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Abstract

We investigate some logics with Henkin quantifiers. For a given
logic L, we consider questions of the form: what is the degree of the
set of L–tautologies in a poor vocabulary (monadic or empty)? We
prove that the set of tautologies of the logic with all Henkin quantifiers
in empty vocabulary L∗

∅ is of degree 0
′. We show that the same holds

also for some weaker logics like L∅(Hω) and L∅(Eω).

We show that each logic of the form L
(k)
∅

(Q) with the number of
variables restricted to k is decidable. Nevertheless – following the ar-
gument of M. Mostowski from [Mos89] – for each reasonable set theory
no concrete algorithm can provably decide L(k)(Q), for some Q. We
improve also some results related to undecidability and expressibil-
ity for logics L(H4) and L(F2) of Krynicki and M. Mostowski from
[KM92].

1 Introduction

This paper considers the problem of complexity of some logics with Henkin
quantifiers in poor vocabularies. It follows investigations presented in [KL79],
[Mos89], [Mos91], and [KM92]. For a more general framework see the survey
[KM95]. In [KL79] it was shown that the logic with the simplest Henkin
quantifier (called the Henkin quantifier) in monadic vocabulary is decidable.
On the other hand the same logic with at least one function symbol or at least
one binary predicate has nonarithmetical set of tautologies (see theorem 3).
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It follows that only logics restricted to poor vocabularies (monadic or empty)
can be decidable or have arithmetical degrees of unsolvability. In this work
we study degrees of some logics with Henkin quantifiers in poor vocabularies.

In [Mos89] it was shown that the logic with Henkin quantifiers in empty
vocabulary is not decidable, in this paper we prove that it is of degree 0′

(recursive with recursively enumerable oracle). The idea of the proof is
essentially based on model theoretical proof from [Mos91] of the Skolem–
Löwenheim property of L∗

∅ (the logic with Henkin quantifiers in empty vo-
cabulary). We show by a similar argument that the degree of some logics
appearingly weaker than L∗

∅ is also 0′.
In [KM92] it is shown that the word problem for semigroups is effectively

reducible to the tautology problem for L∅(Hω). We show here that the class
Eω (which is semantically contained in Hω) is sufficient for this reduction. As
a corollary we obtain that the degree of L∅(Eω) is also 0′.

Then we consider logics with finitely many variables. We show that for
each Henkin quantifier Q and each k the logic L

(k)
∅ (Q) (L(Q) restricted to

formulae with variables x0, . . . , xk−1) is decidable. Moreover, by an argument
similar as in [Mos89] we show that for each reasonable set theory T there is

Q such that for any algorithm A the statement “A decides L
(k)
∅

(Q)” cannot
be proven in T . Moreover, such Q can be found between relatively weak
quantifiers Eω.

In the next part of this paper we consider logics with Henkin quantifiers
in monadic vocabularies. By σn we mean the vocabulary with monadic pred-
icates P1, . . . , Pn. We improve the results from [KM92] by showing that, for
some n, logics Lσn

(H4) and Lσn
(F2

2) are not decidable. Additionally we give
an argument showing that these logics are not equivalent to L(Fω) – the logic
with all unary Krynicki quantifiers.

2 Basic concepts and facts

We recall here shortly basic relevant facts and definitions related to Henkin
quantifiers (for details see the survey [KM95]).

Definition 1 By a Henkin prefix we mean a triple Q = (AQ, EQ, DQ), where
AQ and EQ are disjoint finite sets of variables and DQ ⊆ AQ × EQ is the
dependency relation of Q. If (x, y) ∈ DQ, then we say that the existential
variable y depends in Q on x.
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Usually we write down Henkin prefixes in a more readable form. Particularly
the prefix Hn = ({x1, . . . , xn}, {y1, . . . , yn}, {(x1, y1), . . . , (xn, yn)}) is written
as follows:

∀x1 ∃y1
...

∀xn ∃yn

Dependencies between variables are determined by the same rule as in the
first order case: each existential variable depends on all universal variables
on the left of it. When we forget about concrete variables of a prefix Q then
we can think of Q as being a quantifier. We use here (as in the literature
of the topic) ambiguous terminology applying the same terms for quantifiers
and quantifier prefixes.

The simplest Henkin quantifier is of the form

∀x∃y
∀z∃w

and is called the Henkin quantifier. We denote this quantifier by H. We
write H for the set of all Henkin quantifiers. For each vocabulary σ and
A ⊆ H, by Lσ(A) we mean the logic being the extension of elementary logic
in vocabulary σ by additional quantifiers from A.

The set of Lσ(A)–formulae is defined by the formation rules for elementary
logic and an additional one: if a prefix Q belongs to A and ϕ is a formula,
then Qϕ is also a formula – with the natural modification when we treat Q
as a quantifier. We write L∗

σ for Lσ(H).
The semantics is given by the inductive translation into second or-

der formulae defined by the inductive step for Qϕ(x1, . . . , xn, y1, . . . , yk)
as ∃f1, . . . , ∃fk∀x1, . . . , ∀xnϕ(x1, . . . , xn, f1(x1), . . . , fk(xk)), where AQ =
{x1, . . . , xn}, EQ = {y1, . . . , yk}, and, for i = 1, . . . , k, xi is the list of all
universal variables of Q on which yi depends in Q.

For proving that the logic with Henkin quantifiers extends first order
logic it suffices to observe that even in the logic with the simplest, nonlinear
Henkin quantifier we can define the class of all infinite models. The sentence
defining this class,

∃t
∀x ∃y
∀z ∃w

((x = z ≡ y = w) ∧ (t 6= y)),
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is called the Ehrenfeucht sentence.
The following theorem was proven independently by H. B. Enderton and

by W. J. Walkoe. A proof independent from the Axiom of Choice was given
in [Mos91], see also [KM95].

Theorem 2 (Enderton–Walkoe, see [End70], [Wal70] ) There is an
effective procedure f such that for each existential, second order formula ϕ,
f(ϕ) = Qψ, where

• Q is a Henkin prefix,

• ψ is quantifier free in the same vocabulary as ϕ,

• ϕ is semantically equivalent to Qψ.

As a corollary from [KL79] we have the following.

Theorem 3 For each vocabulary σ with at least one function symbol or one
binary predicate, the set of Lσ(H)–tautologies is not arithmetical.

Proof. Let us observe that the expressive power of one unary function
symbol is covered by any vocabulary with one binary predicate.

It was shown in [KL79] that the standard model (ω, s) can be charac-
terized (up to isomorphism) by a single L(H)–sentence, say ϕ. Moreover,
addition and multiplication are definable in L(H) by means of the successor
only. So, there is an effective translation of first order formulae into Lσ(H)–
formulae ψ 7→ ψ∗ such that (ω,+,×) |= ψ is equivalent to (ω, s) |= ψ∗.
Therefore, the translation ψ 7→ (ϕ ⇒ ψ∗) reduces the first order truth in
(ω,+,×) to the tautology problem for Lσ(H). Q.E.D

In this paper we consider the following classes of Henkin quantifiers (or
prefixes):

• H – the class of all Henkin quantifiers,

• Hω = {Hn : n = 2, 3, . . .}, where Hn is defined above,

• Eω = {En : n = 1, 2, 3, . . .}, where En is the quantifier1

∀x ∃y1 . . . ∃yn

∀z ∃w1 . . .∃wn
.

1This notation is a new one. The class Eω has not been studied earlier.
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Proposition 4 Each quantifier En can be defined by the quantifier H2n, so
the logic L(Eω) is weaker or equivalent to L(Hω).

Proof. For the proof it suffices to observe that

M |=
∀x1 ∃y1 . . .∃yn

∀z1 ∃w1 . . .∃wn
ϕ[ν]

if and only if

M |=

∀x1 ∃y1
...

∀xn ∃yn

∀z1 ∃w1
...

∀zn ∃wn

((
∧

i,j≤n(xi = xj ∧ zi = zj)) ⇒ ϕ)[ν].

Q.E.D

For a first order formula ϕ, the formula Enϕ can be written as

∃f1 . . .∃f2n∀x∀yψ

and the formula H2nϕ can be written as

∃f1 . . .∃f2n∀x1 . . . ∀x2nψ
′,

where ψ and ψ′ are first order. Thus, the logic L(Eω) seems to be essentially
weaker than L(Hω) since in the latter we have no restriction on the number
of considered arguments, here x1, . . . , x2n. However, let us observe that there
is no class A having essentially infinite number of nonequivalent nonlinear
Henkin quantifiers such that L(A) is known to be weaker than L∗.

Definition 5 By a simple positive formula we mean a formula of the form
Qϕ, where Q is a quantifier prefix and ϕ is a quantifier free formula. Qϕ is
a simple positive sentence if it is a simple formula and has no free variables.

We assume here the common convention according to which M |= ϕ
means that for all valuations ν in M , M |= ϕ[ν]. Therefore, the statement
M |= ϕ is meaningful also when ϕ has free variables.
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Definition 6 Let ν be a valuation in a structure M and σ be a finite, rela-
tional vocabulary. By a σ–type T of a valuation ν with respect to variables
x1, . . . , xk we mean a conjunction of all atomic formulae and their negations
which hold between x1, . . . , xk under ν in M . The type of ν is therefore first
order, quantifier free formula. We call x1, . . . , xk the variables of the type T .
If σ is empty, then the type T is a conjunction of equalities and inequalities.

We have the following obvious lemma.

Lemma 7 For each relational, monadic vocabulary σ.
If two valuations, ν1, ν2 in the structure M have the same type T and the set
of free variables of a formula ϕ ∈ L∗

σ is the subset of the variables of T then
M |= ϕ[ν1] if and only if M |= ϕ[ν2].

Of course if σ is not relational or relational but not monadic then the
lemma is trivially false! The lemma says that independently of underlying
logic for poor vocabularies (monadic or empty) the satisfiability relation,
M |= ϕ[ν], depends only on the type of ν with respect to the free variables
of ϕ.

Definition 8 Let σ = (P0, . . . , Pn−1) be a monadic vocabulary and M be a
model of vocabulary σ. For each ε : n −→ {0, 1} we define a constituent of
M :

Cε = {a ∈ |M | : M |= ((¬)ε(0)P0(a) ∧ . . . ∧ (¬)ε(n−1)Pn−1[a])},

where (¬)0 is the lack of negation and (¬)1 is just negation.

3 Henkin quantifiers in empty vocabulary

3.1 The degree of L∗
∅

In what follows, we are going to prove

Theorem 9 The following sets are of degree 0′:

1. The set of L∗
∅–sentences true in all infinite models.

2. The set of L∗
∅ tautologies (true in all models).
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We will give the proof in a few steps.
Let P (M) be a set of all simple L∗

∅–sentences true in a model M . For the
empty vocabulary there is only one (up to isomorphism) countable model.
We will identify this model with ω.

Lemma 10 For all infinite models M , M ′ in the empty vocabulary, P (M) =
P (M ′).

Proof. We prove the lemma by applying the Skolem–Löwenheim
theorem. If ϕ ∈ P (M) then ϕ is equivalent to a Σ1

1–sentence ∃Rψ(R). By
the Skolem–Löwenheim theorem ψ(R) has witnesses for R in M if and only
if it has witnesses for R in M ′. Q.E.D

Lemma 11 For each infinite model M there is an effective procedure using
P (M) as an oracle which assigns to each L∗

∅–formula ϕ a quantifier free
formula ϕ′ such that M |= (ϕ ≡ ϕ′).

Proof. For the proof we will describe the translating procedure, which
for a given formula ϕ produces ϕ′. The translation is inductive and all steps
are effective except the step for eliminating Henkin quantifiers which uses
P (M) as an oracle. We will describe this step which is the only non trivial
part of the procedure.

We have as an input a formula Qϕ(x̄), where ϕ(x̄) is quantifier free and
x̄ is the list of all free variables of Qϕ(x̄). We have finitely many types of
valuations with respect to x̄. Using P (M) as an oracle we construct the
list T1, . . . , Tk of all types such that ∀x̄Q(Ti(x̄) ⇒ ϕ(x̄)) belongs to P (M)
for i = 1, . . . , k. (The prefix ∀x̄Q is treated here as a single Henkin prefix.)
By lemma 7 the formula T1(x̄) ∨ . . . ∨ Tk(x̄) is equivalent to Qϕ(x̄) in M .
Q.E.D

Now, we estimate the complexity of the oracle set, P (M).

Lemma 12 The tautology problem for simple positive sentences in empty
vocabulary in infinite models is Π0

1 − complete. Moreover, the set of simple
formulae true in the class of all models is also Π0

1–complete.

Proof. It is known that the set of first order formulae satisfiable in
infinite models is Π0

1–complete. By the Skolem–Löwenheim theorem, for
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each first order formula ψ(R), where R is the sequence of all non logical
symbols, ψ(R) is satisfiable in infinite models if and only if ∃Rψ is true in
every infinite model. By theorem 2 we can find a simple sentence equivalent
to ∃Rψ. Thus, the set of simple sentences which are true in every infinite
model is Π0

1–hard, in the sense that each Π0
1–set is effectively reducible to it.

One the other hand, it is Π0
1 since the above translation can be reversed.

This translation reduces the tautology in infinite model problem for simple
positive sentences to the satisfiability in infinite models problem for first
order logic.

For the second claim we observe that the set of simple formulae which
are true in every finite model is Π0

1. Therefore, the set of simple sentences
true in all models is Π0

1. Π0
1–completeness of the problem follows from the

first part. Q.E.D

Proof. [of theorem 9] By lemma 12 the set P (ω) is Π0
1–complete.

Additionally for each infinite M , we have by lemma 10 that P (M) = P (ω).
Finally, by lemma 11 there is an algorithm which using P (ω) as an oracle
decides L∗

∅. This gives the first part of the theorem.
By lemma 10, for each infinite M , P (M) = P (ω). Therefore, by lemma

12, the set P (ω) is Π0
1–complete. Finally, by lemma 11, there is an algorithm

which decides L∗
∅ using P (ω) as an oracle. This gives the first part of the

theorem.
To prove the second part, it suffices to observe that the set of tautologies

of finite models is Π0
1 and it can be separated from the set of L∗

∅–tautologies
in infinite models by the Ehrenfeucht sentence (see page 4). Q.E.D

Lemmas 10 and 11 give as a corollary the following theorem from [Mos91].

Theorem 13 For every sentence ϕ ∈ L∗
∅, ϕ is a tautology in infinite models

or ϕ is a contrtautology in infinite models. In the other words, the theory of
infinite models in L∗

∅ is complete.

3.2 The degrees of L∅(Hω) and L∅(Eω)

It has been proven in [KM92] that L∅(Hω) is undecidable. The proof has
been done by an interpretation of the word problem for semigroups in the
set of L∅(Hω)–tautologies. In this section we improve this result by showing
that the quantifiers Eω are sufficient for this interpretation.
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Theorem 14 The logic L∅(Eω) is undecidable.

Proof. It is known that the word problem for semigroups with two gen-
erators is undecidable (see e. g. [Dav77]). We will show a reduction of the
word problem to the tautology problem for L(Eω). In this proof we skip the
details which are the same as in the proof of the undecidability theorem for
L∅(Hω) in [KM92].

If A = {a, b} is an alphabet and X ∈ A∗, then for each variable x we can
define a translation µx of X to the terms with two unary function symbols
f and g: µx(ε) = x, µx(aX) = f(µx(X)), µx(bX) = g(µx(X)). Let Xi, Yi ∈
A∗, i ≤ k, then the following statements are equivalent:

• ((
∧

i<k Xi = Yi) ⇒ Xk = Yk) is a consequence of the theory of semi-
groups,

• ((∀x
∧

i<k µx(Xi) = µx(Yi)) ⇒ ∀z(µz(Xk) = µz(Yk))) is a first order
tautology,

• ∀f, g((∀x
∧

i<k µx(Xi) = µx(Yi)) ⇒ ∀z(µz(Xk) = µz(Yk))) is a second
order tautology,

• ∃z∃f, g∀x(
∧

i<k µx(Xi) = µx(Yi)) ∧ µz(Xk) 6= µz(Yk)) is a second order
contrtautology.

In the next step we eliminate all complex terms in the last for-
mula by adding new function symbols. We proceed in the following
manner. A formula of the form ∃z∃h0, . . . , ∃hn∀x∀y(ϕ(f(t(w))), where
t is a complex term and w ∈ {x, y, z}, is replaced by the formula
∃z∃h0, . . . , ∃hn∃hn+1∀x∀y[(y = t(x) ⇒ hn+1(x) = f(y)) ∧ (ϕ(hn+1(w)))].
The essential property of this replacement is that we use only two universal
variables and we increase only the number of existential, second order vari-
ables. In the last step we replace the sequence of second order variables by a
proper En. If ψ is a so obtained formula, then ((

∧
i<k Xi = Yi) ⇒ Xk = Yk)

is a consequence of the theory of semigroups if and only if ¬ψ is a
tautology. It follows, that a deciding method for L(Eω) gives a deciding
method for the word problem for semigroups. However, it is known that the
latter problem is undecidable. Q.E.D

Later, the second author has shown that the above theorem remains true
even for logics L∅(H10) and L∅(E10), see [Zda02].
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Let us observe that the translation described in the above proof is a
reduction of the Σ0

1–complete problem (the word problem for semigroups,
see e. g. [Dav77]), to the problem of truth in all infinite models for negations
of simple formulae of L(Eω). Thus, by lemma 12, the tautology problems
for simple positive sentences with all Henkin quantifiers and for that with
quantifiers from Eω only are equivalent. Since, by theorem 13, any sentence
of L∗

∅ is a tautology or contrtautology in infinite models then we obtain the
following.

Theorem 15 There is an effective procedure f such that for every simple
positive sentence Qϕ in empty vocabulary, f(Qϕ) = pEnψq, where Enϕ is also
a simple sentence in empty vocabulary such that Qϕ and Enψ are equivalent
in infinite models.

Theorem 16 The sets of tautologies of L∅(Hω) and of L∅(Eω) have degree
0′.

Proof. By theorem 9 the considered sets have degree at most 0′. By the
reduction of the Σ0

1–complete problem from the proof of theorem 14 these
sets cannot be of any lower degree. Q.E.D

Now let us compare the complexity of the consistency problem for first
order sentences with the tautology problem for simple formulae with Henkin
quantifiers. We have the following.

Theorem 17 ([Mos89]) There is an effective procedure translating first or-
der sentences into simple sentences of L∗

∅, δ 7−→ Consδ such that for every
δ, δ is consistent if and only if Consδ is a tautology.

Applying the result from theorem 15 we can strengthen this result. We
know that there is an effective procedure translating first order sentences
into sentences of L(Eω) in empty vocabulary, ϕ 7−→ Consϕ, such that for
every ϕ, ϕ is consistent if and only if Consϕ is a tautology. Moreover,
since the consistency problem for first order logic is Π0

1–complete, by lemma
12 there is also an effective translating procedure in the opposite direction.
Then the sets of consistent first order formulae and of simple formulae being
L(Eω)–tautologies in empty vocabulary are Π0

1–complete. Therefore we have
the following.
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Theorem 18 The sets of consistent first order formulae and simple formulae
being L(Eω)–tautologies in empty vocabulary are effectively equivalent.

Let us observe that, by theorem 3, allowing non monadic vocabularies
the complexity of the set of tautologies with the simplest Henkin quantifier
falls beyond the arithmetical hierarchy.

3.3 Some decidable but not determined sets

In this section we show that the set of tautologies of logics with Henkin
quantifiers essentially depends on some independent set-theoretic statements.
In particular, consistency of a first order sentence can be expressed by means
of a simple formula with a Henkin quantifier (see theorem 17). Then, it was
observed in [Mos89] that for any reasonable set theory T there is a Henkin
quantifier Q such that no fixed algorithm can decide L∗

∅(Q) provably in T .
By theorem 15 we can improve this obtaining the following.

Theorem 19 For every T – finitely axiomatizable, self-consistent (T 0

¬ConsT , where ConsT is the standard arithmetical sentence express-
ing consistency of T ) extension of ZFC there is n such that no algo-
rithm A can be proven in T to decide the tautology problem for L(En)
(T 0 “A is an algorithm deciding L(En)”).

Nevertheless it might still hold that

T ` ∃x(“x is an algorithm deciding L(En)”).

Now, we are going to give an example of a logic with this property.
By L(k)(Q) we denote the logic obtained from the first order logic by

adding the quantifier Q and restricting the number of variables to k.

Theorem 20 For every Q ∈ H and every k ∈ ω the set of tautologies of
L(k)(Q) in infinite models is decidable.

Proof. For obtaining an algorithm which decides L(k)(Q) we apply
the elimination of quantifiers from lemma 11. It works with the oracle
for simple formulae in L(k)(Q). However, in this logic we have only
finitely many (up to logical equivalence) simple formulae with variables
x0, . . . , xk−1. Since the oracle is finite the considered set is decidable. Q.E.D

Combining the results from theorem 19 and the last theorem we can state:
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Corollary 21 Let T satisfy conditions from theorem 19. Then for each Q ∈
H and each k ∈ ω there is n ∈ ω such that

T ` ∃x < n“ x is an algorithm deciding L(k)(Q) in infinite models.”.2

Moreover, for sufficiently large k ∈ ω and Q ∈ H, for all n ∈ ω

T 0 “n is an algorithm deciding L(k)(Q) in infinite models.”.

Proof. The first part of theorem follows from the fact that the proof of
the previous theorem can be done within the theory T . The proof of the
second part is exactly the same as the proof of the corresponding theorem
in [Mos89]. Q.E.D

In fact we cannot even prove in T the completeness of any given axiom-
atization of L(k)(Q) since any such complete axiomatization would provide
an algorithm deciding L(k)(Q). This is so, because for every sentence ϕ of
L(k)(Q) either ϕ or ¬ϕ is a tautology in infinite models.

4 Vocabularies with unary predicates

In the remaining part of this paper we consider logics restricted to vocabu-
laries with unary predicates.

4.1 Undecidability of L(H4) and L(F2
2)

In [KL79] it has been proven that the logic L(H) in the language with unary
predicates is decidable. On the other hand in [KM92] some appearingly only
slightly stronger languages has been proven to be undecidable. Here we are
going to improve these results.

Definition 22 A set R ⊆ ω is Diophantine if for some quantifier free,
arithmetical formula ϕ(x, y1, . . . , yn) we have:

R = {x ∈ ω : ∃y1, . . . , yn ∈ ω ϕ(x, y1, . . . , yn)}.

2By n we denote a proper standard term naming the number n.
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By the result of Matijasevič, see [Mat70], every recursively enumerable
set is Diophantine.

Now we are going to strengthen theorems from [KM92]. By the quantifier
Fn we mean the Krynicki quantifier defined as

M |= Fnx1, . . . , xn, , y1, . . . , yn ϕ(x1, . . . , xn, y1, . . . , yn)
if and only if

there is a unary operation f defined on the universe of M such that
(M, f) |= ∀x1 . . .∀xn ϕ(x1, . . . , xn, f(x1), . . . , f(xn)).

We will write Fω for the class of all quantifiers Fn.
Similarly, by the quantifier F

2
2 we mean the quantifier defined as

M |= F
2
2x

1
1, x

1
2, x

2
1, x

2
2, y1, y2 ϕ(x1

1, x
1
2, x

2
1, x

2
2, y1, y2)

if and only if
there is a binary operation f defined on the universe of M such that

(M, f) |= ∀x1
1∀x

1
2∀x

2
1∀x

2
2ϕ(x1

1, x
1
2, x

2
1, x

2
2, f(x1

1, x
1
2), f(x2

1, x
2
2)).

In [KM92] it has been proven that the logics L(H4) and L(F2
2) in the

vocabulary with infinitely many unary predicates are undecidable. We can
improve these theorems by the following.

Theorem 23 The logics L(H4) and L(F2
2) in the vocabulary with finitely

many unary predicates are undecidable.

Proof. The proof of the relevant theorem in [KM92] relies on the ability of
interpreting the truth of an existential arithmetical sentences in the problem
of satisfiability for L(H4)–formulae (or L(F2

2)–formulae) in the language with
infinitely many unary predicates Pi. The cardinalities of predicates interpret
numerical variables. However, we do not need infinitely many variables for
obtaining undecidability.

Let K be a Diophantine set which is not recursive. Let ϕ(x, y1, . . . , yn)
be a quantifier free, arithmetical formula such that

K = {x ∈ ω : ∃y1, . . . , ∃yn ∈ ω ϕ(x, y1, . . . , y2)}.

With each k ∈ ω we construct the sentence ϕ′
k ∈ L(H4) (resp. ϕ′

k ∈ L(F2
2))

having the following property: N |= ∃y1, . . . , ∃ynϕ(k, y1, . . . , yn) if and only
if ϕ′

k is satisfied.
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ϕ′
k is obtained from ϕ as follows. Firstly, we eliminate all nested terms in

ϕ by adding some existential quantifiers. Then, we fix the list of all variables
y1, . . . , yr occurring in this new formula and we choose m such, that r < 2m.
Each variable yi will be replaced by i-th constituent

(¬)εi(1)P1(x) ∧ . . . ∧ (¬)εi(m)Pm(x),

where εi : {0, . . . , m} −→ {0, 1}, εi(j) = 1 when the integral part of i/2j is
odd, and εi(j) = 0 otherwise. As before, (¬)0 means lack of the negation,
and (¬)1 is just the negation. As in [KM92] we have L(H4) (or L(F2

2)) –
formulae I(S1, S2), Ψ+(S1, S2, S3) and Ψ×(S1, S2, S3) expressing the following
properties:

• I(S1, S2) says that cardinalities of S1 and S2 are same;

• Ψ+(S1, S2, S3) says that the result of addition of cardinalities of S1 and
S2 gives the cardinality of S3;

• Ψ×(S1, S2, S3) says that the result of multiplication of cardinalities of
S1 and S2 gives the cardinality of S3.

Finally we replace all atomic formulae yi = yj by I(Pεi
, Pεj

), formulae
yi + yj = yk by Ψ+(Pεi

, Pεj
, Pεk

), yi × yj = yk by Ψ×(Pεi
, Pεj

, Pεk
) and we

skip added existential quantifiers.
Let ϕ0 be so obtained formula, then ϕ′

k is ∃=kx(Pε0
(x) ∧ ϕ0) ∧ ¬γ, where γ

is the Ehrenfeucht sentence. So, having any decision method for formulae
ϕ′

k, k ∈ ω we would obtain a decision method for K. Q.E.D

A finite model M for vocabulary with m unary predicates determines the
vector vM ∈ ω2m

such that the j-th coordinate of vM is the cardinality of j-th
constituent of M . Isomorphic models determine the same vector. Therefore
closed on isomorphisms classes of finite models can be identified with subsets
of ω2m

.

Theorem 24 For each recursively enumerable K ⊆ ω there is a sentence ϕ
of L(H4) (or L(F2

2)) with unary predicates such that if R ⊆ ω2m

describes the
class of finite models for ϕ then

K = {n ∈ ω : ∃k1, . . . , ∃k2m−1(n, k1, . . . , k2m−1) ∈ R}.
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The last theorem is a consequence of the proof of theorem 23. As a
formula defining R we can take ϕ0.

It can be contrasted with the classes of models definable by means of
unary Krynicki quantifiers. These are just semilinear subsets in the vector
space ω2m

, or equivalently, relations definable in Presburger arithmetic (see
[MW03]).

We have the following.

Theorem 25 The logic L(F2
2) and L(H4) are not equivalent to the logic

L(Fω) in a vocabulary containing at least one monadic predicate.

It is relatively easy to construct an explicit example of a sentence ϕ of
L(F2

2) or L(H4) with one monadic predicate such that ϕ defines a class of
models which is not definable in L(Fω). E.g. the class of finite models (U, P )
such that card(U)2 = card(M − U) is definable in both: L(F2

2) and L(H4).

5 Final remarks

In this paper we have solved some open problems. However, fortunately not
all of them. The majority of still open problems is related to logics with
Henkin quantifiers in monadic vocabularies. Here is a list of some of them:

1. Exact borderline of decidable logics.

We know from [KL79] that for a monadic vocabulary σ, the logic Lσ(H)
is decidable. Moreover, we know that there is n, such that Lσn

(H4) is
undecidable. However, we do not know for which values of n Lσn

(H4)
is undecidable. The same question is open for logics L(En) in monadic
vocabularies.

The question of decidability of L(H3) in monadic vocabularies remains
open.

2. Classes of models definable in L(H3).

Classes of models which are definable in monadic L(H) or in monadic
L(Fω) can be described as semilinear sets (see [KL79] and [MW03], in
case of L(H) the other direction is wrong). The analogue for L(H4) does
not hold (see theorem 25). Which classes of models are definable by
L(H3)–formulae in the monadic vocabulary? Are they also semilinear?

15



3. The relation between quantifiers Hn and En.

We know that En ≤ H2n for each n. However, we do not know the
smallest k such that En ≤ Hk. Additionally, the problem whether the
class Eω is weaker than Hω is also open.
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