
A modal logic of a truth definition for finite
models

Marek Czarnecki∗

Institute of Philosophy, Warsaw University
Konrad Zdanowski∗

Institute of Mathematics, Polish Academy of Science

Abstract

The property of being true in almost all finite, initial segments of
the standard model for arithmetic is a Σ0

2–complete property. Thus,
it admits a kind of a weak truth definition. We define such an arith-
metical predicate. Then we define its modal logic SL and prove a
completeness theorem with respect to finite models semantics. The
proof that SL is the modal logic of a weak truth definition for finite
arithmetical models is based on an extension of SL by a fixpoint con-
struction.

1 Introduction
We investigate in this work finite models being initial segments of the stan-
dard model for arithmetic. Such models proved to be useful in the context of
descriptive complexity and investigations of computational aspects of seman-
tics of languages. In descriptive complexity (see [Imm99] for a nice survey)
one tries to capture the strength of various complexity classes by logics in
which exactly problems from a given complexity class can be expressed. In
order to do so, one usually enriches the structure of finite models with some
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arithmetical predicates. Even relatively weak first order logic corresponds to
a natural complexity class called uniform AC0.

Here we concentrate on some general properties of first order arithmetic
in finite models. Let FM (N ) = {Ni : i ∈ ω} be the family of finite initial
segments of the standard model N = (ω,≤, R+, R×), where R+ and R× are
relational versions of addition and multiplication, respectively.

It is known that the property of a sentence ϕ being true in almost all
such models, FM (N ) |=sl ϕ, is Σ0

2–complete in arithmetical hierarchy (see
[MZ05]). The upper bound can be clearly seen just from the arithmetical
definition of the property:

∃M∀n ≥M Nn |= ϕ.

On the other hand, if for a given formula ϕ(x) we consider a set Xϕ defined
as

Xϕ = {n ∈ ω : FM (N ) |=sl ϕ(n)}

then for first order arithmetical ϕ we get exactly the sets in Σ0
2 (see [MZ05]).

It follows that there will be an arithmetical formula ψ such that we have an
equivalence for each sentence ϕ,

FM (N ) |=sl ϕ if and only if FM (N ) |=sl ψ(pϕq),

where pϕq is a Gödel number of ϕ. In fact we can even require that the
formula ψ commutes with propositional connectives so its behavior resembles,
to a certain degree, a behavior of a truth definition. We will call such a
formula a weak FM –truth definition. This is just an approximation of a truth
definition in the usual sense since. By undefinability of truth in FM (N ) (see
[Mos01]), we cannot have more, that is

FM (N ) |=sl (ϕ ≡ ψ(pϕq)).

We will investigate the properties of such weak FM –truth definitions
which are expressible in a propositional modal logic. That is we consider a
modal logic LTr defined as follows. Let tr be a translation function from the
set of propositional variables into arithmetical sentences. Then, we extend
tr by requiring that it commutes with propositional connectives and that it
translates the necessity operator � as ψ. So, e.g., the inductive clause for �
looks like

tr(�ϕ) = ψ(ptr(ϕ)q).

2



Then we define LTr as the set of modal formulas ϕ such that for any function
tr, the arithmetical formula tr(ϕ) is true in almost all finite models FM (N ).
In our main theorem we characterize LTr as an extension of a basic modal
logic K by an axioms scheme:

�(¬ϕ) ≡ ¬�ϕ.

Thus, the modal properties of a weak FM –truth definition may be contrasted
with that of provability predicate which corresponds to, so called, Gödel–Löb
modal logic GL which is an extension of K by a scheme �ϕ⇒ ��ϕ (see e.g.
[Fra] or [Boo] for two different and interesting surveys) . Indeed, this two
logics are incomparable. This fact may be somehow expected since our weak
truth predicate approximates certain semantics while GL is a logic which
captures the properties of demonstrability, a very different concept. The
proof of our main result shows also that, unlike in the case of GL, we cannot
consistently extend SL by any axiom scheme.

The method of proving our main result is by extending the modal logic
K by the scheme above, getting a logic we call SL, and then by extending
it with an additional fix point construction, obtaining a logic we call SL∗.
Then, we prove that SL∗ is: a sublogic of LTr, conservative over SL in the
vocabulary of SL and, at the same time, a maximal logic which cannot be
consistently extended to a stronger logic. All together it gives the theorem.

Our result can be seen from two points of view. From the first one it is a
contribution to the study of logical properties of finite models. It investigates
what fragments of finite model semantics can be expressed within finite mod-
els and what are finite models properties of these concepts. From the second
point point of view it is a study in modal logics defining a certain natural
modal logic and showing that it has a maximality property by considering its
extension by a fix point construction. We believe that the two points of view
are interesting on their own but we also believe that their interplay gives us
an additional scientific value.

2 Basic definitions
In this section we fix the notation and introduce the main concepts. We
assume some background in the finite models theory and recursion theory.
Any introductory textbooks, e.g. [EFT94] and [Sho93] should be sufficient.
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We consider the first order arithmetic in a relational language. Moreover,
with each predicate we connect its intended meaning e.g. R+ with the relation
of addition, R× with the relation of multiplication, etc. Therefore, we will not
distinguish between the signature of the language (vocabulary) and relations
in a model. The latter will be always either well known arithmetical relations
or its finite models versions.

For a formula ϕ by pϕq we denote its Gödel number and by |ϕ| its length.
We use a shorthand ∃=1 for the quantifier “there exists exactly one element”.

An arithmetical formula ϕ is bounded or ∆0 if all quantifiers occurring
in ϕ are of the form (Qx ≤ t), where Q ∈ {∃, ∀} and t is a term. By Σn we
denote the set of formulas which begin with a block of existential quantifiers
and have n−1 alternations followed by a bounded formula. Similarly, ϕ is in
Πn if it begins with a block of universal quantifiers and has n−1 alternations
followed by a bounded formula. Let us observe that Σ0 as well as Π0 formulas
are exactly bounded formulas.

For a formula ϕ(x1, . . . , xn) and k ∈ ω by ϕ≤k we denote a formula which
arises from ϕ by bounding all quantifiers in ϕ by k̄ and adding additionally
conjunct

∧
1≤i≤n xi ≤ k̄. Of course, if ϕ is a sentence then the added conjunct

is empty.
We use symbols Σn and Πn to denote also the classes of relations in

arithmetical hierarchy. (It will be always clear from the context in which
sense the notation is used.) A relation R ⊆ N r is Σn (Πn) if it definable by
a Σ0

n (Π0
n) formula in the standard model for arithmetic. A relation R is ∆0

n

if it is Σ0
n and Π0

n.
By n̄ we denote the numeral n. Since we consider relational arithmetical

vocabulary we need to express numerals in a somehow complicated manner,
by ϕ(n̄) we abbreviate a formula

∃x0 . . . ∃xn(x0 = 0 ∧
∧

1≤i≤n

S(xi−1, xi) ∧ ϕ(xn)).

Equivalently, we can write the above formula as

∀x0 . . . ∀xn(x0 = 0 ∧
∧

1≤i≤n

S(xi−1, xi)⇒ ϕ(xn)).

Thus, one can eliminate all terms in a formula without increasing its quan-
tifier complexity. Whenever we speak of, e.g., a term denoting an integer or
that a formula ϕ(x) is true about the term t is should be understand by the
usual translations of terms into the corresponding relational language.
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The quantifier rank of a formula ϕ, rk(ϕ), is defined in a usual way,
i.e. rk(ϕ) = 0 if ϕ is atomic formula, rk(¬ϕ) = rk(ϕ), rk(ϕ ∧ ψ) =
max{rk(ϕ), rk(ψ)}, and rk(∃xϕ) = 1 + rk(ϕ). Similarly for modal formulas
we define a modal rank as mr(p) = 0 for every variable p, mr(¬ϕ) = mr(ϕ),
mr(ϕ ◦ ψ) = max{mr(ϕ),mr(ψ)}, for ◦ ∈ {∧,∨,⇒}, and mr(�ϕ) = 1 +
mr(ϕ).

2.1 Finite models for arithmetic

Let A be a model having as a universe the set of natural numbers, i.e. A =
(ω,R1, . . . , Rs), where R1, . . . , Rs are relations on ω. We will consider finite
initial fragments of these models. Namely, for n ∈ ω, by An we denote the
following structure

An = ({0, . . . , n}, Rn
1 , . . . , R

n
s , n),

where Rn
i is the restriction of Ri to the set {0, . . . , n}. We will denote the

family {An}n∈ω by FM(A). The signature of An is an extension of the
signature of A by one constant. This constant will be denoted by MAX . We
introduce it just for convenience since in all models we consider the maximal
element is definable by a fixed arithmetical formula.

Let ϕ(x1, . . . , xp) be a formula and b1, . . . , bp ∈ ω. We say that ϕ is
satisfied by b1, . . . , bp in all finite models of FM(A) (FM(A) |= ϕ[b1, . . . , bp])
if for all n ≥ max(b1, . . . , bp) An |= ϕ[b1, . . . , bp]. We say that ϕ is sat-
isfied by b1, . . . , bp in all sufficiently large finite models of FM(A), what is
denoted by FM (A) |=sl ϕ[b1, . . . , bp], if there is k ∈ ω such that for all
n ≥ k An |= ϕ[b1, . . . , bp]. In what follows we work with one fixed infinite
model for arithmetic, N = (ω, S,R+, R×,≤). Therefore, instead of writing
FM (N ) |=sl ϕ[b̄] we may just write |=sl ϕ[b̄].

Let F be a set of sentences of first order logic. By ThF(A), where A is
a model, we denote the set of all sentences from F true in A. For a class
of models K, by ThF(K) we denote the set of sentences from F true in all
models from K, that is ThF(K) =

⋂
A∈K ThF(A). By slF(FM ) we denote the

set of sentences from F true in all sufficiently large finite models of FM(A).
So, we have

ThF(FM (A)) = {ϕ ∈ F : ∀n ∈ ω An |= ϕ},

slF(FM (A)) = {ϕ ∈ F : ∃k∀n ≥ k An |= ϕ}.
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When F is the set of all sentences of a given signature we will omit the
subscript F .

2.2 Truth definitions and diagonal lemma

The idea how to represent the relations on ω in finite models was formulated
in the article of Marcin Mostowski [Mos01]. He defined there the notion of
FM-representability. Relation R ⊆ ωr is FM–representable in FM (N ) if and
only if there exists a formula ϕ(x1, . . . , xr) such that for all a1, . . . , ar ∈ ω,

(a1, . . . , ar) ∈ R if and only if FM (N ) |=sl ϕ[a1, . . . , ar]

and
(a1, . . . , ar) 6∈ R if and only if FM (N ) |=sl ¬ϕ[a1, . . . , ar].

For the theory of finite models of arithmetic with addition and multiplication
we have the following theorem.

Theorem 1 ([Mos01]) Relation R ⊆ ωr is FM–representable in FM (N )
if and only if R is in ∆0

2.

One can characterize the relations in ∆0
2 as those which are decidable by a

Turing machine with a recursively enumerable oracle (see e.g. [Sho93]).
In his investigations of representability in finite models Mostowski was

especially interested in the notion of truth. The FM–representability theorem
gives us the way of expressing various notions in finite arithmetical models,
e.g., the following relations are recursive, thus FM–representable:

• Name(x, y), abbreviating that y is the Gödel number of a canonical
term x naming x,

• Subst(x, y, z), abbreviating that z is the Gödel number of the formula
obtained by substituting the term with Gödel number y for a variable
v0 into formula with Gödel number x.

A possibility to represent various syntactical notions opened a way of repre-
senting the whole variety of syntactic and semantical concepts. This resulted
with forging the following notion of FM–truth definition: formula ψ(x) is an
FM–truth definition when for every arithmetical sentence ϕ,

FM (N ) |=sl ϕ ≡ ψ(pϕq).

In [Mos01] Marcin Mostowski stated and proved the following FM–version
of the diagonal lemma.
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Lemma 2 (FM–version of the diagonal lemma) For every arithmetical
formula ψ(x) with free variable x, there exists a sentence ϕ such that:

FM (N ) |=sl ϕ ≡ ψ(pϕq).

As a consequence of Lemma 2 Marcin Mostowski proved also an FM–version
of the undefinability of truth theorem.

Theorem 3 (FM–version of the undefinability of truth theorem) There
is no arithmetical formula which is an FM–truth definition.

Therefore the notion of FM–truth for arithmetic of addition and multiplica-
tion can not be expressed within the finite model framework similarly as it
can not be expressed in the standard model. However in the next section we
show that we can construct a formula which – in a way – approximates an
FM–truth definition i.e. it has several properties we should expect from a
truth definition.

2.3 A truth definition for almost all finite models

It is a folklore that there is no ∆0 truth definition for ∆0 formulas and that
there exists a Σ1 truth definition Tr∆0(x) for ∆0. Thus Tr∆0(x) is of the
form ∃y ϑ(x, y), where ϑ ∈ ∆0. Despite the fact that we cannot get rid of
this leading existential quantifier in Tr∆0(x) we know how to estimate it (see
[HP93]). Let ϕ(a1, . . . , an) be a ∆0 formula, where ai are fixed parameters,
and let h(x, y) be a function defined as

h(pϕq, a) = (a+ 2)2|ϕ|
.

Then the following holds (see [HP93])

∃y ϑ(pϕq, y) if and only if ∃y ≤ h(pϕq,max {a1, . . . , an})ϑ(pϕq, y).

Now let us introduce a ∆0 truth definition α(x, k, z) with two additional
parameters k and z. The first variable x is supposed to be a Gödel number
of some sentence ϕ, k is supposed to be a bound for quantification in ϕ and
values of free variables and finally z is a bound for existential quantifier for
Tr∆0 . Thus we define:

α(x, k, z) = ∃y ≤ z ϑ(x≤k, y)1.

1By x≤k we denote the Gödel number of ϕ≤k, when x is the Gödel number of ϕ – here
k may be considered a variable and its value can be fixed externally.
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Let f(x, k) = max{h(py≤lq, k) : y ≤ x, l ≤ k}. Function f defined this way
is monotone in both arguments and the following are equivalent:

1. Nk |= ϕ,

2. Nf(pϕq,k) |= α(pϕq, k,max),

3. ∀n ≥ f(pϕq, k) Nn |= α(pϕq, k,max).

The part (3) in the equivalence above is essential for our purpose as we
investigate asymptotic properties of formulas. Now it is sufficient to take
F (x) = f(x, x) and define the relation k = F−1(x) ≡df x ∈ [F (k), F (k + 1)).
The notation is slightly abused, yet justified by close correspondence between
the relation k = F−1(x) and the coimage of F . Observe that ∀k ∈ ω∃x k =
F−1(x) and ∀x ≥ F (0)∃=1k (x ∈ [F (k), F (k+1)). The formula α(x, y, z) can
be written in ∆0 form. Similarly, the relation z = F−1(x) is ∆0–definable. It
follows that there is one arithmetical formula which defines in a given finite
model Nm the restriction of z = F−1(x) to the universe of Nm. Finally the
formula Trsl(x) approximating FM–truth is defined as:

Trsl(x) = ∃k = F−1(MAX)α(x, k,MAX).

By our discussion the above formula is ∆0.
The following theorem explains what we mean saying that Trsl(x) ap-

proximates FM–truth.

Definition 4 We say that an arithmetical formula τ(x) is a weak FM –truth
definition if for all quantifier free formulas ψ

1. FM (N ) |=sl (ψ ≡ τ(pψq))

and for all sentences ϕ, ψ,

2. FM (N ) |=sl ϕ if and only if FM |=sl τ(pϕq),

3. FM (N ) |=sl τ(p¬ϕq) ≡ ¬τ(pϕq),

4. FM (N ) |=sl τ(pϕ ◦ ψq) ≡ (τ(pϕq) ◦ τ(pψq)), for ◦ {∧,∨,⇒}.
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We do not expect a weak FM –truth definition to commute with quan-
tifiers, because this would give us a regular FM –truth definition which do
not exists. However, we could have a weak FM –truth definition Trsl(x) such
that it satisfies one of the implications, either

FM (N ) |=sl Trsl(p∀xϕq)⇒ ∀aTrsl(pϕ(a)q)

or
FM (N ) |=sl ∀aTrsl(pϕ(a)q)⇒ Trsl(p∀xϕq).

Theorem 5 Trsl is a weak FM –truth definition.

Proof.

1. First observe that for every quantifier-free formula we can eliminate
MAX with respect to finite models semantics. Thus we can assume
that ϕ(x1, . . . , xn) is a quantifier-free formula without occurrences of
MAX. For a fixed valuation v, let M = max{max1≤i≤n v(xi), pϕq}.
Then in each model Mm for m ≥ F (M), Nm |= ψ ≡ Trsl(pψq)[v] for
every atomic formula ψ and thus also for their boolean combinations
with Gödel numbers not exceeding M – thus also for ϕ.

2. For all sufficiently large k and all n ∈ [F (k), F (k + 1)), Nk |= ϕ is
equivalent to Nn |= Trsl(pϕq). Therefore

∃k∀n > kNn |= ϕ if and only if ∃k∀n > kNn |= Trsl(pϕq).

3. For all n ≥ F (p¬ϕq) > F (pϕq) and k = F−1(n), Nn |= Trsl(p¬ϕq)
is equivalent to Nk |= ¬ϕ. The latter is equivalent to Nn 6|= ϕ and,
finally, to Nn 6|= Trsl(pϕq).

4. We treat only the case of ◦ = ∧. For all n ≥ F (pϕ∧ψq) > max{F (pϕq), F (pψq)}
and k = F−1(x), Nn |= Trsl(pϕ ∧ ψq) is equivalent to Nk |= ϕ and
Nk |= ψ which means Nn |= Trsl(pϕq) and Nn |= Trsl(pψq) respec-
tively.

We showed that Trsl is a weak FM–truth predicate. �
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2.4 Kripke semantics for modal logics

Formulas of modal logics are generated by the following grammar:

ϕ −→ ⊥ | p |ϕ⇒ ϕ |ϕ ∧ ϕ |ϕ ∨ ϕ | ¬ϕ |�ϕ,

where p is an arbitrary element of the set PROP of propositional variables.
We introduce the following abbreviation: ♦ϕ = ¬�¬ϕ.

By Kripke frame we call a pair (W,R), whereW 6= ∅ is a set of – so called
– possible worlds and R ⊆ W 2 is an accessibility relation. For a fixed Kripke
frame F = (W,R) a valuation in F is a function V : (W × PROP)→ {0, 1}.
We call a triple (W,R, V ) a Kripke model when (W,R) is a Kripke frame
and V is a valuation on it. If it is clear from the context that we refer to
a Kripke model we will call it a model for short. The semantics for modal
logics is defined inductively on the construction of formula. For every Kripke
model M = (W,R, V ):

• J⊥KM = ∅,

• JpKM = {w ∈ W : V (w, p) = 1},

• Jϕ ∧ ψKM = JϕKM ∩ JψKM ,

• J¬ϕKM = W − JϕKM ,

• J�ϕKM = {w ∈ W : ∀v ∈ W (wRv ⇒ v ∈ JϕKM)}.

We say that a formula ϕ is true at a world w ∈ W of a modelM = (W,R, V )
when w ∈ JϕKM . We denote this fact also by M,w |= ϕ or if we con-
sider a Kripke frame F = (W,R) with a valuation V we may denote it by
F,w |= ϕ[V ]. However if the context of a model or a frame and valuation is
unambiguous we denote the fact that ϕ is true in w plainly by w |= ϕ.

3 Modal logics SL, SL∗ and LTr

In this section we present a modal logic SL for which we prove a Solovay style
completeness theorem for our arithmetical truth definition. The definition of
SL mimics the properties of Trsl introduced in Subsection 2.3. The intention
is to interprets � as Trsl and to add appropriate axioms to the system i.e.
translate properties of Trsl to the modal language.
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Definition 6 (K) The modal logic K is an extension of classical proposi-
tional logic by axioms:

�(ϕ⇒ ψ)⇒ (�(ϕ)⇒ �(ψ)),

where ϕ and ψ are arbitrary modal formulas and by the necessitation rule,
i.e., if we proved ϕ we can write in a proof also �(ϕ), for any formula ϕ.

Any modal logic which is closed on modus ponens, necessitation and
substitution is called normal. In this work we consider only normal logics with
one natural proviso. We allow substitution only for propositional variables
of the basic language, not for propositional constants added to logic SL∗.

Definition 7 (SL) The modal logic SL is an extension of modal logic K with
the following axioms, for each formula ϕ,

�(¬ϕ) ≡ ¬�(ϕ).

Let us observe, that adding the above axiom to K is enough to make �
commute with all propositional connectives. One can prove this by using
laws of classical propositional calculus. It follows also that for every formula
ϕ, SL ` �ϕ ≡ ♦ϕ. For a fixed ϕ the following are equivalent in SL: �ϕ,
�¬¬ϕ and, by (1), ¬�¬ϕ which is, by definition, ♦ϕ.

Now, we define a modal logic SL∗ which we prove to be a conservative
extension of SL. Firstly, we extend the language of SL.

Definition 8 A variable p is guarded in a modal formula ϕ(p) if each occur-
rence of p is within the scope of a modal operator. For each p and formula
ϕ(p) such that p is guarded in ϕ we add a new propositional constant q〈ϕ,p〉.
The logic SL∗ is an extension of SL by the axioms

q〈ϕ,p〉 ≡ ϕ(q〈ϕ,p〉/p),

where q〈ϕ,p〉 is a new constant and ϕ(q〈ϕ,p〉/p) is a result of replacing in ϕ(p)
each occurrence of p by q〈ϕ,p〉.

The last logic we are going to define is the modal logic of the truth predicate
for |=sl.

Definition 9 Let LTr be the set of all formulas of modal logic ϕ(p1, . . . , pn)
such that for any translation tr it holds |=sl ϕ

tr.
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By definition LTr is the modal logic of the truth predicate for |=sl. It is easy
to see that LTr is a consistent normal modal logic.

Fact 10 Both SL and SL∗ are contained in LTr.

Proof. The fact that SL ⊆ LTr is obvious since the axioms of SL mimics
the properties of Trsl(x) in |=sl. To show that SL∗ ⊆ LTr let us assume that
SL∗ ` ϕ, where ϕ is in the language of SL. We show that ϕ ∈ LTr. Let
ϕ1, . . . , ϕn be a proof of ϕ in SL∗ and let q〈ψ1,p1〉, . . . , q〈ψk,pk〉 be all additional
variables of SL∗ which are used in the proof. Let tr be an arbitrary translation
of variables occurring in the proof besides q〈ψ1,p1〉, . . . , q〈ψk,pk〉. Now, for each
i ≤ k let γi be an arithmetical sentence such that

|=sl (γi ≡ ψtr
i (γi/pi)).

Such γi’s exist by the fix point lemma for |=sl (Lemma 2). Let us extend tr
by putting tr(q〈ψi,pi〉) = γi. It is easy to see that under this extension the
translation of each additional axiom of SL∗ is true in almost all models of
FM (N ). Then, it can be proved by induction on i ≤ n, that |=sl ϕ

tr
i . Since

the translation tr was arbitrary it follows that ϕn ∈ LTr. �

Corollary 11 The logic SL∗ is consistent.

3.1 Completeness theorem for SL

We start this section with the following remark on SL’s models. Let us
consider formula � ⊥ – this formula is true exactly in those worlds of a given
Kripke frame from which there are no accessible worlds – let us call them final.
On the other hand ♦ ⊥ is trivially equivalent to ⊥. Since SL ` �⊥ ≡ ♦⊥
there are no final points in SL’s models.

We call a Kripke frame a line if it is of the form ({0, . . . , n} , Sn∪{(n, n)})
or (ω, S), where S is the successor relation and Sn is its restriction to the
set {0, . . . , n}. Thus, a frame is a line if it is a finite initial segment of the
successor relation with a loop added at the top or if it is the standard model
for arithmetic of the successor relation. We will denote the n-th finite line
with universe {0, . . . , n} by Ln. The infinite line will be denoted by Lω. Now,
we prove a completeness theorem for SL.
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Definition 12 We say that a valuation V in Kripke frame F is admissible
for a logic L if each axiom of L is true in F under V , that is F |= ϕ[V ]. We
say that a family of Kripke frames F is sound and complete with respect to
the modal logic L if the following are equivalent:

1. L ` ϕ,

2. for any F ∈ F and for any valuation V in F admissible for L, F |=
ϕ[V ].

If F is a singleton {F} we say that F is sound and complete with respect to
L.

The main tool for proving a completeness theorem is the following lemma.

Definition 13 Let F be a set of modal formulas. By �−1F we denote the
following set

�−1F = {ϕ : �ϕ ∈ F} .

Lemma 14 Let L be a modal logic containing SL and let F be a maximal
consistent in L set of formulas. Then, �−1F is a maximal consistent in L
set of formulas.

Proof. Let L and F satisfy the assumptions of the lemma. One can eas-
ily see that �−1F is consistent in L. Otherwise, there would be a formula
ϕ ∈ �−1F such that L ` ¬ϕ. Then, L ` �¬ϕ and L ` ¬�ϕ. But �ϕ ∈ F
thus F would be inconsistent. Therefore, for the sake of contradiction, let us
assume that �−1F is not maximal with respect to consistency. Thus, there
is a formula ψ 6∈ �−1F such that �−1F ∪ {ψ} is still consistent. We have
that �ψ 6∈ F . By maximality of F , the set F ∪ {�ψ} is inconsistent in L.
Thus, there exists a formula ϕ ∈ F such that L ` ϕ⇒ ¬�ψ. It follows that
¬�ψ ∈ F . Since �¬ψ is equivalent in SL to this last formula we have that
�¬ψ ∈ F and ¬ψ ∈ �−1F . We obtain a contradiction since �−1F ∪ {ψ}
was assumed to be consistent. �

Theorem 15 1. The infinite line Lω is sound and complete with respect
to logics SL and SL∗.

2. The family of all finite lines is sound and complete with respect to SL.
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Proof. Since the soundness part may be easily verified we concentrate on
completeness only. Moreover, it is enough to prove the theorem only for Lω.
Indeed, if Lω, 0 6|= ϕ[V ] and n is a model depth of ϕ, then Ln, 0 6|= ϕ[Vn],
where Vn is a restriction of V to the worlds 0, . . . , n.

To prove completeness we will show the following implication: for each
sentence ϕ, if SL∗ 6` ϕ, then there exists a valuation V admissible for SL∗

such that Lω, 0 6|= ϕ[V ]. As the reader will see, the same construction will
work also for SL. The only difference is that in the case of SL we may stop
the construction after n steps, where n is the modal depth of ϕ.

Thus, let us assume that SL∗ 6` ϕ. Let F0 be a set of formulas which is
maximal consistent in L and contains ¬ϕ. We construct a sequence of sets
Fi, for i ∈ ω such that

Fi+1 = �−1Fi.

By Lemma 14 each of Fi is maximal consistent in L. Now, we construct a
valuation V : ω × PROP −→ {0, 1} in Lω as follows

V (i, p) = 1 if and only if p ∈ Fi.

A straightforward proof by induction on the complexity of a formula shows
that for all formulas ψ and for all i,

Lω, i |= ψ[V ] if and only if ψ ∈ Fi.

Moreover, since each Fi is maximal consistent in SL∗, it satisfies the following
equivalence, for each q〈ψ,p〉,

q〈ψ,p〉 ∈ Fi if and only if ψ(q〈ψ,p〉) ∈ Fi.

Then, we get from the above that V is admissible for SL∗. It follows that we
constructed a model which falsifies ϕ. �

Let us observe, that in the proof above in the case of SL∗ we could not
restrict ourselves just to a finite number of Fi. To the contrary, it can be
shown that all sets Fi are different. This is caused by fix point axioms of
SL∗. This is why SL∗ has no finite models while in the case of SL it would
be enough to consider only sets F0, . . . ,Fn, where n is a modal depth of ϕ
independent from SL.
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4 Main theorem
In this section we prove the main result of the article which characterizes the
modal logic of the truth predicate in finite models.

Definition 16 For a formula ϕ, we define (¬)0ψ as ¬ψ and (¬)1ψ as ψ. For
a finite set of propositional variables P and a function ε : {0, . . . , k}×P −→
{0, 1} we define Φε as a formula∧

0≤i≤k

∧
p∈P

�i(¬)ε(i,p)p.

Any function ε of the above form we will be called a valuation on variables
P and k consecutive worlds.

For P and ε as above, if the formula Φε is true at a given world a of a model
L of SL then it determines completely the values of propositions in P at a
and worlds which can be accessed from a in k steps. Indeed, if L, a |= Φε[V ]
then, for any p ∈ P and any 0 ≤ i ≤ k,

L, a+ i |= p[V ] if and only if ε(i, p) = 1.

It follows that Φε determines also truth values of formulas with modal depth
not greater than k over variables from P .

Lemma 17 Let k ∈ ω, let P be a finite set of variables and let ε : {0, . . . , k}×
P −→ {0, 1}. If ϕ is a formula of modal depth not greater than k with all
variables from P then Φε decides ϕ that is

SL ` Φε ⇒ ϕ or SL ` Φε ⇒ ¬ϕ.

Now, we show that any valuation on propositional variables is consistent
with SL∗.

Lemma 18 For every n > 0 and ε : {0, . . . , n − 1} → {0, 1} there is a
formula ψ such that

SL∗ `
∨

0≤r<n

�r
( ∧

0≤i<n

�i(¬)ε(i)ψ

)
.

Moreover, SL∗ ` (ψ ≡ �nψ).
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Proof. For n = 1 if ε(0) = 0 we put ψ = ⊥ and ψ = > otherwise. For n > 1
and a fixed propositional constant p consider the following formula

ϕn =

(
¬�n−1p ∧

∧
0<i<n

(�ip ≡ �n−1p)

)
.

Since ϕn is guarded in p there is a propositional constant q〈ϕn,p〉 such that

SL∗ ` q〈ϕn,p〉 ≡

(
¬�n−1q〈ϕn,p〉 ∧

∧
0<i<n

(�iq〈ϕn,p〉 ≡ �n−1q〈ϕn,p〉)

)
.

We need the following properties of q〈ϕn,p〉: for each valuation V admissible
for SL∗ , and for each a:

1. there exists i ≤ n− 1 such that Lω, a+ i |= q〈ϕn,p〉[V ],

2. if Lω, a |= q〈ϕn,p〉[V ] then for each 1 ≤ i ≤ n− 1, Lω, a+ i 6|= q〈ϕn,p〉[V ].

It follows that q〈ϕn,p〉 is true exactly in every n-th world of Lω. For the first
point it suffices to observe that if for all 1 ≤ i ≤ n− 1, Lω, a+ i 6|= q〈ϕn,p〉[V ]
then, by the definition of q〈ϕn,p〉, it has to be true at the world a. The second
point also follows easily from the definition of q〈ϕn,p〉.

Now, for a fixed ε : {0, . . . , n− 1} → {0, 1} we define ψ as follows:

ψ =
∨

0≤j≤n−1
ε(j)=1

�n−jq〈ϕn,p〉,

where the empty disjunction is ⊥. Since it is easy to see that the lemma holds
for ψ = ⊥ we may assume that there is j ∈ {0, . . . , n−1} such that ε(j) = 1.
We will show that such defined ψ has needed properties. By completeness
of Lω it is enough to show that for each admissible valuation V there exists
r ≤ n− 1 such that

Lω, r |=
∧

0≤i≤n−1

�i(¬)ε(i)ψ[V ].

Thus, let V be an admissible valuation and let r ≤ n − 1 be smallest world
such that

Lω, r |= q〈ϕn,p〉[V ].

16



By the two mentioned above properties of q〈ϕn,p〉, for each a,

Lω, a |= q〈ϕn,p〉[V ] if and only if a = r + kn, for some k ∈ ω.

It follows that for each 0 ≤ i ≤ n− 1

Lω, r |= �iψ[V ] ⇐⇒ Lω, r |= �i(
∨

0≤j≤n−1
ε(j)=1

�n−iq〈ϕn,p〉)

⇐⇒ Lω, r |=
∨

0≤j≤n−1
ε(j)=1

�i�n−jq〈ϕn,p〉

⇐⇒ ε(i) = 1.

Similarly, for each 0 ≤ i ≤ n− 1,

Lω, r |= �i¬ψ[V ] ⇐⇒ ε(i) = 0.

Thus,
Lω, r |=

∧
0≤i<n

�i(¬)ε(i)ψ[V ]

and since the valuation V is arbitrary and r ≤ n−1, we get by completeness
of Lω that

SL∗ `
∨

0≤r<n

�r
( ∧

0≤i<n

�i(¬)ε(i)ψ

)
.

This completes the proof of the first part of the lemma. To prove the “More-
over” part one needs to observe that the only propositional constant used in
ψ is q〈ϕn,p〉 and there are no variables in ψ. But for this constant we have
SL ` (q〈ϕn,p〉 ≡ �nq〈ϕn,p〉) and this property easily transfer over all formulas
which uses only this one constant. �

Lemma 19 Let k ∈ ω, let P be a finite set of variables and let ε : {0, . . . , k}×
P −→ {0, 1}. If L is a consistent modal logic such that SL∗ ⊆ L then Φε is
consistent with L.
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Proof. Let P = {p1, . . . , pm} and let n1, . . . , nm be pairwise coprime natural
numbers greater than k. We extend ε to a function from

⋃
1≤t≤m {0, . . . , ny}×

{pt} by putting ε(i, pt) = 0 for any i > k. Now, for 1 ≤ t ≤ m, let ψt be an
SL∗ formula from Lemma 18 such that

SL∗ `
∨

0≤r<nt

∧
0≤i<nt

�i+r(¬)ε(i,pt)ψt

and
SL∗ ` ψt ≡ �ntψt.

Now, let V be an arbitrary valuation admissible for SL∗ and, for 1 ≤ t ≤ m,
let at < nt be such that

Lω, at |=
∧

0≤i<nt

�i(¬)ε(i,pt)ψt.

We will replace all at’s by a single world b. By the second property of ψt’s
mentioned above, for each k ∈ ω,

Lω, at + knt |=
∧

0≤i<nt

�i(¬)ε(i,pt)ψt.

Since nt’s are pairwise coprime, by Chinese Remainder Theorem, there exists
b such that, for each 1 ≤ t ≤ m, the remainder of b modulo nt is at. For this
b we have

Lω, b |=
∧

1≤t≤m

∧
0≤i<nt

�i(¬)ε(i,pt)ψt.

Moreover, we can choose b < N = max {nt : 1 ≤ t ≤ m}+
∏

1≤t≤m nt. Since
a valuation V was arbitrary, the following formula is provable in SL∗:∨

0≤j<N

�j(
∧

1≤t≤m

∧
0≤i≤nt

�i(¬)ε(i,pt)ψt).

It follows that a weaker formula below is also provable in SL∗∨
0≤j<2N

�j(
∧

1≤t≤m

∧
0≤i≤k

�i(¬)ε(i,pt)ψt).

The last formula is equivalent to∨
0≤j<N

�jΦε(ψ1/p1, . . . , ψm/pm). (1)
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Now, if ¬Φε is provable in L then, by necessitation and substitution of ψi’s
for pi’s, also the following formula would be provable∧

0≤j<N

�j¬Φε(ψ1/p1, . . . , ψm/pm). (2)

However, (1) is equivalent to the negation of (2). Since (1) is provable in
SL∗ ⊆ LTr, it follows that Φε has to be consistent with L. �
The last lemma shows that if L is a consistent logic such that SL∗ ⊆ L
then L has to be consistent with any valuation described by a function
ε : {1, . . . , k} × P −→ {0, 1}. We use this fact to show that LTr is con-
servative over SL∗ as well as to show that SL∗ is conservative over SL.

Lemma 20 Each consistent normal modal logic L extending SL∗ is conser-
vative over SL∗ in the language of SL.

Proof. Let L be a modal logic extending SL and let ϕ(p1, . . . , pn) be a for-
mula in the language of SL such that SL∗ 6` ϕ. We will show that L 6` ϕ. Let
us assume that all variables of ϕ are among p1, . . . , pn. Let P = {p1, . . . , pn}
and let V : ω × P −→ {0, 1} be a valuation witnessing that SL∗ 6` ϕ. So, it
holds that Lω, 0 6|= ϕ[V ]. In order to determine the logical value of ϕ we need
only to take a look at V restricted to a set {0, . . . , k}×P , for some k greater
or equal to the modal depth of ϕ. Let ε be V restricted to this set. Since Φε

is consistent with ¬ϕ, by Lemma 17 it also implies ¬ϕ. By Lemma 19, Φε

is consistent with L. Thus the formula ¬ϕ has to be consistent with L, too. �

Lemma 21 SL∗ is conservative over SL in the language of SL.

Proof. Let ϕ be such that SL 6` ϕ and let V be a valuation in Lω witnessing
this fact that is

Lω, 0 6|= ϕ[V ].

Let P be all variables of ϕ let k be the modal depth of ϕ. Let ε be V re-
stricted to the set {0, . . . , k} × P . The formula Φε is consistent with ϕ thus,
by Lemma 17, SL ` Φε ⇒ ϕ. By Lemma 19 the formula Φε is consistent
with SL∗ so ϕ has to be consistent with SL∗, too. �

Theorem 22 The logic SL is the modal logic of the truth predicate for |=sl.
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Proof. Of course the modal logic LTr of a weak truth predicate for |=sl

satisfies the assumption of Lemma 20. So, it is a sublogic of SL∗ which is
a conservative extension of SL. Since LTr is in the same language as SL, it
follows, that LTr is equivalent to SL. �
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