metric on BTy′Vx(0, π
4
√
K

).
Hence it suffices to show that Vy( π

4
√
K

) is isometric to BTy′Vx(0, π
4
√
K

) (with the Riemannian
metric induced by expy′). However, both spaces can be identified with the space of geodesics
of length less than π

4
√
K

starting from y, with the Riemannian metric induced from M by the
map mapping every geodesic to its endpoint. Checking the commutativity of the diagram is
straightforward.

Finally, we establish the lifting property for the spaces Vx with respect to singular simplices
with sufficiently small Lipschitz constants. Recall that if X is a metric space and γ : [0, 1]→ X
then we define the length of γ to be

L(γ) := sup{
n∑
i=1

dX(γ(ti−1), γ(ti)) : 0 = t0 < t1 < ... < tn = 1, n ∈ N},

and we say that X is geodesic if it is path-connected and for any two points their distance
equals the length of the shortest path between them, called a geodesic. Note that if γ is a
smooth path on a Riemannian manifold then its length defined as above equals the length
defined as in Section 1.1.1. Moreover, a complete Riemannian manifold is geodesic as a metric
space. In particular, the k-dimensional simplex ∆k is a geodesic space with diameter

√
2.

We will use the following simple fact.

Lemma 3.1.4. Let X be a geodesic metric space and let f : X → Y be a Lipschitz map.
Then for every ε > 0

Lip(f) = sup{dY (f(x), f(x′))
dX(x, x′)

: x, x′ ∈ X , 0 < dX(x, x′) < ε},
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where Lip(f) is the (optimal) Lipschitz constant of f , i.e.

Lip(f) = sup
x 6=x′∈X

dY (f(x), f(x′))
dX(x, x′)

.

Proof. The ’’ inequality is obvious, we need to prove the opposite one. Let δ > 0 and let
x, x′ ∈ X be two points for which the expression dY (f(x),f(x′))

dX(x,x′) is δ-close to Lip(f), i.e. such
that

dY (f(x), f(x′)) > (Lip(f)− δ)dX(x, x′)

Let also γ : [0, dX(x, x′)]→ X be the geodesic joining x and x′. Subdivide γ into non-trivial
subgeodesics γ1, ..., γn of length less than ε and let x = x0, x1, ..., xn = x′ be their subsequent
endpoints. Then we have

n∑
i=1

dY (f(xi−1), f(xi))  dY (f(x), f(x′)) > (Lip(f)−δ)dX(x, x′) = (Lip(f)−δ)
n∑
i=1

dX(xi−1, xi).

Hence for some i ∈ {1, ..., n} we have the inequality

dY (f(xi−1), f(xi)) > (Lip(f)− δ)dX(xi−1, xi)

and 0 < dX(xi−1, xi) < ε. Because δ was arbitrary, the inequality holds.

Proposition 3.1.5. Let σ : ∆k → M be a Lipschitz singular simplex with Lip(σ) < C√
2
<

π√
2K

, let y ∈ ∆k and let σ(y) = x ∈ M . Then there exists a unique Lipschitz lift σ̃ : ∆k →
Vx(C) of σ (i.e. σ = px ◦ σ̃) such that σ̃(y) = x̄. This lift satisfies also Lip(σ̃) = Lip(σ).

Proof. Let z ∈ ∆k and let Iz : [0, 1]→ ∆k be the (rescaled) interval connecting y and z, that
is Iz(t) = (1− t)y + tz. Let also γz = σ ◦ Iz. We claim that we can construct a unique path
γ̃z : [0, 1]→ Vx(C) such that px ◦ γ̃z = γz and γ̃z(0) = x̄. Let

R = sup {r ∈ [0, 1] : there exists a lift γ̃rz : [0, r]→ Vx(C) of γz|[0,r] such that γ̃rz(0) = x̄}.

We claim that R = 1. Note that if we have two lifts γ̃sz : [0, s] → Vx and γ̃tz : [0, t] → Vx for
0 ¬ s ¬ t ¬ 1 satisfying the above conditions then they need to agree on [0, s] because the
subset of [0, s] where these two lifts agree is non-empty (because γ̃sz(0) = γ̃tz(0) = x̄), open
(because px is a local diffeomorphism) and closed (because of the continuity of both lifts).
Hence we can consider the union of such lifts γ̃sz for s < R to obtain a lift γ̃′Rz : [0, R) → Vx
of γz|[0,R) such that γ̃′Rz (0) = x̄. To extend it continuously to a lift γ̃Rz : [0, R] → Vx(C) we
need to check that

sup
t∈[0,R)

dVx(x̄, γ̃′Rz (t)) < C,

because then the limit limt→R γ̃
′R
z (t) exists in Vx(C). Fix 0 < t < R and consider the path

γ̃tz = γ̃′Rz |[0, t]. Note that because px is a local isometry, this path has the same length as
γz|[0, t]. Using the fact that γz = σ ◦ Iz and that σ is Lipschitz we have

dVx(x̄, γ̃tz(t)) = dVx(γ̃tz(0), γ̃tz(t)) ¬ L(γ̃tz) = L(γz|[0, t]) < (
C√

2
− ε)L(Iz) ¬ C − ε

for some sufficiently small ε depending on σ, but neither on z nor on t. Since γ̃tz(t) = γ̃′Rz (t),
we have supt∈[0,R) dVx(x̄, γ̃′Rz (t)) ¬ C−ε < C so we can extend our lift to γ̃Rz : [0, R]→ Vx(C).
Finally, if R < 1 we can use again the fact that px is a local diffeomorphism (this time in the
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neighbourhood of γ̃Rz (R)) and extend γ̃Rz to γ̃R
′

z for some R′ > R. This fact contradicts the
definition of R.

Because the choice of γ̃z is unique we can define σ̃(z) = γ̃z(1). Moreover, we can once again
use the facts that px is a local diffeomorphism and that [0, 1] is compact to conclude that γ̃z
depends continuously on z in the compact-open topology, hence σ̃ as a map ∆k → Vx(C) is
continuous.

The last claim to verify is the equality Lip(σ̃) = Lip(σ). Note that ∆k is a geodesic metric
space, hence the Lipschitz constants of σ and σ̃ can be computed locally as in Lemma 3.1.4.
But px ◦ σ̃ = σ and px is a local isometry, hence these ’local’ Lipschitz constants are the
same.

By combining the above proposition with Proposition 3.1.3 we obtain a very useful corol-
lary.

Corollary 3.1.6. Let σ : ∆k →M be a Lipschitz singular simplex with Lip(σ) < C√
2
< π

4
√

2K
such that σ(∆k) ⊂ BM (x, π

4
√
K

). Then there exists a Lipschitz lift σ̃ : ∆k → Vx of σ (i.e.
px ◦ σ̃ = σ) with Lip(σ̃) = Lip(σ).

Moreover, if y ∈ ∆k then the lift is unique up to the choice of σ̃(y) which can be chosen
to be any point ỹ ∈ Vx( π

4
√
K

) such that px ◦ σ̃(ỹ) = y. We have then σ̃(∆k) ⊂ BVx(ỹ, C).

3.1.2. Straight simplices and homotopies

As before, we will assume that M is a connected, complete n-dimensional Riemannian man-
ifold with sec(M) < K, where K > 0, and x ∈ M . Let y, z ∈ Vx be two points such that
y, z ∈ Vx( π

8
√
K

). By Proposition 3.1.2, there exists a unique shortest geodesic joining them
(depending continuously on both endpoints) which we denote by [y, z]. Following [25], we can
define the geodesic join of two maps f, g : X → Vx.

Definition 3.1.7. Let f, g : Y → Vx be two maps such that (im(f) ∪ im(g)) ⊂ Vx( π
8
√
K

).
Then there exists a homotopy [f, g] : Y × [0, 1]→ Vx defined by (y, t) 7→ [f(y), g(y)](t) called
the geodesic join (or geodesic homotopy) of f and g.

We will often use the following lemma.

Lemma 3.1.8. Let f, g : Y → Vx be two maps such that im(f) ⊂ Vx(R1) and im(g) ⊂ Vx(R2)
for R1, R2 <

π
8
√
K

. Then im([f, g]) ⊂ Vx(R1 +R2).

Proof. Suppose there is a point z = [f, g](y, t) such that dVx(x̄, z)  R1 +R2. Then

dVx(z, f(y))  dVx(x̄, z)− dVx(x̄, f(y))  R2

and similarly dVx(z, g(y))  R1. Because z is on the unique minimizing geodesic between f(y)
and g(y), we have

dVx(f(y), g(y)) = dVx(f(y), z) + dVx(z, g(y))  R1 +R2.

On the other hand,

dVx(f(y), g(y)) ¬ dVx(f(y), x̄) + dVx(x̄, g(y)) < R1 +R2.

The above contradiction shows that z ∈ Vx(R1 +R2).
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We can consequently define geodesic simplices. Recall that as we identified the standard
simplex ∆k with the subset {(z0, ..., zk) ∈ Rk+1

0 :
∑k
i=0 zi = 1}, we can identify ∆k−1 with

the subset {(z0, ..., zk) ∈ ∆k : zk = 0}.

Definition 3.1.9. The geodesic simplex [x0, ..., xk] : ∆k → Vx with vertices x0, ..., xk ∈
Vx( π

8k
√
K

) is defined inductively by the formulas

• [x0](∆0) = {x0} ⊂ Vx;

• [x0, ..., xk]((1− t)s+ t(0, ..., 0, 1)) = [[x0, ..., xk−1](s), xk](t) for s ∈ ∆k−1

To prove that the definition is correct it is enough to prove the following lemma.

Lemma 3.1.10. Let k ∈ N and R < π
8k
√
K

. If x0, ..., xk ∈ Vx(R) then [x0, ..., xk] exists and

[x0, ..., xk](∆k) ⊂ Vx((k + 1)R).

Proof. We prove the statement by induction. For k = 0 the existence of a geodesic simplex
is obvious and does not require any metric assumptions. For k > 0 [x0, ..., xk−1] exists by
the induction hypothesis and [x0, ..., xk−1] ⊂ Vx(kR) ⊂ Vx( π

8
√
K

). Consider the geodesic join

of the map [x0, ..., xk−1] : ∆k−1 → Vx and the constant map sending ∆k−1 to the point xk.
Obviously this join has the same image in Vx as [x0, ..., xk]. By Lemma 3.1.8, we get

[x0, ..., xk](∆k) = [[x0, ..., xk−1], {xk}](∆k) ⊂ Vx(kR+R) = Vx((k + 1)R).

The most important fact in this section is a positive curvature analogue of Proposition
2.1 in [25].

Proposition 3.1.11. Let Y be a compact, smooth manifold (possibly with boundary) and let
f, g : Y → Vx be two Lipschitz maps such that (im(f)∪ im(g)) ⊂ Vx(CK), where CK < π

8
√
K

is
a constant depending only on K. Then [f, g] has the Lipschitz constant bounded by a constant
depending only on K and the Lipschitz constants for f and g. Moreover, [f, g] is smooth (C1)
if f and g are smooth (C1).

To proceed, we need the following two technical lemmas concerning Riemannian geometry.
First is the technical result proved in [25], which can be easily applied in our situation.

Lemma 3.1.12 ([25, Proposition 2.6]). Let M be a complete Riemannian manifold with
sec(M) < K, K > 0. Then every geodesic k-simplex σ in M such that diam(σ) < π

2
√
K

is
smooth. Further, there is a constant L > 0 such that every geodesic k-simplex σ of diameter
less than π

4
√
K

satisfies ‖Txσ‖ < L for every x ∈ ∆n.

Lemma 3.1.13. Consider a geodesic triangle [x0, x1, x2] in Vx such that x0, x1, x2 ∈ Vx( π
48
√
K

).
Then there exists a constant DK , depending only on the curvature bound K, such that for
any t ∈ [0, 1]

dVx([x0, x2](t), [x1, x2](t)) ¬ DKdVx(x0, x1)

Proof. If x0 = x1 there is nothing to prove. If not, consider an extension (in any direction)
of [x0, x1] to a geodesic of length π

24
√
K

and denote the endpoints of this geodesic by x′0, x
′
1.
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Such a geodesic exists because BVx(x0,
π

24
√
K

) ⊂ Vx( π
8
√
K

). Now consider the geodesic triangle
[x′0, x

′
1, x2]. Note that

dVx(x′0, x̄) ¬ dVx(x′0, x0) + dVx(x0, x̄) <
π

24
√
K

+
π

48
√
K

=
π

16
√
K
.

Similarly, dVx(x′1, x̄) < π
16
√
K

, hence by Lemma 3.1.10 we have [x′0, x
′
1, x2] ⊂ Vx( 3π

16
√
K

). We

can therefore use Lemma 3.1.12 to conclude that the diffeomorphic simplex map σ : ∆2 → Vx
from the standard 2-simplex onto [x′0, x

′
1, x2] is Lipschitz with constant L independent of σ.

Hence

dVx([x0, x2](t), [x1, x2](t)) ¬ L · d∆2(σ
−1([x0, x2](t)), σ−1([x1, x2](t))

¬ L · d∆2(σ
−1(x0), σ−1(x1))

= L
√

2
dVx(x0, x1)

π/24
√
K

,

so one can take DK = 24L
√

2K
π .

Proof of Proposition 3.1.11. Put CK = π
48
√
K

. To prove smoothness in the case f and g are
smooth, one can rewrite [f, g] as

[f, g](y, t) = expf(y)(t · exp−1
f(y)(g(y))),

where we use Proposition 1.1.14 and Proposition 3.1.2 to show that expf(y) is invertible on
im g.

Now, let (y, t), (y′, t′) ∈ Y × [0, 1]. We have

dVx([f, g](y, t), [f, g](y′, t′)) ¬ dVx([f(y), g(y)](t), [f(y), g(y)](t′))

+ dVx([f(y), g(y)](t′), [f(y′), g(y′)](t′))

The first term can be easily estimated as follows

dVx([f(y), g(y)](t), [f(y), g(y)](t′)) ¬ |t− t′| · dVx(f(y), g(y)) ¬ |t− t′| · diam(im(f) ∪ im(g)).

Recall that by assumptions, (im(f) ∪ im(g)) ⊂ Vx( π
48
√
K

). Therefore the second term can be
estimated using Lemma 3.1.13 as follows.

dVx([f(y), g(y)](t′), [f(y′), g(y′)](t′)) ¬ dVx([f(y), g(y)](t′), [f(y), g(y′)](t′))

+ dVx([f(y), g(y′)](t′), [f(y′), g(y′)](t′))

¬ DK(dVx(g(y), g(y′)) + dVx(f(y), f(y′)))

¬ DK(Lip(f) + Lip(g))dY (y, y′).

Finally, we obtain

dVx([f, g](y, t), [f, g](y′, t′)) ¬ 2|t− t′|CK +DK(Lip(f) + Lip(g))dY (y, y′)

¬ (2CK +DK(Lip(f) + Lip(g)))dY×[0,1]((y, t), (y
′, t′))

Remark 3.1.14. All the facts above could be stated (possibly with some minor changes in
the constants used) for any Riemannian manifold V with sec(V ) < K with a distinguished
point x̄ ∈ V such that the closure of the open ball BV (x̄, R) is complete for some R and there
exists r < R such that every point in BV (x̄, r) has injectivity radius at least ρ > 0. However,
the only examples which are important to us at the moment are the spaces Vx for x ∈M .
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3.1.3. The piecewise straightening itself

Let M be a complete, n-dimensional Riemannian manifold with sec(M) < K, where 0 <
K < ∞, and let εn,K = CK

2(n+1) , where CK is the constant from Proposition 3.1.11. Choose
a locally finite family (Fj)j∈J of pairwise disjoint Borel subsets of M together with points
zj ∈ Fj and Borel maps sj : Fj → Vzj (εn,K) for j ∈ J , such that

•
⋃
j∈J Fj = M ;

• for every j ∈ J , diam(Fj) < εn,K ;

• for every j ∈ J , sj is a section of pzj (i.e. pzj ◦ sj = id : Fj → Fj) such that sj(zj) = z̄j .

A family with properties described above always exists. We can choose the sets Fj for
j ∈ J using the paracompactness of M , and the sections sj for j ∈ J exist because for x ∈ Fj
a lift of a (not necessarily unique) shortest geodesic joining zj and x has length < εn,K , hence
one can choose sj(x) to be the endpoint of one of such lifts in a Borel way.

Definition 3.1.15. Let Fj , zj , sj for j ∈ J be as above and let πU : U →M be a continuous
map such that BM (zj , εn,K) ⊂ im(πU ). We call a Borel section s′j : Fj → U of πU admissible
if there exists a continuous map vU : Vzj (εn,K)→ U such that s′j = vU ◦ sj and πU ◦ vU = pzj ,
i.e. it fits into the commutative diagram

Vzj (εn,K)
vU //

pzj

((

U

πU

��
Fj

sj

OO

s′j

66

� � //M.

A motivating example is given by the following lemma.

Lemma 3.1.16. Let x ∈ M and x′ ∈ Vx( π
4
√
K

). Then there exists a unique j ∈ J and a
unique admissible section

sx
′
j : Fj → BVx(x′, 2εn,K)

with respect to the map px : Vx →M such that x′ ∈ sx′j (Fj).

Proof. Let y = px(x′). Then y is contained in a set Fj for some j ∈ J . By Proposition 3.1.3 we
can compose the canonical section sj with I−1

sj(y),zj
: BVzj (sj(y), π

4
√
K

)→ Vy( π
4
√
K

) and obtain
an admissible section s′j : Fj → Vy(2εn,K) with respect to py such that s′j(y) = ȳ. After the
composition of this section with Ix′,x : Vy( π

4
√
K

) → BVx(x′, π
4
√
K

) we obtain an admissible

section sx
′
j : Fj → BVx(x′, 2εn,K) which satisfies the required conditions.

To see the uniqueness of sx
′
j , let s′x

′
j′ : Fj′ → BVx(x′, 2εn,K) be another admissible section

satisfying the above conditions. Note that Fj 3 px ◦ sx
′
j (x′) = px ◦ s′x

′
j′ (x′) ∈ Fj′ , hence

j = j′. After composing sx
′
j and s′x

′
j′ with Isj(y),zj ◦ I

−1
x′,x : BVx(x′, π

4
√
K

) → BVzj (sj(y), π
4
√
K

)

and using the admissibility of s′x
′

j′ , we obtain sections sj , s′j : Fj → Vzj (
π

4
√
K

) and a map
v : Vzj (εn,K)→ Vzj such that v ◦ sj(y) = s′j(y) and the following diagram commutes

Vzj (εn,K) v //
pzj

((

Vzj

pzj

��
Fj

sj

OO

s′j

66

� � //M.
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It suffices to show that v = Id|Vzj (εn,K). But since pzj is a local isometry, so is v, and hence
it is the identity on some neighbourhood of sj(y). It follows that it must be the identity on a
neighbourhood of the geodesic path joining sj(y) and z̄j , and consequently on every geodesic
joining z̄j to any other point of Vzj (εn,K). Consequently, v = Id|Vzj (εn,K).

Now we turn back to the definition of the piecewise straightening.

Definition 3.1.17. Let σ : ∆k → M be a Lipschitz singular simplex. Then we say that σ
is ε-geodesic (with respect to (Fj)j∈J) if Lip(σ) ¬ ε√

2
and there exists x ∈ M and a lift

σ̃ : ∆k → Vx of σ such that σ̃ is geodesic with vertices in some lifts of the points zj , j ∈ J .

Note that by Proposition 3.1.3 if ε < π
4
√
K

then the above definition does not depend on

the choice of x ∈M unless σ(∆k) ⊂ BM (x, π
4
√
K

).

Definition 3.1.18. Let σ : ∆k → M be a singular simplex and let S(m)(σ) =
∑
i σi be

its m-times iterated barycentric subdivision, where m ∈ N. We say that σ is (m-)piecewise
straight if every σi in S(m)(σ) is εn,K-geodesic (with respect to (Fj)j∈J).

We say that a (locally finite) chain c =
∑
i∈I aiσi ∈ C∗(M) is piecewise straight if there

exists m ∈ N such that every σi, i ∈ I, is m-piecewise straight.

Let σ : ∆k →M for k ¬ n be a Lipschitz singular simplex. We define the (m-)straightening
of σ (with respect to (Fj)j∈J) as follows. Choosem ∈ N such that each simplex σi in S(m)(σ) =∑
i σi has Lipschitz constant less than εn,K√

2
. Such m exists because the diameters of the

subdivided simplices in ∆k tend to 0, hence also the Lipschitz constants of the simplices in
S(m)(σ) (see Example 1.2.15). Moreover, we can choose m depending only on n, K and Lip(σ).
For every simplex σi choose a point yi ∈ ∆k and let y′i = σi(yi). Then by Corollary 3.1.6,
there is a unique lift σ̃i : ∆k → Vy′i(εn,K) of σi such that σ̃i(yi) = ȳ′i. Denote by xi,0, ..., xi,k
its vertices, for l = 0, ..., k let s′i,l : Fi,l → Vy′i be admissible sections containing xi,l in their
images constructed by Lemma 3.1.16 and let z′i,l = s′i,l(zi,l) for l = 0, ..., k. In particular,
z′i,0, ..., z

′
i,k ∈ Vy′i(2εn,K), hence the geodesic simplex [z′i,0, ..., z

′
i,k] exists by Lemma 3.1.10,

because
2εn,K =

2CK
2(n+ 1)

<
π

8(n+ 1)
√
K

<
π

8k
√
K
.

Let stryi(σi) = [z′i,0, ..., z
′
i,k]. Define

strm(σ) = (S(m))−1(
∑
i

py′i ◦ stryi(σi)).

Moreover, by Lemma 3.1.10 we have

[z′i,0, ..., z
′
i,k] ⊂ Vy′i(2(k + 1)εn,K) ⊂ Vy′i(CK),

so it follows from Proposition 3.1.11 that [σ̃i, [z′i,0, ..., z
′
i,k]] exists and defines a Lipschitz

homotopy H̄yi : ∆k×I → Vy′i between these simplices, with the Lipschitz constant depending
only on m, K and Lip(σ). Define

Hm(σ) = (S(m) × IdI)−1(
∑
i

py′i ◦ H̄yi(σi)).

To show that strm and Hm are well defined it suffices to verify that the construction
is independent of the choice of yi ∈ ∆k. Indeed, assuming this fact we see that for any
ẏi ∈ ∆k−1 ⊂ ∂q∆k for q = 0, ...k, and ẏ′i = σi(ẏi) we have

∂q(py′i ◦ stryi(σi)) = ∂q(pẏ′i ◦ strẏi(σi)) = pẏ′i ◦ ∂q strẏi(σi) = pẏ′i ◦ strẏi(∂qσi),
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where the last equality is a consequence of the fact that the straightening of a face of any
singular simplex depends only on this particular face, not on the whole simplex. In particular,
if two simplices σi and σi′ have some common face, their straightenings will also have the
same one. This shows that

∑
i py′i ◦ stryi(σi) lies in the image of S(m), hence (after ordering

the vertices of S(m)(σi)) we can choose a preimage in the canonical way. The same proof
applies also to Hm.

Now we verify our claim. Let ẏi ∈ ∆k, ẏ′i = σi(ẏi) ∈ M and ỹ′i = σ̃i(ẏ′i) ∈ Vy′i(εn,K).
Then Proposition 3.1.3 gives an isometry Iỹ′i,y

′
i

between Vẏ′i(
π

4
√
K

) and BVy′
i

(ỹ′i,
π

4
√
K

). By

Lemma 3.1.8 we have

H̄yi(∆
k × I) ⊂ Vy′i(CK + εn,K) ⊂ Vy′i(

3π

16
√
K

).

Because dVy′
i

(ȳ′i, ỹ
′
i) < εn,K < π

16
√
K

, the images of H̄yi and H̄ẏi stay in BVy′
i

(ỹ′i,
π

4
√
K

) and

Vẏ′i(
π

4
√
K

) respectively. Moreover, Iỹ′i,y′i maps the respective admissible sections ṡ′i,l : Fi,l →
Vẏ′i to the admissible sections s′i,l : Fi,l → Vy′i , hence H̄yi = Iỹ′i,y

′
i
◦ Hẏi . As a result they

are the same after pushing them back on M . This argument applies also to stryi , since
stryi = H̄yi(−, 1).

Let c =
∑
i aiσi be a locally finite Lipschitz chain with Lipschitz constant L. We see that

we can choose m ∈ N, depending only on n, L and K, such that strm(σi) is defined for every
i, so we can define strm(c) simply as

∑
i ai strm(σi). The chain strm(c) is Lipschitz because of

Proposition 3.1.11 and Lemma 3.1.4, and locally finite, since by construction for any singular
simplex σ : ∆k → M we have strm(σ) ⊂ BM (σ(∆k), CK), hence for every compact subset
K ⊂M

#{i : strm(σi) ∩K 6= ∅} ¬ #{i : σi ∩BM (K,CK) 6= ∅} <∞.

Note that the straightening defined as above does not define a chain operator C lf,Lip
∗¬n (M)→

C lf,Lip
∗¬n (M), because we cannot choose m uniformly. However, it allows us to prove a slightly

weaker statement. Recall that C lf,<L∗ (M) is the chain complex of locally finite singular chains
on M consisting of simplices with Lipschitz constant less than L.

Proposition 3.1.19. For every L <∞, there exists m ∈ N such that the operator

strm : C lf,<L∗¬n (M)→ C lf,Lip
¬n (M)

is a well defined chain map homotopic to the inclusion ι : C lf,<L∗¬n ↪→ C lf,Lip
∗ (M). Moreover,

| strm |1 ¬ 1.

Proof. Choose m such that strm is well defined for any singular simplex σ : ∆k → M with
k ¬ n and Lip(σ) < L. Then the operators

Hm : Lip<L(∆k,M)→ Lip<L
′
(∆k × I,M),

for k ¬ n, defined in this section, send L-Lipschitz simplices to L′-Lipschitz maps for some
L′ depending only on L, m and n by Proposition 3.1.11 and Lemma 3.1.4. Moreover,

Hm(σ)(∆k × I) ⊂ BM (imσ,
π

4
√
K

)

for any σ : ∆k → M . Therefore these operators satisfy the assumptions of Lemma 1.2.11
for C(1)

∗ = C lf,<L∗ (M) and C
(2)
∗ = C lf,Lip

∗ (M). Note that with the notation from Lemma
1.2.11, η∗ = strm, which proves the first part of the statement. The proof that | strm |1 ¬ 1 is
straightforward.
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Corollary 3.1.20. Every homology class ξ in H lf,Lip
∗¬n (M) can be represented by a piecewise

straight chain with vertices in (zj)j∈J . Moreover, the l1 semi-norm on H lf,Lip
∗¬n (M) can be

computed on the piecewise straight chains.

Proof. Let c =
∑
i aiσi ∈ C lf,Lip

k (M), k ¬ n, be any cycle such that [c] = ξ. Then c ∈
C lf,<Lk (M) for some L <∞. Hence by Proposition 3.1.19 there exists m such that the chain
strm(c) is well defined, homologuous to c and | strm(c)1| ¬ |c|1. It is also obviously straight
and has its vertices in (zj)j∈J .

Remark 3.1.21. The results above are stated only for ∗ ¬ n. However, for ∗ > n the groups
H lf,Lip
∗ (M) vanish by Theorem 1.2.19 and the fact that ordinary and locally finite homology

of any manifold is trivial in dimensions greater that the dimension of this manifold. Moreover,
we could simply modify the constants used in the straightening to work for ∗ ¬ N for N
arbitrarily large. Without loss of generality we will assume in further work that all chains
and homology classes are of dimension ∗ ¬ n.

Remark 3.1.22. It is obvious that the straightening procedure depends on the choice of
the sets (Fj)j∈J , the sections sj for j ∈ J and m ∈ N, which depends on a particular chain
which we would like to straighten. However, in most cases these details are of secondary inter-
est, therefore we will just talk briefly about applying the (piecewise) straightening procedure
meaning applying it with respect to any suitable family (Fj)j∈J and any m ∈ N for which
the procedure is defined.

Remark 3.1.23. If sec(M) ¬ 0, then the above construction works for K arbitrary close to
0, hence for constants CK , εn,K arbitrary large. In particular, for any L <∞ we can choose
K such that str0(σ) is defined for every L-Lipschitz singular simplex σ ∈ C(∆k,M).

More convenient approach, but working only for non-positively curved manifolds, is pre-
sented in [25]. It uses the fact that by Theorem 1.1.15 the spaces Vx are all isometric to M̃
and it corresponds to the procedure defined in this section for K = 0 (hence CK = εn,K =∞)
with the modification that the diameters of Fj for j ∈ J are bounded by 1. Then there is in
fact a chain operator

str∗ : C lf,Lip
∗ (M)→ C lf,Lip

∗ (M),

which is chain homotopic to the identity by Lemma 1.2.11.

3.2. Piecewise C1 homology theories

The straightening procedure described in the previous section is sufficient for some appli-
cations, though we need some more complex machinery. One of the key properties of the
standard straightening procedure for non-positively curved manifolds is that straightened
chains are smooth, because they consist of geodesic simplices. It is important e.g. in the
proof of the proportionality principle in the non-positively curved case, which depends on
measure homology with C1 Lipschitz supports, i.e. where ’chains’ are Borel measures with
finite variation on C1 singular simplices with C1-topology, with additional assumption that
the support of each ’chain’ is contained in L-Lipschitz simplices for some L < ∞. Differen-
tiability here is strictly technical, but necessary, because it allows recognising a fundamental
cycle by integrating the volume form. However, piecewise straight simplices which we use are
only piecewise C1.

In Section 3.2.1 we define piecewise C1 simplices and chains and introduce piecewise C1

homology. In Section 3.2.2 we provide some reasonable topology on these simplices in order
to define a corresponding measure homology theory.
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3.2.1. Piecewise C1 homology

Let M be a connected, complete n-dimensional Riemannian manifold with sec(M) < K.
Before we continue, let us fix some notation concerning convex polyhedra. Let V ⊂ Rn be an
affine space and let 〈, 〉 be the truncation of the standard scalar product on Rn to V .

• for v ∈ V and b ∈ R the half-space Hv,b ⊂ V is

Hv,b = {x ∈ V : 〈x, v〉 ¬ b};

• a convex polyhedron P ⊂ V is an intersection of finite number of half-spaces;

• dimP = min{dimW : P ⊂W , W ⊂ V is an affine subspace};

• P is non-degenerated if dimP = dimV ;

• for a convex polyhedron P a map f : P →M is C1 if it can be extended to a C1 map
f ′ : U →M , where U ⊂ V is some open neighbourhood of P ⊂ V .

Definition 3.2.1. Let V = {(x0, ..., xk) ∈ Rk+1 :
∑k
i=0 xi = 1} ⊃ ∆k. We say that a family

P of non-degenerate convex polyhedra P ⊂ ∆k is ∆k-admissible if it satisfies

•
⋃
P∈P P = ∆k;

• ∀P1,P2∈P P1 6= P2 ⇒ dimP1 ∩ P2 < k.

We will denote the family of all ∆k-admissible families by Pk.

A good example of a ∆k-admissible family of convex polyhedra is the barycentric subdi-
vision S∆k and more generally the m-fold barycentric subdivision S(m)∆k.

For two families P1,P2 ∈Pk we can define their product as

P1 · P2 = {P1 ∩ P2 : P1 ∈ P1, P2 ∈ P2 , dimP1 ∩ P2 = k},

which is also a ∆k-admissible family. This product is obviously commutative and associative.
Moreover, we can partially order Pk by

P1 ¬ P2 ⇔ ∀P2∈P2∃P1∈P1 P2 ⊂ P1.

Note that with this order every finite set {P1, ...,Pm} ⊂Pk has supremum P1 · ... · Pm.

Definition 3.2.2. Let P be a ∆k-admissible family of convex polyhedra and let σ : ∆k →M
be a singular simplex. We say that it is P-C1 if for every P ∈ P, σ|P : P →M is of class C1.

A chain c ∈ C lfk (M) is called P-C1 if it consists of P-C1 simplices and is piecewise C1 if
it is P-C1 for some P ∈Pk.

Note that if c1, c2 ∈ C lfk (M) are singular chains such that c1 is P1-C1 and c2 is P2-C1

then c1 +c2 is P1 ·P2-C1, hence finite sums of piecewise C1 chains are piecewise C1. Moreover,
if c ∈ C lfk (M) is P-C1 then ∂c is

∏k
q=0 ∂qP-C1, where

∂qP = {P ∩ ∂q∆k : P ∈ P , dimP ∩ ∂q∆k = k − 1}

for q = 0, ..., k. In particular, the piecewise C1 chains form a subcomplex of C lf∗ (M). The
same is true for C lf,Lip

∗ (M) if we consider the piecewise C1 Lipschitz chains. Therefore we
can define piecewise C1 locally finite homology HPC1,lf

∗ (M) and piecewise C1 locally finite
Lipschitz homology HPC1,lf,Lip

∗ (M).
Obviously every piecewise straight chain is piecewise smooth (with respect to some iter-

ated barycentric subdivision) by Lemma 3.1.12. To show that the homology theories defined
above are isometric to the corresponding non-C1 ones, we need the following lemma.
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Lemma 3.2.3. Let c ∈ CPC
1,lf,Lip

k (M) be a piecewise C1 locally finite Lipschitz cycle and let

m ∈ N be such that strm(c) is defined. Then c and strm(c) are homologous in CPC
1,lf,Lip

k (M).

Proof. The lemma will follow from Lemma 1.2.11 applied to

C
(1)
∗ := {c ∈ CPC1,lf,Lip

∗ (M) : strm(c) is defined},

C
(2)
∗ = CPC

1,lf,Lip
∗ (M), and the corresponding operators Hm constructed in Section 3.1.3.

The only condition we need to check is that if c =
∑
i aiσi is piecewise C1, then h(c) =∑

i aiP (Hm(σi)) is.
Assume that a singular simplex σ is P-C1. Then the map Hm(σ)|P ′×I : P ′ × I → M is

C1 for P ′ ∈ P · (Sm∆k) by Proposition 3.1.11. Moreover, if Pk = suppP (∆k × I) then for
∆′ ∈ Pk the family

Pm,∆′ = {∆′ ∩ (P × I) : P ∈ P · (Sm∆k) , dim (∆′ ∩ (P × I)) = k + 1}

is (up to some affine isomorphism) ∆k+1-admissible and Hm(σ) is C1 on every P ∈ Pm,∆′ ,
hence h(σ) is

∏
∆′∈Pk Pm,∆′-C

1. In particular, h(c) is piecewise C1 if c is.

Proposition 3.2.4. Let M be a complete Riemannian manifold with sec(M) < K < ∞.
Then the map I∗ : HPC1,lf,Lip

∗ (M) → H lf,Lip
∗ (M) induced by the inclusion of chains is an

isometric isomorphism.

Proof. The map I∗ is onto by Corollary 3.1.20. To see that it is injective consider c1, c2 ∈
CPC

1,lf,Lip
∗ (M) which represent the same class in H lf,Lip

∗ (M). Then there exists a chain
D ∈ C lf,Lip

∗+1 (M) such that ∂D = c2 − c1. We can apply now the piecewise straightening

procedure to D to obtain the chain strm(D) ∈ CPC
1,lf,Lip

∗+1 (M) for some m ∈ N such that
∂ strm(D) = strm(c2)− strm(c1). Now apply Lemma 3.2.3 to see that c1 and c2 are homolo-
gous (in CPC

1,lf,Lip
∗ (M)) to strm(c1), strm(c2) respectively. It is an isometry on homology by

Corollary 3.1.20.

3.2.2. Piecewise C1 Measure Homology

Now we turn our attention to chains with finite `1 norm and the corresponding measure
homology theory.

Definition 3.2.5. Let CPC
1,`1,Lip

∗ (M) be the chain subcomplex of CPC
1,lf,Lip

∗ (M) consisting
of chains which have finite `1 norm. We call the homology of this complex piecewise C1-`1

Lipschitz homology and denote it by HPC1,`1,Lip
∗ (M).

Remark 3.2.6. Note that Lemma 3.2.3 can be also applied to CPC
1,`1,Lip

∗ (M), so an analogue
of Proposition 3.2.4 for HPC1,`1,Lip

∗ (M) is true.

Definition 3.2.7. Let P ∈ Pk be a ∆k-admissible family and let PC1(∆k,M) be the set
of singular simplices σ : ∆k → M such that σ|P is C1 for every P ∈ P. We call it the set of
P-C1 singular simplices. We equip it with the topology induced from the embedding onto a
closed subspace

PC1(∆k,M)→
∏
P∈P

C1(P,M),

where C1(P,M) is the set of C1 maps P →M with the topology induced from C(TP, TM)
with the compact-open topology. For every P1,P2 ∈ Pk such that P1 ¬ P2, we have an
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embedding P1C
1(∆k,M) → P2C

1(∆k,M) onto a closed subset, because P1C
1(∆k,M) ⊂∏

P∈P2 C
1(P,M) is closed. We denote the direct limit of these spaces with weak topology as

PC1(∆k,M).

The properties of the above topology on PC1(∆k,M) for P ∈Pk which are crucial to us
are the following.

• PC1(∆k,M) is a locally compact Hausdorff space.

• For every differential form ω ∈ Ωk(M) the map

Iω : PC1(∆k,M)→ R , f 7→
∫

∆k
f∗ω

is continuous.

• For every σ ∈ PC1(∆k,M), the map

Isom+(M)→ PC1(∆k,M) , g 7→ gσ

is continuous.

The second and the third of the above properties hold because both facts are obviously true
for

∏
P∈P C

1(P,M) instead of PC1(∆k,M), and the latter can be regarded as a closed subset
of the former.

Recall that the absolute variation (or the total variation) of a measure µ on a measurable
space X is

‖µ‖ = sup
π

∑
A∈π
|µ(A)|,

where the supremum is taken over all finite families π of disjoint measurable subsets of X. If
‖µ‖ <∞, we say that it has finite variation. Recall also that the absolute variation provides
a norm on the space of measures on X with finite variation.

Definition 3.2.8. Let CPC
1,Lip

∗ (M) be the chain complex of measures (see Definition 1.2.6)
on PC1(∆∗,M), such that

1. for every measure µ ∈ CPC
1,Lip

∗ (M) there exists P ∈Pk such that µ is a push-forward
of a Borel measure on PC1(∆∗,M) with finite variation;

2. every measure has Lipschitz determination, i.e. there exists L <∞ such that the mea-
sure is supported on simplices with Lipschitz constant L.

The obtained homology theory is called piecewise C1 measure homology with Lipschitz deter-
mination HPC

1,Lip
∗ (M).

Remark 3.2.9. The space PC1(∆∗,M) is not locally compact in general, therefore it is a
problem with the definition of Borel measures. However, we will say for simplicity that mea-
sures in CPC

1,Lip
∗ (M) are Borel meaning that every such measure is a push-forward of a Borel

measure on PC1(∆∗,M) for some P ∈Pk. Similarly, when integrating over PC1(∆∗,M), we
will understand such an operation as the integration over PC1(∆∗,M) for some ’sufficiently
large’ P ∈Pk.
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The above homology theory is a variant of Milnor-Thurston homology. We can introduce
a semi-norm ‖ · ‖1 on it by taking the infimum of the absolute variations over all measures
representing given homology class. An important consequence of the above construction is
the following

Proposition 3.2.10. Let M be a complete Riemannian manifold with sec(M) < K < ∞.
Then the homology groups HPC1,`1,Lip

∗ (M) and HPC
1,Lip

∗ (M) are isometrically isomorphic
with respect to the `1 semi-norm on HPC1,`1,Lip

∗ (M) and absolute variation semi-norm on
HPC

1,Lip
∗ (M).

Proof. By interpreting the singular chains with finite `1 norms as discrete measures with finite
variations, we have an obvious inclusion of chains ι : CPC

1,`1,Lip
∗ (M) → CPC

1,Lip
∗ (M) which

commutes with taking boundaries, hence it is a morphism of chain complexes and induces a
homomorphism ι∗ on homology.

To show that ι∗ is surjective, we will use Lemma 1.2.11 and Remark 1.2.12. Let µ be
a measure cycle supported on L-Lipschitz simplices and let m ∈ N be such that strm(σ) is
defined for all L-Lipschitz simplices. We apply Lemma 1.2.11 to

C
(1)
∗ := {µ ∈ CPC1,Lip

∗ (M) : strm(µ) is defined},

C
(2)
∗ = CPC

1,Lip
∗ (M), and the corresponding operators Hm constructed in Section 3.1.3. Note

that the maps Hm(σ) depend in a Borel way on σ by the construction of the sets (Fj)j∈J
and for any measure µ′ ∈ CPC

1,Lip
∗ (M) the measure P (Hm(µ′)) has Lipschitz support by the

construction of Hm. Moreover, it is piecewise smooth by the same argument as in the proof
of Lemma 3.2.3. Therefore the measure P (Hm(µ′)) is in CPC

1,Lip
∗+1 (M) and by Lemma 1.2.11

strm(µ) is homologuous to µ.
Note that by Proposition 3.1.11 and the Lipschitz determination of µ, S(m)(strm(µ)) is

supported on straight simplices with uniformly bounded Lipschitz constant with vertices in
the locally finite set (zj)j∈J . Therefore S(m)(strm(µ)) is a locally finite Lipschitz singular
chain, hence strm(µ) is. Moreover, strm(µ) is piecewise smooth by Proposition 3.1.11, and
‖ strm(µ)‖ ¬ ‖µ‖. Therefore strm(µ) ∈ CPC

1,`1,Lip
∗ (M), and the surjectivity of ι∗ follows.

The injectivity of ι∗ can be shown using the similar argument applied to the bound-
ary in CPC

1,Lip
∗ (M) between two cycles in CPC

1,`1,Lip
∗ (M) and Lemma 3.2.3. Namely, let ξ ∈

CPC
1,Lip

k+1 (M) be a measure chain homotopy between two singular cycles c1, c2 ∈ CPC
1,`1,Lip

k (M).

Then there exists m ∈ N such that strm(ξ) ∈ CPC
1,`1,Lip

k+1 (M) exists and provides a chain ho-
motopy between strm(c1) and strm(c2), which are homologuous to c1 and c2 respectively by
Lemma 3.2.3.

Finally, the fact that ι∗ is an isometry is a consequence of the facts that ι is an isometric
inclusion and that the straightening procedure does not increase the norm. More precisely, if
c ∈ CPC

1,`1,Lip
∗ (M) is a cycle such that strm(ι(c)) is defined, then

‖[c]‖1 ¬ ‖[ι(c)]‖ ¬ ‖[strm(ι(c))]‖1 = ‖[c]‖1.

In particular, ‖[c]‖1 = ‖[ι(c)]‖.

Remark 3.2.11. The existence of an isometric isomorphism as above for the ’finite’ piecewise
C1 theory HPC1

∗ (M) and piecewise C1 measure homology with compact supports HPC1∗ (M)
can be proved without any curvature assumptions as in [23]. However, the proof given in [23]
depends heavily on bounded cohomology and cannot be easily generalised to the locally finite
Lipschitz case.
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Chapter 4

Applications of the straightening
procedure

In this chapter we prove the theorems announced in Section 2.2, using the piecewise straight-
ening. In Section 4.1 we prove Theorem 2.2.7, concerning lower bound of the Lipschitz sim-
plicial volume for negatively curved manifolds. In Section 4.2 we prove the product inequality
for the Lipschitz simplicial volume (Theorem 2.2.6), while in Section 4.3 we prove the pro-
portionality principle for the Lipschitz simplicial volume (Theorem 2.2.10).

4.1. Lipschitz simplicial volume of negatively curved manifolds

We take a closer look on the lower estimate of the simplicial volume of negatively curved
manifold by the Riemannian volume given by Theorem 2.1.6, and the corresponding inequality
for the Lipschitz simplicial volume (Theorem 2.2.7). Namely,

‖M‖Lip  Cn vol(M)

for closed manifolds M with sec(M) ¬ −1. The crucial fact used in the proof is the following.

Proposition 4.1.1 ([17, Proposition 1]). Let sec(M) ¬ −1 be a simply connected complete
Riemannian manifold such that n = dimM  2. Let also σ : ∆n →M be a geodesic simplex
on M . Then there exists a constant C ′n such that

vol(σ) =
∫

∆n
σ∗ dvolM ¬ C ′n.

Now the proof of Theorem 2.1.6 goes as follows. Given an arbitrary fundamental cycle c,
its straightening has not greater `1 norm. Moreover, if we evaluate it on the volume form,
we obtain the volume of M . On the other hand, the evaluation on the volume form yields a
sum of volumes of corresponding straight simplices with coefficients, which is bounded from
above by C ′n · |c|1 by Lemma 4.1.1.

The proof of the Lipschitz generalisation of 2.1.6 is practically the same. The only problem
in the proof that might occur is that the straightening of a locally finite chain need not be
locally finite in general. However, if we add the Lipschitz condition, the straightening preserves
local finiteness by Remark 3.1.23.

Proof of Theorem 2.2.7. Let c =
∑
i aiσi be a locally finite Lipschitz fundamental cycle for

M . Then str0(c) can be defined by Remark 3.1.23, and is a fundamental cycle such that
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| str0(c)|1 ¬ |c|1. By Theorem 1.2.24 and Lemma 4.1.1, we have

vol(M) = 〈dvolM , str0(c)〉 =
∑
i

ai

∫
∆n

str0(σ)∗ dvolM ¬
∑
i

aiC
′
n ¬ C ′n| str0(c)|1.

Because c was arbitrary, we conclude that vol(M) ¬ C ′n · ‖M‖.

4.2. Product inequality

Recall (Theorem 2.1.5) that if M and N are closed orientable manifolds, then

‖M‖ · ‖N‖ ¬ ‖M ×N‖ ¬
(

dimM + dimN

dimM

)
‖M‖ · ‖N‖.

The second inequality is obtained by simply taking a simplicial approximation of the cross
product and can be easily generalised to the locally finite and Lipschitz cases. Namely, if
c1 and c2 are (locally finite, Lipschitz) fundamental cycles for M and N respectively, then
c1× c2 is a (locally finite, Lipschitz) fundamental cycle for M ×N by Proposition 1.2.25 and
by the construction of Section 1.2.5,

|c1 × c2|1 ¬ |c1|1 · |c2|1 ·
(

dimM + dimN

dimM

)
.

On the other hand, the first inequality in Theorem 2.1.5 can be established by passing to
bounded cohomology and using the duality between the `1 semi-norm on homology and the
`∞ semi-norm on cohomology. Namely, we have

‖M ×N‖ =
1

‖[M ]∗ × [N ]∗‖∞
 1
‖[M ]∗‖∞

· 1
‖[N ]∗‖∞

= ‖M‖ · ‖N‖,

where we used Theorem 2.3.1, the fact that the cross-product of two fundamental cocycles is
a fundamental cocycle of the product and that by the definition of the cross-product for any
two cochains φ ∈ C∗(M), ψ ∈ C∗(N),

‖φ× ψ‖∞ ¬ ‖φ‖∞ · ‖ψ‖∞.

However, this approach does not generalize directly to the case of non-compact manifolds
and the Lipschitz simplicial volume (and in general is false in the non-compact, non-Lipschitz
case). Two main problems which arise are a more subtle relation between the `1 semi-norm
on locally finite homology and the `∞ semi-norm on cohomology with compact supports
and the existence of a good product in cohomology with compact supports. However, using
Proposition 1.2.26, Proposition 2.3.2 and the piecewise straightening procedure, we are able
to generalize it and obtain Theorem 2.2.6.

The proof is a modification of the proof from [25] adapted to the case of bounded positive
curvature. As in Section 2.3, by Slf,Lip

k (M) we denote the family of subsets of C(∆k,M) such
that A ∈ Slf,Lip

k if and only if it is locally finite and consists of L-Lipschitz simplices for some
L, depending on A. Similarly, by Slfk (M) we denote the family of such subsets without the
Lipschitzness condiction. We will also use the notation from Section 1.2.5, namely that σck
is the k-dimensional face of σ spanned by the last k vertices, lbσ is the l-dimensional face
of σ spanned by the first l vertices and πM : M × N → M and πN : M × N → N are the
canonical projections.

60



Definition 4.2.1. Let M and N be two topological spaces, and let k, l ∈ N. A locally finite
set A ∈ Slfk+l(M ×N) is called (k, l)-sparse if

AM := {πM ◦ σck; σ ∈ A} ∈ Slfk (M) and AN := {πN ◦ lbσ; σ ∈ A} ∈ Slfl (N)

A locally finite chain c ∈ C lfk+l(M ×N) is called (k, l)-sparse if its support is (k, l)-sparse.

Note that if A is sparse and consists of L-Lipschitz simplices for some L < ∞, then the
corresponding projections AM and AN also consist of L-Lipschitz simplices.

If the Lipschitz simplicial volume of can be computed via sparse cycles, we can easily adapt
the proof of Theorem 2.1.5 to the locally finite, Lipschitz case. The following proposition is not
stated as such in [25], however, it is actually proved there. We give the proof for completeness.

Proposition 4.2.2. Let M and N be two complete, oriented manifolds of dimensions m
and n respectively such that the Lipschitz simplicial volume of M × N can be computed via
(m,n)-sparse fundamental cycles, i.e.

‖M ×N‖Lip = inf{‖M ×N‖A : A ∈ Slf,Lip
m+n (M ×N), A is (m,n)-sparse}.

Then
‖M‖Lip · ‖N‖Lip ¬ ‖M ×N‖Lip.

Proof. Note that because by Proposition 1.2.26 the cross product for Lipschitz compactly
supported cohomology is well defined, hence for any two cochains φ ∈ Ckcs,Lip(M) and ψ ∈
C lcs,Lip(N), one has

‖φ× ψ‖∞ ¬ ‖φ‖∞ · ‖ψ‖∞.

Moreover, for any (k, l)-sparse family A ∈ Slf,Lip
k+l (M ×N), one has

‖φ× ψ‖A∞ ¬ ‖φ‖AM∞ · ‖ψ‖AN∞ .

In particular, by Proposition 1.2.25 the cross product of fundamental cocycles with Lipschitz
compact supports is a (Lipschitz complactly supported) fundamental cocycle of the product,
hence for any (m,n)-sparse family A ∈ Slf,Lip

m+n (M ×N), we have

‖[M ×N ]∗Lip‖A∞ ¬ ‖[M ]∗Lip‖AM∞ · ‖[N ]∗Lip‖AN∞ .

Finally, let A ∈ Slf,Lip
m+n be an (m,n)-sparse family such that ‖M×N‖A ¬ ‖M×N‖Lip +ε.

Then using the duality principle for the Lipschitz simplicial volume (Theorem 2.3.2), we
obtain

‖M ×N‖Lip + ε  ‖M ×N‖A =
1

‖[M ×N ]∗Lip‖A∞
 1

‖[M ]∗Lip‖
AM∞
· 1

‖[N ]∗Lip‖
AN∞

= ‖M‖AM · ‖N‖AN  ‖M‖Lip · ‖N‖Lip.

Because ε was arbitrary, we conclude that ‖M ×N‖Lip  ‖M‖Lip · ‖N‖Lip.

Finally, Theorem 2.2.6 is a corollary from the following proposition, which is a general-
ization of [25, Proposition 3.20], where it was proved assuming non-positive curvature.
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Proposition 4.2.3. Let M and N be two oriented, connected, complete Riemannian mani-
folds of dimensions m and n respectively such that sec(M), sec(N) < K, where by 0 < K <∞.
Let also k, l ∈ N. Then for any cycle c ∈ C lf,Lip

k+l (M × N) there is a (k, l)-sparse cycle
c′ ∈ C lf,Lip

k+l (M ×N) satisfying

|c′|1 ¬ |c|1 and c ∼ c′ in C lf,Lip
k+l (M ×N).

In particular, the Lipschitz simplicial volume of M × N can be computed via sparse funda-
mental cycles, i.e.

‖M ×N‖Lip = inf{‖M ×N‖A; A ∈ Slf,Lip
m+n (M ×N), A is (m,n)-sparse}.

Proof. The second statement is a direct consequence of the first one. To prove the first one
it is enough to just apply the piecewise straightening procedure, but with the sets (Fj)j∈J
chosen more carefully. Choose a family of Borel subsets (FMj )j∈JM of M together with the
points (zMj )j∈JM and sections (sMj )j∈J with all the properties indicated in the description of
the straightening procedure, but with the additional assumption that diam(FMj ) < εm+n,K

2
and sMj : Fj → BV

zM
j

(z̃jM ,
εm+n,K

2 ) for every j ∈ JM . Similarly choose a family (FNj )j∈JN of

Borel subsets of N together with points (zNj )j∈JN and sections (sNj )j∈JN and as the base of the
straightening procedure for M×N take the family (FMj1 ×F

N
j2

)(j1,j2)∈JM×JN together with the
points (zMj1 , z

N
j2

)(j1,j2)∈JM×JN and the sections (sMj1 × s
N
j2

)(j1,j2)∈JM×JN . This family is locally
finite, satisfying diam(FMj1 × F

N
j2

) < εm+n,K and sj1 × sj2 : (Fj1 × Fj2) → V(zMj1 ,z
N
j2

)(εm+n,K)

for every (j1, j2) ∈ JM ×JN . Hence if c ∈ C lf,Lip
k (M ×N) is any locally finite Lipschitz chain

it can be straightened with respect to that family. Note also that for any L <∞ and p ∈ N
the family

AL,p := {σ ∈ C(∆k+l,M ×N) : Lip(σ) ¬ L; σ is a p-piecewise straight simplex}

belongs to Slf,Lip
k+l (M ×N) and is (k, l)-sparse by the construction of (FMj1 ×F

N
j2

)(j1,j2)∈JM×JN
and the Lipschitz condition. To finish the proof note that c ∼ strp(c) for some p ∈ N by
Corollary 3.1.20, |c|1  | strp(c)|1 and strp(c) has its support in AL,p for some L, thus it is
(k, l)-sparse.

4.3. Proportionality Principle

Recall (Theorem 2.1.9) that the proportionality principle states that if M and N are closed
Riemannian manifolds with isometric universal covers, then

‖M‖
vol(M)

=
‖N‖

vol(N)
.

We will prove here the corresponding statement for the Lipschitz simplicial volume and
complete Riemannian manifolds.

The idea of the original proof, due to Thurston [33], is as follows. Using the common
universal cover one can construct a ’smearing map’ from the smooth singular chain complex
on M into the Milnor-Thurston chain complex. This map does not increase the norm and has
the property that it maps real fundamental cycles of M to (Milnor-Thurston) fundamental
cycles of N multiplied by vol(M)

vol(N) . The last step of the proof is an ’isometric’ approximation
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of this generalized cycle by a singular cycle. However, Thurston originally did not finish his
proof. It was finished by Löh in [23, 31] by showing that the singular and Milnor-Thurston
homology theories are isometrically isomorphic. In the case of locally finite Lipschitz homol-
ogy, however, different techniques are needed. In the non-positively curved case the proof in
[25] was obtained by using the straightening procedure. We generalise this proof for manifolds
of sectional curvature bounded from above, using the piecewise straightening.

In the original proof smooth chains and measures were used. They were introduced for
a strictly technical reason, namely to recognise the image of the smearing map. In our ap-
proach we cannot use C1 chains and measures, however, piecewise C1 chains have all required
properties. Recall that we are able to evaluate dvolM not only on Lipschitz chains, but also
on Borel measures on C1(∆n,M) and on piecewise C1 measures on PC1(∆n,M) via the
formula

〈dvolM , µ〉 =
∫
M
µ dvolM :=

∫
PC1(∆n,M)

∫
∆n

σ∗ dvolM dµ(σ),

for µ ∈ CPC1,Lip
n (M). We will need the following lemma.

Lemma 4.3.1 ([25, Lemma 4.2]). Let M be a Riemannian manifold of finite volume. Then
π1(M) is a lattice in G = Isom(M̃), i.e. the quotient π1(M)\G admits a finite right-π1(M)-
invariant (Haar) measure µπ1(M)\G.

Let U be the common universal cover of M and N with covering maps pM and pN respec-
tively, let G = Isom+(U) and let Λ = π1(N). Denote by µΛ\G the normalized Haar measure
on Λ\G, i.e. µΛ\G(Λ\G) = 1. The following proposition is a combination of [25, Proposition
4.9] and [25, Lemma 4.10] with almost the same proof, which we give for completeness.

Proposition 4.3.2. Let σ : ∆∗ →M be a piecewise C1 simplex, and let σ̃ : ∆∗ → U be a lift
of σ to U . Then the push-forward of µΛ\G under the map

smearσ̃ : Λ\G → PC1(∆∗, N),

Λg 7→ pN ◦ gσ̃,

does not depend on the choice of the lift of σ and is denoted by µσ. There is a well-defined
chain map

smear∗ : CPC
1,`1,Lip

∗ (M) → CPC1,Lip
∗ (N),∑

σ

aσσ 7→
∑
σ

aσµσ.

Moreover, for every fundamental cycle c ∈ CPC1,`1,Lip
n (M) we have

〈dvolN , smearn(c)〉 =
∫

PC1(∆n,N)

∫
∆n

σ∗ dvolN d smearn(c)(σ) = vol(M).

Proof. Note first that for any choice of σ̃ the map smearσ̃ is continuous by the continuity of
pN and the map

G → PC1(∆n, U)

g 7→ gσ̃,

and by the universal property of the quotient topology. Let h ∈ π1(M) and denote by µσ̃ and
µhσ̃ the push-forwards of µΛ\G by smearσ̃ and smearhσ̃ respectively. Let also S ⊂PC1(∆∗, N)
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be a Borel set. We have

µhσ̃(S) = µΛ\G(smear−1
hσ̃

(S)) = µΛ\G({Λg : pN ◦ ghσ̃ ∈ S})

= µΛ\G({Λgh−1 : pN ◦ gσ̃ ∈ S}) = µΛ\G({Λg : pN ◦ gσ̃ ∈ S}h−1)

= µΛ\G({Λg : pN ◦ gσ̃ ∈ S}) = µσ̃(S),

where we used the right π1(M)-invariance of µΛ\G. Thus µσ does not depend on the choice
of σ̃.

Now we will prove that smear∗ is a well defined chain map. First of all note that if
σ : ∆n → M is an L-Lipschitz chain, then because pN is a local isometry, µσ is supported
on L-Lipschitz simplices in PC1(∆∗, N). Moreover,

∑
σ aσµσ has finite variation because

‖µσ‖ ¬ 1 and measures with finite variations are closed under `1-finite sums. Thus smear∗(c)
is a well defined measure in CPC

1,Lip
∗ (N). For any simplex σ : ∆k → M and i = 0, ..., k, we

have
smear

∂̃iσ
= smear∂iσ̃ = ∂i smearσ̃,

which follows from the facts that both pN and the action byG commute with taking boundary.
Therefore

smear∗(∂σ) =
k∑
i=0

(−1)i smear∗(∂iσ) =
k∑
i=0

(−1)iµ∂iσ =
k∑
i=0

(−1)i(smear
∂̃iσ

)∗µΛ\G

=
k∑
i=0

(−1)i(∂i ◦ smearσ̃)∗µΛ\G =
k∑
i=0

(−1)i∂iµσ = ∂µσ = ∂ smear∗(σ).

It remains to show the last equality in the proposition. For a locally finite Lipschitz
fundamental cycle c =

∑
σ aσσ, we have

〈dvolN , smearn(c)〉 =
∑
σ

aσ〈dvolN , µσ〉

=
∑
σ

aσ

∫
PC1(∆n,N)

∫
∆n

τ∗ dvolN dµσ(τ)

=
∑
σ

aσ

∫
Λ\G

∫
∆n

(pN ◦ gσ̃)∗ dvolN dµΛ\G(g)

=
∑
σ

aσ

∫
Λ\G

∫
∆n

(gσ̃)∗ dvolU dµΛ\G(g)

=
∑
σ

aσ

∫
Λ\G

∫
∆n

σ̃∗ dvolU dµΛ\G(g)

=
∑
σ

aσ

∫
∆n

σ̃∗ dvolU

=
∑
σ

aσ

∫
∆n

σ∗ dvolM = 〈dvolM , c〉 = vol(M).

Proof of theorem 2.2.10. We will show that

‖N‖Lip

vol(N)
¬ ‖M‖Lip

vol(M)
,

64



and the opposite inequality will follow by symmetry. If ‖M‖Lip =∞, the inequality is obvious,
so we can assume ‖M‖Lip <∞. By Proposition 3.2.4, in this case there exists a fundamental
cycle in CPC

1,`1,Lip
n (M). Let c =

∑
σ aσσ ∈ CPC

1,`1,Lip
n (M) be a fundamental cycle and

consider its image under the smearing map. It follows from Propositions 4.3.2 and 1.2.24 that
any singular cycle homologuous to smearn(c) represents the fundamental class multiplied by
vol(M)
vol(N) . Moreover, by the construction of the smearing map,

‖ smearn(c)‖ = ‖
∑
σ

aσµσ‖ ¬
∑
σ

|aσ| · ‖µσ‖ =
∑
σ

|aσ| = |c|1.

By Proposition 3.2.10, there exists a cycle in CPC
1`1,Lip

n (N) which represents the same ho-
mology class as smearn(c) with not greater `1 norm. Because Proposition 3.2.4 implies that
the Lipschitz simplicial volume of M can be computed on piecewise C1 cycles, we obtain

‖N‖Lip ¬
vol(N)
vol(M)

‖M‖Lip ⇒
‖N‖Lip

vol(N)
¬ ‖M‖Lip

vol(M)
.
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[25] C. Löh, R. Sauer Degree theorems and Lipschitz simplicial volume for non-positively
curved manifolds of finite volume, J. Topol. 2 (2009) 193-225

[26] H. J. Munkholm Simplices of maximal volume in hyperbolic space, Gromov’s norm, and
Gromov’s proof of Mostov’s rigidity theorem (following Thurston), Topology Symposium
Siegen 1979, Lecture Notes in Mathematics 778, Springer (1980) 109-124

[27] P. Nowak, G. Yu Large Scale Geometry, EMS Textbooks in Mathematics (2012)

[28] J. Roe Lectures on Coarse Geometry, University Lecture Series 31, AMS (2003)

[29] R. P. Jr Savage The space of positive definite matrices and Gromov’s invariant, Trans.
Amer. Math. Soc. 274 (1982) 239-263

[30] L. Simon Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathe-
matical Analysis, Australian National University 3 (1983)
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