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THEJOURNAL OF SYMBOLIC LOGIC 
Volume 49, Number 1, March 1984 

TOWARD USEFUL TYPE-FREE THEORIES. I 

Contents of Parts I and I1 
I-A Issues for semantics and mathematics. 
I-B Type-free theories of partial predicates (truth and membership). 

11-C Mathematical criteria, ordinary and extended. 
11-D Type-free theories of partial functions and total classes. 
11-E Discussion. 

PART A 

ISSUES FOR SEMANTICS AND MATHEMATICS 

$1. The paradoxes: a continuing challenge. There is a distinction between 
semantical paradoxes on the one hand and logical or mathematical paradoxes on the 
other, going back to Ramsey [1925]. Those falling under the first heading have to do 
with such notions as truth, assertion (or proposition), definition, etc., while those 
falling under the second have to do with membership, class, relation, function (and 
derivative notions such as cardinal and ordinal number), etc. There are a number of 
compelling reasons for maintaining this separation but, as we shall see, there are also 
many close parallels from the logical point of view. 

The initial solutions to the paradoxes on each side-namely Russell's theory 
of types for mathematics and Tarski's hierarchy of language levels for semantics- 
were early recognized to be excessively restrictive. The first really workable solu- 
tion to the mathematical paradoxes was provided by Zermelo's theory of sets, 
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subsequently improved by Fraenkel. The informal argument that the paradoxes are 
blocked in Z F  is that its axioms are true in the cumulative hierarchy of sets where 
(i) unlike the theory of types, a set may have members of various (ordinal) level^,^ 
but (ii) as in the theory of types, the level of a set is greater than that of each of its 
members. Thus in Z F  there is no set of all sets, nor any Russell set {x I x 4 x) (which 
would be universal since Vx(x $ x) holds in ZF). Nor is there a set of all ordinal 
numbers (and so the Burali-Forti paradox is blocked). 

The step to the theory BG of sets and classes developed by Bernays and improved 
by Godel is intuitively modeled in the cumulative hierarchy extended to one further 
top level at which we find the proper classes; classes of lower levels are identified with 
sets. In BG one proves the existence of the class V of all sets, but not of all classes; 
further we have a class O N  of all sets which are ordinal numbers. V and O N  are 
proper classes and V 4 V, O N  4 ON. 

The theories Z F  and BG (when augmented by AC, the Axiom of Choice, also 
intuitively true in the cumulative hierarchy) provide a framework in which 
practically all of current mathematics can be systematically represented in an 
unforced manner. The exceptions are marginal; one which will be at the center of 
attention here is the informal general theory of mathematical structures, particularly 
the theory of categoriex3 It is natural in certain situations to consider all structures 
of a given kind as forming a new structure, of which they are the elements. For 
example, the class B consisting of all structures (A ,0 ,  =,) with a commutative and 
associative binary operation c itself forms such a structure under Cartesian product 
x ;that is, (B, x , 2)is naturally considered as a member of B. Category theory deals 
with structures of a more sophisticated kind which are useful in extensive parts of 
algebra and topology. It is mathematically natural to impose a category structure 
(CAT,. . .) on the class CAT of all categories and thus to consider the former as a 
member of the latter. However, the logical problem of dealing with such is already 
present in simpler structures such as (B,. . .) above (or even with the class of all 
classes). We are blocked from forming B in Z F  or BG, though in the latter we can 
form the class B' of all (commutative and associative) structures (a, 0 ,  =,), where 
a E V. This is the basis for a distinction between "small" and "large" structures 
whose domains are sets, resp. classes (cf. MacLane [1977, $1.71 for its employment in 
category theory, e.g. with the category of all small groups, the category of all small 
categories, etc.). The systematic use of this distinction serves all practical ends in 
category theory, though it is not without awkward turns. We shall return to its 
troublesome aspects in Part 11-C below. 

Z F  and BG are both untyped formalisms, i.e. the levels which we have in mind in 
their informal interpretations do not appear explicitly in the ~ y n t a x . ~  Thus we can 
form expressions x E y without restriction, in particular the expression x E x. On the 
other hand, one usually refers to a formal framework (a theory or structure) as being 

These levels are usually called ranks in current set theory. 
Another exception is Brouwer's theGy of choice sequences. In that case, the formal reduction of 

theories with choice sequences to theories without, accomplished by Kleene/Vesley [I9651 and 
Kreisel/Troelstra [1970], ends with systems interpretable in ZF. 

There have been axiomatizations of set theory in which the ranks (footnote 2) appear explicitly, 
though of course as variables; cf. Scott [1960]. 
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type-free if it admits significant instances of self-application. Evidently a direct 
account of the informal theory of categories would be type-free in this sense. There 
has been extensive experience in mathematical logic with type-free structures from 
work in recursion theory and with the A-calc~lus.~While the structures met there 
have meager mathematical content, this experience among others lends hope to the 
pursuit of richer type-free models and theories. 

There has indeed been considerable work on type-free mathematical theories, i.e. 
theories of classes and/or theories of functions6 The motivations have been 
various, ranging from the ideological (as in Frege's and Curry's programs) to 
specifically useful (as emphasized here). For some workers the challenge has simply 
been "logical": to find a simple, consistent but mathematically expressive type-free 
theory. There have been no notable successes, at least none which speak for 
themselves. But there are an interesting variety of "solutions" which have a 
corresponding variety of merits. How to assess these and where to look for further 
progress seems to me to require a more explicit analysis of the problem or problems 
to be solved than has been provided thus far. One of the main purposes of this paper 
is to advance such an analysis. 

O n  the semantical side there has been an (equally) extensive pursuit of type-free 
frameworks, especially by workers in philosophical logic.' This is partly motivated 
by the fact that natural language abounds with directly or indirectly self-referential 
yet apparently harmless expressions-all of which are excluded from the Tarskian 
framework. Fretting about the severe restrictions placed by that solution, phi- 
losophers have sought to liberalize semantic theory so as to accomodate such 
expressions while still blocking the paradoxes. Another purpose of the present paper 
is to show how a logical analysis of problems and solutions on the semantical side 
closely parallels those on the mathematical side-at least to a point. But when one 
indulges in this kind of comparison, several striking points of difference emerge: 
(i) There has been no success for semantics comparable to that achieved by Z F  (or 
even Z) for mathematics.* (ii) Unlike mathematics, the need for a type-free account 
is immediately apparent. (iii) Solutions to the semantic paradoxes have been local 
rather than taking their place within global (i.e. over-all) semantical frameworks; 
thus relatively few constraints have been considered. In my view, (iii) points to the 
need for more extensive criteria to be met by type-free semantical solutions. 

92. Plan of the present paper (I and 11). Most of the body of the paper consists of a 
review of work by the author over the last seven years and of related work by others, 

Self-application occurs naturally elsewhere in mathematics, e.g. whenever a set of actions (such as a 
group of operators) is taken to be acting on itself. 

The bibliography to this paper will give the reader a first quick direction toward such; 6.also the 
historical notes in $14 below and the bibliography to Feferman [1975c]. 
'Some of this can be found in the bibliography here and in $14; the bibliography in Martin [I9701 and 

in its second edition [I9781 is a much better source. 
There is no problem with the idea of a cumulative hierarchy of languages L, (or even transfinite 

hierarchy L,); indeed as ordinarily construed one has L,, c L,, ,in the Tarski hierarchy and the truth 
predicate T,for L, makes sense when applied to statements in all earlier languages (cf. $4 below). But there 
is (to my knowledge) no natural theory for such in which the level distinctions make no explicit 
appearance. 
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particularly Peter Aczel, aimed at constructing useful type-free theories. The main 
new material will be found in Part 11-D. In the remainder of this Part A, I take up an 
analysis of both the Liar Paradox and Russell's Paradox, emphasizing the parallel 
features which lead to a contradiction. The possible solution routes are also 
paralleled. These consist in restrictions of (1") language, (2") logic or (3") basic 
principles. The solutions of Tarski and Russell fall under (lo); in the remainder of the 
paper only the routes (2") and (3") are considered. A common move in (2") is to pass 
to some sort of 3-valued logic, while in (3") one has to deal with restrictions of the 
truth sclzerne (TA) or the comprehension scheme (CA) in a type-free language with 
ordinary logic. The following points are immediately observed: (i) Only the 
constructive part of ordinary reasoning is required in deriving the contradictions, 
and the paradoxes pose as much of a problem for the constructivist as for the 
classical logician. (ii) The extensionality principle, which is frequently considered to 
be fundamental for mathematical theories of classes, plays no role in Russell's 
para do^.^ ~artccular attention will be paid in the following to nonextensional 
theories which may be considered equally well within classical or intuitionistic logic. 
For simplicity, though, we take ordinary logic to be represented in CPC, the first 
order classical predicate calculus with equality, unless otherwise specifically indi- 
cated. 

A common suggestion to get around the paradoxes is that one is somehow dealing 
with undefined propositions, i.e. statements which are neither true nor false in the 
ordinary sense. Different logics which are restrictions of CPC have been proposed to 
express this idea formally. They are here considered within the single framework of 
logics for structures with partial predicates, which is the subject of Part B. Special 
attention is given to different interpretations of the biconditional, since that is the 
critical operator in both (TA) and (CA). Arguments are presented against 3-valued 
and other restrictive logics due to their debilitating effects on ordinary reasoning. 
Theories of partial predicates formulated within ordinary logic are promoted 
instead. It turns out that such may be treated most elegantly within an extension 
of CPC by use of a new biconditional = which was introduced in the paper 
Aczel/Feferman [1980]. The main result there yields consistency of the truth and 
comprehension schemes in the form 

(TA), cp = Tr('cpl) 

and 

(CAI, VYCY E {x I cp(x)) = cp(y)I, 

without restriction on cp. In the logic of -, a partial predicate P(x) is treated as a pair 
of predicates (P(x) - t), (P(x) r f )  where t and f are identically true and false 
statements, resp. The consistency result is established by an inductive fixed-point 
argument; this has been used frequently in the construction of models for partial- 
predicate versions of (TA) and (CA) but it is here given a new twist (due to Aczel). 
The new approach described here absorbs the previous treatments of partial classes 
in the papers Feferman [1975b], [1977]. 

The first of these points is not novel. The second is so obvious it hardly seems worth mentioning, 
except as a corrective to the wide-spread and uncritical assumption of extensionality. 
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It is seen from the description just given that Part B is presented in a form equally 
applicable to semantical and mathematical theories. However, on the mathematical 
side its content is shown to be rather meager. In Part 11-C we take up specifically 
mathematical criteria for a richer useful type-free theory. Such a theory is to account 
not only for the notions and structures of ordinary mathematical experience but 
also for such objects as the category of all groups, the category of all categories and 
the category of all functors between two given categories. Here a certain asymmetry 
is brought out between the roles of functions and classes, so that the former appear 
in a way conceptually prior to the latter (just as in certain constructive theories). 
Furthermore, while functions are treated naturally as partial objects in ordinary 
mathematical discourse, classes do not have that character. A final topic of Part 11-C 
is how to get along without extensionality as a matter of course. 

All of the preceding motivates the passage in Part 11-D to nonextensional type- 
free theories of partial operations and total classes. Such theories had been 
formulated previously for constructive purposes in Feferman [1975a], [1979]. (We 
interpolate their connection with another approach to a semantical theory due to 
Aczel[1980], for what he calls Frege structures.) In Part 11-D we shall now study the 
possible utility of these systems (both in their original formulation and with special 
modifications) as a formal framework for the general theory of mathematical 
structures, particularly category-theory. 

The paper (Part 11) concludes with a discussion which retraces some of the choices 
made here, raises questions about alternative approaches, and looks to directions 
where further progress may be possible. 

53. Analysis of the Liar paradox. We here essentially follow Tarski [1956, p. 1651 
(from the translation of his 1935 paper on the concept of truth). (While there is 
nothing novel here, the details are put down for purposes of further discussion and 
comparison with Russell's paradox.) The contradiction results from a combination 
of the following features of ordinary language usage: construction of statement 
names and in particular of self-referential statements, acceptance of ordinary 
reasoning, and acceptance of the passage from the truth of a statement to the 
statement itself and vice versa.'' 

These features are analyzed here formally in terms of a logical system S specified 
by a syntax, underlying logic and basic postulates. We use 'cp', '$', .. . to range over 
the statements of L (the language of S); these are assumed to be closed under the 
usual propositional operators here symbolized by 1,A ,  v, +, *. Formulas cp 
with at most one free variable x are indicated by cp(x); then for t an individual 
term, cp(t) denotes the result of substituting t for x in cp. 

lo.Syntax. (i) (Naming). Each statement cp of L has a name in the language, i.e. 
there is an associated closed term 'cpl of L. 

(ii) (Self-reference). For each formula $(x) we can construct a statement cp which is 
equivalent in S to $('cpl). 

l o  Burge [I9791 argues that the contradiction does not lie in natural language itself but in theories 
"promoted by people" about their language: "Natural languages per se do not postulate or assert 
anything. What engenders paradox is a certain naive theory or conception of the natural concept of truth. 
It is the business of those interested in natural language to improve on it." (op, cit., pp. 169-170). 
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2". Logic. The axioms and rules of ordinary propositional calculus are accepted. 
3". Basic principles. The following axioms are accepted for a predicate T(x) which 

is interpreted as expressing that x is true: 

for each statement cp of L. 
For the derivation of a contradiction in S we take cp with cp t t ~T(rcp1) (in S). 

Using (TA) and transitivity of equivalence we obtain T('cp1) t t i  T('cp1) in S. Let 
8 = T('cp1). Thus both (8 - 7 8 )  and ( 1 8  + 6) are provable. It is a result of 
ordinary logic that (8 + i8) +i8, hence 78 follows by modus ponens. But then 6 
follows from the second implication. Thus S is inconsistent. 

DISCUSSION. 1°(i). The process of statement naming in natural language is Ad 
accomplished uniformly by quotation. However, there are other nonuniform means 
which are frequently applied, e.g, numbering of statements in a text or use of such 
locutions as "the statement you just made", etc. In formal languages statement 
naming may be accomplished by an enumeration cp, ( n  = 0,1,2,. . .) of all the well- 
formed statements and assignment to cp, of a term denoting n (e.g. the numeral 6). 

Ad 1°(ii). Natural language is rife with implicit self-reference, e.g. in such 
statements as "You're not listening to me", or "I never tell a lie" or "English is easy to 
teach foreigners" and of course by explicit fabrication, e.g. "This statement has less 
than ten words." The possibility of self-reference for formal systems was realized by 
Godel [1931]. From this one can show in a fragment of elementary number theory 
that with each formula $(x) is associated cp such that cp o$('cpl) is provable. 

By the analysis of Jeroslow [1973], one actually has a term z in number theory 
such that cp is identical with $(z) and for which 'cpl = z is provable. In natural 
language we have the stronger possibility of literal self-reference, i.e, construction of 
cp identical with $('cpl). But this can also be accomplished in any language 
containing at least one closed term z,by the ad hoc baptismal process which takes 
'cpl to be z for the statement $(z) as cp The conclusion from all this is that the 
hypothesis 1" (ii) is not by itself pernicious. 

Ad 2". It can be argued that the laws of logic implicit in ordinary reasoning are just 
those of the classical 2-valued propositional (and predicate) calculus. However, 
inspection of the argument to contradiction above shows that the law of excluded 
middle is not used,.so the argument is already one in intuitionistic logic. It is usual in 
the latter to identify i8 with 8 + f,where f is an identically false statement. Then 
the principle (6 -.78) -.( 1  8) translates into (8 +(8 + f )) + (8 + f )  which is a 
special case of (8 + (8 -.x))-.(8 -.x).All the other laws of -.and tt applied in the 
derivation of the contradiction are clearly valid intuitionistically." {In fact the 
argument already takes place in what is called minimal logic (cf. Prawitz [1965]), 
where we have the usual axioms and rules for -.. The conclusion of the argument is a 

"As already mentioned, this observation is not novel, though hardly emphasized in the literature. It 
was first brought to my attention some years ago by Harvey Friedman. Several readers of the ms of this 
paper have pointed out that this observation is already contained in Curry's derivation of a contradiction 
in certain logics based on combinatory systems ("Curry's paradox"); cf. Curry [I9421 or Curry [1980, 
pp. 94-95]. The difference is that in Curry's ("illative") systems, the combinatory and logical aspects are 
intertwined. In deriving the paradox, the former is used to construct a "paradoxical" combinator Y 
which then leads to a variety of forms of self-reference. Still it is fair to say that when the logical part of the 
argument is disengaged, it can be seen to proceed entirely within intuitionistic (indeed, minimal) logic. 
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specific contradiction 8 and i8, i.e. 8 and (8 +f ), hence J'; intuitionistically we can 
go on to infer any statement, but not in minimal logic. However, we could replace f 
by an arbitrary x to begin with, if one wants to derive full inconsistency using only 
minimal logic.) 

Ad 3". Truth in natural language is used both as a predicate and as an operator. An 
example of the former is "What you just said is true", and of the latter is "It is true 
that inflation has not abated". Treated formally, truth as an operator would assign 
to each statement cp a new statement T*cp where T* corresponds to the phrase "It is 
true that". Self-reference provides no way to construct cp with cp ctiT*q. The basic 
axioms for T*  would be: 

(T*A) cp- T*cp 
for each statement cp. No contradiction results from taking these axioms in place of 
(TA), since we can interpret T*  as the identity operator. 

54. Solution routes for the Liar paradox. By a "solution" to the paradox is meant 
the production of a consistent system S which has more or less the properties 1"-3" 
of 93. Since the "more or less" is vague, there cannot be a unique definite solution to 
the problem posed by the paradox. Usually further criteria are brought to bear 
(implicitly or explicitly) to test proposed solutions. The most demanding would be to 
situate the solution within-a coherent global (overall) semantics for natural 
language. We shall return to the question of such criteria in Part 11-C. Here the 
matter is considered only locally; the following is just a preliminary survey of 
possible solution routes. 

To obtain some generality we assume that a consistent theory So with language 
Lo = L(So) is given whose syntax and semantics are regarded as unproblematic, and 
that S is to be found as an extension of So (with L = L(S) an extension of Lo). So 
might correspond to a fragment of natural language, or it could be an axiomatic 
system for a part of science or mathematics. 

Corresponding to 1"-3", there are three kinds of restrictions which might be 
made. 

I*. Restriction of syntax. 
2*. Restriction of logic. 
3*. Restriction of basic principles. 
The escape route l *  is that taken in a Tarskian approach. A truth predicate T for 

Lo  is available only in a secondary ("higher" or "meta") language L. Statement- 
naming 'cpl is provided only for cp in Lo;  thus T('cp1) is a sentence of L only for cp in 
Lo.  This restriction blocks full self-reference, i.e. there is no cp of L for which 
cp -1T('cp1) holds. We may use full classical logic in L and all available instances 
of (TA), i.e. T('cp1) o cp just for cp in Lo  (in that sense the solution is also a restriction 
of 3"). Tarski's set-theoretical definition of truth for Lo  provides a consistency-proof 
of this system S. Evidently, the solution can be iterated to give a hierarchy of 
languages Lo,  L,, L,, L,, ... for each of which the truth predicate is available only 
in the following language." 

lZ In his 1935paper, Tarski stated: "In my opinion the considerations of $1prove emphatically that the 
concept of truth (as well as other semantical concepts) when applied to colloquial language in 
conjunction with the normal laws of logic leads inevitably to confusions and contradictions." He saw the 
only possible way out in the "reform" of this language which would amount to a split "into a series of 
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For the reasons given in 51, only solution routes 2* and/or 3* will be pursued in 
the present paper. Actually, the Tarskian solution for Lo  can be recast alternatively 
as falling under 3*. Simply take a system S in which one meets the conditions l o  (i), (ii) 
and 2" without restriction, but where (TA) is restricted to T('cp1)- cp, for cp a 
sentence of Lo .  This is shown consistent by incorporating enough arithmetic in S to 
carry out Godel numbering of L(S) within S and thence all of lofollowed by Tarski's 
consistency proof in which T is interpreted as the truth predicate for Lo .  However, 
this solution is rather weak: though we have sentences T('cpl) in L for all cp in L, and 
in particular for cp such that cp -1T('cpl), nothing interesting can be said about 
these statements. Further, there is no evident means of iterating this procedure i.e. to 
find acceptable instances of T('cpl)- cp for cp not in Lo .  

REMARKS.(i) It is common in the literature on the semantical paradoxes to present 
a model 1132 for a solution S without explicitly describing S. (Actually, the model itself 
is often not even described precisely; rather, an account is given which would lead to 
a model.) Obviously, once 1132 is constructed, one can take S to be the set of state- 
ments true in 1132. We have formulated the search for solutions as the construction 
of suitable consistent S for several reasons. First, there may be other means than 
provision of a model to establish consistency of such S, e.g. the use of proof- 
theoretic methods. Secondly, a griterion which might be applied is that the passage 
of So to S is only to be a matter of convenience in the sense that S is supposed to be a 
conservative extension of So, i.e. for cp in Lo we are to have S b cp only if So k q.13 
Finally, I believe that mere presentation of a model 1132 does not give full 
appreciation of the merits or faults of a proposed solution when it is not said for 
what system S this is a model. 

(ii) Solutions sometimes involve several kinds of restrictions simultaneously, e.g. 
as Tarski's restriction of 1" automatically required a restriction of 3". But there is 
another possibility to consider: one may make an extension of ordinary logic 
provided there is a compensating restriction elsewhere. This is the approach taken in 
Part B, 9911-12. 

55. Analysis of Russell's paradox. This analysis parallels that of the Liar in many, 
but not all respects. Classes are regarded as being somehow the objectification of 
properties, and a theory S of classes counts such among the objects of its universe of 
discourse. However, there is no presumption that all objects are classes. In the 
formal framework of S, properties are expressed by formulas cp with a distinguished 
free variable, say "x". We write cp(x) for such, or cp(x, . ..)when we want to stress that 
cp may contain other free variables ("parameters"). For a term z, q(z) denotes the 
result of substituting z for x at all its free occurrences in cp (assuming z is free for x in 
cp, i.e. there are no collisions of variables). 

languages.. .each of which stands in the same relation to the next in which a formalized language stands 
to its metalanguage." But Tarski doubted that such could be done while preserving the naturalness of 
everyday language. Cf. the translation in Tarski [1956, p. 2671. 

l 3  It is true that there is a necessary and sufficient model-theoretic condition for S to be a conservative 
extension of So when these are theories formulated in first order CPC, namely: for every model EX0 of So 
there exists an expansion of EX, (by additional relations, etc.) to a model EX of S. However, this does not 
necessarily catry over to theories in other logics. 
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The following is assumed of S and L ( =  L(S)). 
1". Syntax (class-naming). With each formula q(x) of L is associated a term 

{x / cp(x)) (in which "x" is bound). 
2". Logic. The axioms and rules of ordinary propositional and predicate calculus 

are accepted in S. 
3". Basic principles. There is a binary relation y E z in L which is taken to express 

that y is a member of the class z. The following comprehension axiom scheme is 
accepted in S for each cp(x) in L: 

The possibility of "self-reference" arises in L by consideration of formulas of the 
form t E t. Take r = {x / i(x E x)} so that Vy[y E r c t i (y E y)] holds by (CA). Then 
by the rules of the predicate calculus, we have [r E r '+i(r E r)] in S. Thus for 
8 = (r E r) we have S t (8c t i 8), so the inconsistency of S follows just as in 93. 

It is common to incorporate Frege's idea of classes as extensions of concepts in a 
theory of classes, by assumption of an axiom of extensionality. The following is its 
direct expression in the present framework: 

Note that the inconsistency of S depends in no way on this further assumption. Thus 
Scan be considered equally well as a theory of properties (conceived of as objects), in 
which {x I cp(x)} is read as "the property of x, that cp(x)" and y E z is taken to express 
th'at y has the property z. Since the terminology of class and membership is 
established in mathematics, and it is the mathematical uses of such a theory that 
interest us, we shall not follow this reading in terms of properties. In other words, we 
countenance nonextensional theories of classes. 

DISCUSSION.(i) Ad lo.The hypothesis that classes may be named in the language, 
by the formation of abstracts {x I cp(x)} as terms, is inessential if we replace 3" by 
3zVyCy E z++cp(y)l. 

(ii) Ad 2". On the other hand, using 1" as it stands, we do not need the full pre- 
dicate calculus to derive the contradiction-its quantifier-free part ("free-variable 
logic") suffices if we drop the quantifier Vy in 3". Note in any case, just as for the Liar 
paradox, that the inconsistency is established using only intuitionistic logic (in fact, 
minimal logic). 

(iii) Under the given assumptions on S, we cannot define which objects in the 
universe are classes. It will prove convenient later to consider theories with an 
additional predicate Cl(z) expressing that z is a class. In this case (CA) is written as 

then (Ext) would be strengthened to 
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(iv) Such a predicate C1 is clearly unnecessary when the universe is conceived as 
consisting entirely of classes. In that case, extensionality is simply formulated as 
~ X [ ~ € a C f X € b ] + a = b .  

$6. Solution routes for Russell's paradox. Here we parallel 94, assuming to begin 
with an initial consistent So in a language Lo = L(So). The problem is to find a 
consistent extension S satisfying more or less the conditions lo-3" of 95. As before, 
there are three kinds of restrictions one can make. 

I*. Restriction of syntax. 
2*. Restriction of logic. 
3*. Restriction of basic principles. 
The escape route l *  is that taken in Russell's theory of types, as simplified by 

Ramsey [I9251 (i.e. the "simple" or "unramified" theory of types). Instead of 
variables ranging unrestrictedly over a single universe of discourse, one has, for 
each n, variables x'"), y(n), . . .of type n. The variables of the initial language Lo are 
now taken to be of type 0. Each term z will also be of a definite type, and (o E z) 
is a formula only for o of type n and z of type (n + 1) for some n. Then formulas are 
built up by the operations of the predicate calculus, and if cp(x(")) is a formula, 
{x'") I cp(x(")) is a term of type (n + 1). Then (CA) is necessarily restricted to 

If extensionality is also to be included, one adds, for each n, 

since the objects of each type n + 1 are conceived to be classes. A set-theoretical 
model of the resulting system is obtained by starting with a model 'Jn, = (M,, . . .)of 
So and interpreting the variabless of type n as ranging over M, where, for each n, 
M,+, is taken to be the set of all subsets of M,. 

In the following we shall only pursue solutions based on restrictions of type 2* or 
3*. The theory of Zermelo (or ZF) with (possible) urelements gives a solution based 
on a type 3* restriction. This has just one sort of variable, and the relation o E z is 
formed without restriction. There is a predicate Cl(x), read here as "x is a set". The 
urelements are those x such that iCl(x), and the axioms So are taken relativized 
to the urelements. Instead of {x I cp(x)) in general one has only special cases, 
corresponding to separation, pairing, union, power set, etc. But the axiom of 
foundation prevents any instance of self-membership x E x. 

In Part 11-C we shall discuss mathematical criteria for a type-free theory of 
classes, in which there are significant instances of self-membership (and of self- 
application in a broader sense). 

PART B 

TYPE-FREE THEORIES O F  PARTIAL PREDICATES 
(TRUTH AND MEMBERSHIP) 

$7. Partial predicates and structures. At the outset we consider the route of 
restricting logic without restricting language. Though this direction will eventually 
be abandoned, it turns out that useful results can be garnered from its pursuit. It is a 
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common move to try to pin the difficulty in the paradoxes on reasoning with 
meaningless statements, indeed with meaningless instances of basic predicates such 
as T(x) or (x E y) (often called truth-gaps in the literature on the semantic paradoxes). 
If these are not to be banned syntactically then the logic must somehow be altered to 
handle reasoning with potentially meaningless statements. Various logics have been 
devised for this purpose; some of them will be examined in $88-10. The notion of 
partial predicates and the associated partial structures provide a common frame- 
work for their comparison. 

We write t and f for the two truth-values "true" and "false". Let M be an arbitrary 
set. By a partial k-ary predicate I? on M (1 I k < w)is meant a partial function I? 
from M k  to {t, f ). Introducing the symbol "u" for "undefined", where u # t, u # f, 
every such predicate can be identified with a function I?:M, + {t,f, u}.14 Alter- 
natively, we may identify I? with a disjoint pair (R, R) of ordinary k-ary relations in 
M, i.e, where R c Mk, R c M k  and R nR = @. In the following we shall move 
according to convenience from one form to another of regarding partial predicates. 
I? is said to be total if it is a total function from M k  to {t ,f ), i.e. if u is not in the range 
of I? as a map into {t, f,u}. Viewed as a disjoint pair (R, I?), the predicate is total if 
R u R = Mk; then R is just the complement M k  - R. 

The set of truth-values {t, f,u) is partially ordered by u I t, u I f in addition to 
u I u, t I t, f I J diagramatically: 

Given two k-ary partial predicates I? and I?', we put I? I I?' if for all m,, . . . ,m, E 

M, I?(m,, . . . ,m,) I I?'(m,, . . . ,m,). This means that in their guise as partial func- 
tions from M k  to {t, f}, I? is a subfunction of I?'. Equivalently, in their guise as 
disjoint pairs (R, R) and (R',R1), the relation holds when R G R' and R E 1 ' .  
Note that if I? I I?' and d 1I I? then I? = I?'. -

In the following we shall consider partial structures 1132 = (%I,, I?,, . . . ,R,, . ..) 
constituted from some fixed structure 1132, = (M, .. .) in the ordinary ("total") sense 
of the word for a language Lo,together with one or more partial predicates I?, on M. 
For simplicity, much of our work with such will be illustrated by 1132 = (1132,,1?), 
where I? is binary. For example, given such 1132 and 1132' = (1132,, I?'),we put 1132 I 1132' if 
I? I I?!. 

Inductive constructions of partial structures are ubiquitous in the present subject. 
They may be subsumed under the following general approach. Let X be the class of 
structures %TI = (1132,,I?), with fixed 1132, ordered by I. An operator r on X 
associates with each 1132 a new structure r(1132) = (m,, I?'); we also write T(I?) for I?'. 
r is called a monotonic operator if 1132 s 1132' T(1132) I T(1132'). 

FIXED-POINTTHEOREM.For any monotonic operator T and any 1132 IT(1132) there is 
a least 1132* with 1132 I 1132* and r(1132*) = %TI*. 

l4 This is just a special case of a general notion of B-valued predicate R:M k  +B (and thence of B-
valued structures), where B is any set of "truth-values". Only the special cases B = { t , J  u}  and 8 = { t ,f } 
are used here. 
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PROOF(by the usual inductive fixed-point argument). We here treat the I? as partial 
functions. Given '93 = ('93,, I?), define I?'") for ordinals a by I?(') = I?,I?'"'" = 
r(I?("))- and I?(" = uU<,I?("' for limit 3,. It is proved by induction on a that 
R(")II?("+ 'I.This holds for a = 0 by hypothesis; if true for a it is true for a + 1 by 
monotonicity. Finally, 

SO we have passage to the limits. It follows that a < P => I?'") I I?(P); hence each I?'") 
is indeed a partial function. Finally, there exists a least v with I?'') = I?('+') = 

r(I?(")). Take this to be I?*. Suppose I? <_ I?' = T(E1); then it is proved by induction 
on a that I?'") I I?'; hence I?* II?', i.e. I?* is the least fixed-point of r extending I?. 

The hypothesis of this theorem is of course met if we start with '93 = ('93,, u)  
where 0 is the completely undefined function. 

Whatever the plausibility of the role of partial predicates in connection with the 
paradoxes (which is to be examined below), they appear naturally in other contexts. 
For example, let M = w and identify t, f with 1,O respectively. In this case, partial 
k-ary predicates are partial functions from wk into (0, 1). They arise naturally in 
recursion theory, where each partial recursive function into {t, f ), with index e say, 
determines a partial recurjive predicate (R, I?) by 

(x,,. . . ,xk)E R C> {e)(x,, . . . ,x,) -- t, (x,, . . .,xk)E I?C> {e)(x,, . . .,x,) 2. f, 

or simply I?(x,, . . . ,x,) (e)(x,, . . . ,x,). Of course, every partial function is ex- 
tendible to a total function, say by taking F,(x,, . . . ,x,) = t if {e)(x,, . . . ,x,) - t, 
otherwise f,but in general there is no such recursive extension. Thus u is to be read 
here as undejined relative to the specified computation procedures, and not as 
something inherently undefinable. 

A related interpretation of partial predicates I? is as "what is known by a given 
stage a in a computation process for a (t, f)-valued function". If by stage a we 
have evaluated {e)(x,, . . .,x,) and found {e)(x,, . . . ,x,) = t then (x,, . . .,x,) is 
known to be in R, while if {e)(x,, . . . ,xu)= f then (x,, . . . ,x,) is known definitely 
to be not in R, i.e. (x,, . . . ,x,) E R. But if neither is yet known, we ascribe the value 
u to I?, with the meaning unknown thus far (at stage a). This interpretation gives 
natural significance to the relation I? <_ I?', which holds when I?' corresponds to 
what is known at a later stage a' in the computational process. 

More generally, consider an investigation by specified means to determine which 
elements of a set M have a certain property. This investigation is assumed to proceed 
in stages. The state of knowledge at any given stage is represented by a partial 
predicate I? on M, and the predicate I?' for what is known at a later stage is an 
extension of I?. An investigation is said to be systematic if we have a prescribed 
procedure r for moving from any given stage to a succeeding stage. It is reasonable 
to prescribe that r is a monotone opesator. Suppose we start the investigation with 
certain information I? handed to us, and which will not be altered by T.Then the 
least r-fixed point I?* extending I? represents all possible information that may be 
garnered by the given means of investigation T. Of course, I?* need not be total 
(unless r is the kind of investigation which leaves no stone unturned). 
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58. Three-valued partial truth operations and semantics. Let I be an index set; an 
I-ary 3-valued propositional operation F is a map F :  {t, f ,  u)' -+ {t, f ,  u). We write 
F((pi),,,) in general and F(p) or F(p,q) when F is unary, resp. binary (with 
p, q, pi E {t,f, u)). F is said to be monotonic if whenever pi 5 qi for each i E I 
then F( (~ i ) ie I )  F((qi)ie,). 

Various extensions of the familiar 2-valued operations to 3 values have been 
considered. We recall those proposed by Lukasiewicz (cf. papers 1-3 in McCall 
[1967]) and Kleene [1952,§64]. These agree for negation ( i ) ,  conjunction ( A ) and 
disjunction ( v ) ,  but not for the conditional and biconditional. We symbolize 
Eukasiewicz' operations for the latter by 3 and -,and Kleene's by -+ and t t ,  resp. 
The following tables tell how these operations are computed (reading down for p 
arguments and across for q arguments). 

t f t t f u  t t t  t 
f t f f f f  f t f u 
u u u u f u  u t u uTv
t t  t 

U t U U  U U U U-7 

u t u t  u u u t 

Note that the tables for (p  -+ q) and (p  3 q) differ only in the values (u -+ u) = u, 
(u 3 u) = t; similarly (u tt u) = u while (u u) = t. We have further: (p  A q) = 

l (1l-J~ l q ) ,( p - + q ) = ( 1 p  v q), ( p -q )= (p -+q )  A (q-+p), and ( p z q ) =  
(P  3 4) A ( q 3  PI. 

Kleene's operations are monotonic (or regular, in his terminology) while those of 
Lukasiewicz for 3 and z are not. Kleene also introduced weak extensions of the 2-
valued operations, obtained simply by assigning u as value if any of the arguments is 
u. All such are trivially monotonic. The above operations are called strong by 
Kleene; only these will be considered here. 

Kleene's operations are the appropriate ones to consider for the recursion- 
theoretic (or more general investigative) interpretations of partial predicates 
discussed in the preceding section. As emphasized by Kleene (and subsequently by 
others), u is not to be thought of in this respect as a definite truth-value on a par with 
t, f (contrary to Lukasiewicz' approach), but rather as a lack of such. Each of the 
operations with the tables above can be composed with partial predicates a, S" 
considered as operations on Mk to {t,f, u). We use the same symbols for these 
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compositions, e.g. iI?, I? v 3, I? A S", etc. It is easily seen that if I? and S" are partial 
recursive then so are their combinations by any of Kleene's (weak or) strong 
propositional operations. (For this, it is best to think of the computation procedures 
for and S" as operating in parallel so as to permit an answer to be provided even 
when one of these is undefined. The weak operations are appropriate for com- 
binations of predicates to be computed sequentially.) On the other hand, we do not 
have closure of the partial recursive predicates under the operations 3 and -. 

There is a direct extension of A and v to infinitary conjunctions and disjunctions 
defined by: 

t if each pi = t, 

i e I  
f 
u 

if some pi = f, 
otherwise. 

Vi,, piis defined dually or as i/ \ i , I i p i .  Thus both Ai,, and Vie,are monotonic 
I-ary operations. 

We now pass to a first-order language L for partial structures. For simplicity, this 
is described just for %l = (%lo,I?), where I? is binary. The symbols of L are those of 
Lo together with a single binary relation symbol R. We also consider an expanded 
language L(M) in which a constant symbol f i  is adjoined for each m E M. The atomic 
formulas of L are those of Lo together with all formulas of the form R(z,, 7,) where 
z,, z2 are terms of Lo. The formulas cp, $, . . . of L are generated by closing under the 
following operations: i c p ,  cp A $, and Vxcp. Then cp v $, cp -+ $, cp ct$ and 3xcp 
are defined from these as usual. We write cp(x,, . . . ,x,) for a formula with at most 
X, ,. . . ,X, free. 

For each sentence (closed formula) cp of L(M) we define ( 1  cp (1, recursively as follows 
(where the subscript %l is omitted for simplicity): 

(i) If cp is an atomic sentence of LbM) then 

t if%lokcp,
' I '  = { f  otherwise. 

(ii) For cp = R(z,, 7,) with z,, 7, closed terms of LhM), 

(iii) Illcp I I  = 1I cp I I .  
(iv) ll(cp A * ) I 1  = ( l l c p l l  A l l $ l l ) .  
(v) I I v x ~ ( ~ ) I/ \ m s M  I ~ ( ~ ) l l '= 

In (ii), Val(z) denotes the value in M of a closed LbM)-term z; this is completely 
determined by %lo. The following is immediate. 

LEMMA1.For each sentence cp of LbM) we have 1 1  cp 11, = t or f, and 1 1  cp 11, = t o  

%lo cp. 
We shall also consider extensions of the language L obtained by closing under the 

operation cp 3$ as well as by just closing under the operation cp $. The resulting 
languages are denoted by L ( 3 )  and L(-) resp., and when all constants m(m E M) 
are included, by L ( M ) ( ~ )  resp.; L (= )  may be treated as a sublanguage of and L(M)(_=) 
L ( 3 )  (and similarly for L(M)(=)). The semantics for these languages is obtained 
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by extending (i)-(v) in the obvious way: 
(vi) llcp 3 $ 1 1 = (llcpll 3 l l * l l ) .  

(vii) I 1  cp = * l l = (11cp I 1  = I 1  * I 1  1. 
The following is immediate from the table for =. 

LEMMA2. For cp, I)sentences of L ( M ) ( ~ ) , 
and any 1)32, 

l l -~ $ I n  = t o  I ~ l m= IlI)llm. 

LEMMA3. L-semantics is monotonic, i.e, for each sentence cp of L(M), 

llJZ 5 IlcpIIm 5 Ilcpllm,. 

PROOF.By a straightforward induction on cp, using the monotonicity of the 
operations 1,v and A,, ,. 

N.B. Monotonicity does not hold for cp in L ( M ) ( ~ )  or even cp in L(M)(=). For 
example, let 1, m E M, 1 # m. Take 8 = ~ ( 1 , I) R(fi, fi), cp = 18 = $ 1 1  and choose i), = 

I? II?' with 1 1  elii = 1 $ I l i  = u and 8 I i i f  = t, 1 I) la, = J: Then 1 1  cp = t while 
I cp lii, = J: 

The strong Kleene operators and the infinitary Ai,, and Vie,are by no means 
the only natural ones yielding a monotonic semantics for partial structures. A wide 
class of such are provided by generalized quantijiers as handled in generalized 
recursion theory (cf. e.g. Kechyis/Moschovakis [1977, pp. 694-6961), One defines a 
quantiJier Q on M to be any collection of subsets of M satisfying 

X c  Y ~ M & X E Q = > Y E Q .  

The dual quantijier 0 is deGned by 0 = {X c M:(M -X) $ Q), so X c Y and 
X E 0 implies Y E 0.Then 0 = Q. 

For any quantifier Q we introduced a corresponding formal operator Qx; the 
formulas cp of L(Q) are generated by closing under the additional operation Qxcp. 
Again, L(,)(Q) is the same, with a constant fi for each me M. The semantics is 
extended to closed Qxcp(x) in L(,)(Q) by 

t if {m~M:Icp ( f i ) l  = t)  EQ, 
(viii) 	 I Qxcp(x)I =I f if {m E M:  I cp(fi)l = f 1 E 0 ,  

u otherwise. 

It is readily seen that L(Q) semantics is monotonic, i.e. Lemma 3 also holds for 
sentences in L(M)(Q). 

Special quantifiers to consider are the following: 

V = {M), 3 = {X G M:X # 0 ) ,  
V A = { X c M : A ~ X ) ,  3 , = { X c M : X n A # @ )  (AanysubsetofM), 

3,, = {X c M :card(X) 2 K) (K any cardinal). 

Then v = 3, and the semantics of 1 1  Vxcp(x)I according to (viii) is the same as by (v). 
Further v, = 3, and 

t i f A ~ { m ~ M : I c p ( f i ) I I= t ) ,  

f if A n {m E M:  I df i )  l = f )  2 0 ,  
u otherwise. 
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t i f c a r d { m ~ M : I l c p ( E )= t )  21c, 

f if card[M - {m E M :  cp(%)l = f )  < K, 
u otherwise. 

Note that the set A is explicitly definable in L(V,) or equivalently L(3,) by the 
formula ~ , ( x )= 3yA(x= y). This yields x,(E) I = t for m E A and I ~ , ( f i )I = f for 
m $ A. 

It is also possible to consider relativized quantijiers Q, which associate a quantifier 
in the above sense with each a E M. Then we have a corresponding formal operation 
Q,x cp which only binds x (distinct from z), and I Q,x cp(x)I is defined as above 
for each assignment to z of a E M. ~ ~ a i nthe semantics is monotonic. Finally we 
may obtain a monotonic semantics by extending the language by any combina-
tion of quantifiers and relativized quantifiers. We denote any such language by 
L +  = L(Q,. . .). Note that Lemma 2 holds for L'(1). 

$9. Three-valued models for type-free principles. To formulate principles like 
(TA) and (CA) we need some statement-naming and/or abstraction devices. For 
simplicity, this is achieved here as follows. Assume that the language Lo contains a 
constant symbol 0 (also wriiten O), a binary operation symbol P and two unary 
operation symbols PI,P2. We write (z,, 7,) for P(z,, 7,). Assume further that the 
following formulas are provable in So (of which llJZo is assumed to be a model): 

(i) (x, y) # 0; 
(ii) P,(x, y) = x A P2(x,y) = y. 

Thus (., .) acts as a pairing operation from M 2into M - (01, for which P, and P, are 
the corresponding projection operations. The natural number structure may be 
represented by defining x' = (x, 0). Then PI also acts as the predecessor operation 
and we derive 

(iii) x '  # 0 and 
(iv) x '  = y ' + x  = y 

from (i) and (ii). (If preferred, one can take ' to be an additional basic symbol 
satisfying the axioms (iii) and (iv).). Any %lo= (M,. . .) satisfying these axioms is 
infinite, and the natural numbers can be identified with the subset N of M generated 
from 0 by the ' operation. (Then N is definable in L(3,).) For n E N we write both 
ii and n for the corresponding constant symbol in Lo. 

Tuples (z,, . . .,z,) are introduced recursively by (7,) = z and (z,,. . . ,z,+,) = 
((7,,. . .,z,), zk+ ,). There are corresponding projection operations P f  (1 s i S k )  
satisfying Pf(x,, ...,x,) = xi in So. Suppose cp is any formula of L, or even of any 
effectively specified extension language L f  of the kind considered in 88. We then 
write 'cpl for the Godel-number of cp or its corresponding numeral in Lo.  If cp 
has free variables among x ,,...,x,, y,,. . . ,y, then ('cpl, y, , .  ..,y,) serves as an 
operation in Lo which "abstracts" x,, . ..,x,, treating the y,, ...,y, as paramaters. 
We thus define 
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In particular, for k = 1we write 

but for k = 0 we write again 

which is identified with 'cpl when n = 0. In A, the xis  are considered bound and may 
be renamed by other bound variables. (To be more precise in each case, 'cpl is to be 
the Godel-number of cp together with a specified pair of lists of variables (x,,. . . ,xk), 
(y,, . . .,y,) of length k 2 0, n 2 0, which together contain all the free variables of cp.) 

The purpose of the denotational devices A,  is in connection with a common 
generalization of the truth-axioms and comprehension axioms (TA) and (CA). This 
is achieved by introducing for each k a (k + 1)-placed predicate symbol T, where 
T,(xl,. . . ,xk, Z) is read "(x,, . . . ,xk) satisjies z". The appropriate axiom scheme is 

for each formula cp with the indicated free variables. For k = 0 this reduces to 

and in particular for n = 0 to TO('cpl) tt cp. We may thus identify To with the truth- 
predicate T. For k = 1 the scheme appears as 

We may thus identify T1 with the membership relation E or E. 

In 3-valued logic, there is an alternative formulation to consider of the axioms 
(TkA), namely 

We shall now show how to define a partial model IMZ* for these axioms provided that 
the scheme is restricted to cp built up by monotonic operators. 

FIXED-MODELTHEOREM.Let L f  be L or any extension L(Q,. . .) which has 
monotonic semantics, containing one or more of the predicate symbols T,(k 2 0). Then 
for any model IMZo of So we canjind a (least) partial structure IMZ* = (IMZ,,. .. ,R , .. .) 
such that for each T, in L f  and formula cp(x,,. .. ,xk, y,, . . . ,y,) of L f  we have 

PROOF. For simplicity we just consider the binary relation symbol TI for which we 
write E, and look at interpretations IMZ = (IMZ,, ,!?) of this language. Let Form be the 
subset of M consisting of all ('cpl,m,, .. . ,m,), where cp = cp(x, y,,. . . ,yn) is a 
formula of L +  with at  most x, y,, . .. ,y, free. Then define an operator r on such by 
r(IMZ) = (!Dlo, r(E)),  where 

E(m, 1) for all 1 $ Form, 

Jl cp(fi, fi,,. . .,fin) for 1 = ('cpl, m,, . . . ,m,), 1E Form. 
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r is monotonic. For if !TI = (mo ,E)I93' = (IMZo,E') and m, 1 E M then for 
1qi Form we have i (m,  1) Ii'(m, l), while for 1= ('cpl,m,,. . . ,m,) we have 

11,En),..cp(m, E l , .  11 I 11 q(m, m,, . . .,m,) Jim,; thus r (E )  Ir ( i l ) .  Now the conclu- 
sion follows from the fixed-point theorem of $7, starting with IMZ = (IMZ, ,U )where fi 
is completely undefined.15 The same argument works with any number of basic 
symbols T,. 

As in $7 we can formulate a more general statement, obtaining a fixed point %I* 
for the r constructed in the proof extending any given IMZ which happens to satisfy 
m Ir ( m ) .  

Actually one can obtain a much more general Fixed-Model Theorem (Aczel/ 
Feferman [1980]). Taking any basic symbols Rk, assume given any sequence of 
L + ( M )sentences 8k,m,,,,,,mk. Then we can construct !Dl* satisfying 

The theorem stated is the special case obtained by taking Rk+,  = T, and 
O k +  l , m l ...,mk, l  = ~ ( m l , ...,mk) when 1 = ~ [ u ^ l , ...,ck]. 

If we specialize the Fixed-Model Theorem to L with just the predicate T = To 
applied to closed cp of L we obtain a least 1MZ* satisfying 

Recasting this as a result about models of the form ('MZ, ?) where ?= (IT; T ) is a 
disjoint pair, one obtains the model-theoretic content of Kripke [1975].'6 The 
proof is basically the same." Actually, such constructions for type-free theories of 
predication and classes were given much earlier by Fitch and Gilmore. The history 
will be picked up in the following sections and particularly in $14. 

Specializing the Fixed-Model Theorem to L with just the predicate E = TI, also 
written E, we obtain a least m *  such that 

for each cp(x, y,, .. . ,y,) in L. This is a result due to Brady [I9711 for consistency of a 
form of (CA) in tukasiewicz 3-valued logic.'* The proof is basically the same. 

"Observe that when starting with fi for E" we have E"'"'(m, I) = u for all m and 1 $ Form. So in obtaining 
the least fixed point we may as well define 

with r(E")(m, 1) = u otherwise. Translated into the language of partial predicates ,? = (E~E) ,  T(,?) = 
(E',EO, for u = 0 we have (m, r q l )  is in Efoq( f t i )  is true in ( ~ , , ( E , E ) )  and (m,'ql) is in E ' o  q(fi) is 
false in (m,, (E, E)).Thus at the fixed point m*, E(fi,rql) (or fti E {XI q(x)} is true (false) in m *  iff q(fti) is 
true (false) in m*. 

l6 See footnote 15 for this kind of recasting. It is also mentioned in Kripke [1975, p. 7061 that his result 
can be extended to languages with generalized quantifiers. 

l 7 The inductive method is not the only way one can establish existence of fixed points. It was shown in 
Martin/Woodruff [I9751 (independently of Kripke's work) that this can be proved by Zorn's lemma; that 
was also observed by Kripke. The difference is that the inductive method establish the existence of 
minimal fixed points while Zorn's lemma yields maximal ones. 
"This improved Skolem [1960]; cf. the notes in $14 below. It is stated in Brady 119711 that m *  

is also a model for the axiom of extensionality. However, that is so only in the weak sense that 
Vx(x E m, E x E m 2 ) m r= t * Vy(m1 E y = m2 E y),. = t. 
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To conclude this section we give a counterexample to 3aVx[x E a = cp(x)] in 3-
valued models when cp is in L(=). This is based on the following table: 

Then 3aVx[x E a = i(x E x) A i(x E x = i(x E x))] cannot receive the value t in 
any structure IMZ = (IMZ,,,g).For if it did, taking p = ( 1  a E a I( gives a contradiction. 

810. Type-free formal systems withEukasiewicz and Kleene logics. We now turn to 
the formulation of type-free systems for which the semantical constructions of §§8-9 
provide a model. 

Consider first the language L ( 2 )  for Lukasiewicz predicate logic with basic 
operators 1 ,  A ,  2 and V. A formula cp(xl,. . . , x,) is said to be L-valid if for 
every partial structure IMZ with domain M and any m,, . . . , m, E M we have 

= t. A complete recursive Hilbert-style axiomatization of the L- 
valid formulas may be found in Rosser/Turquette [I9521 (this will not be repeated 
here). It follows from the work of $9 that the scheme 

is L-consistent provided cp is restricted to the language L, i.e, cp only involves 1 ,  A 

and V in its build-up. This is the consistency result of Brady [1971]. We have similar 
results for the other predicates T,,e.g. consistency of the scheme 

for cp in L. These restrictions are essential, since we saw at the end of §9 that (CA), is 
already inconsistent in the expanded language L(=).19 Assuming the means to 
construct self-referential statements, also (TA), leads to an inconsistency in L(E)  by 
the same argument. On the other hand, Russell's paradox itself is avoided in the L- 
system with the restricted (CA), , even though we have 3aVx[x E a = i(x E x)]. 
This is by the circumstance that p G ip has the value t when p has the value u. 

We next turn to K-logic, which is obtained simply by restricting L-logic to the 
language L. Thus a formula is said to be K-valid if it is in L and is L-valid. It follows 
from the complete recursive axiomatization of the L-valid formulas that the set of 
K-valid formulas is recursively enumerable. However, its explicit axiomatization is 
another matter. The reason is that the main rule of L-propositional logic is modus 
ponens, in the form cp, (cp 2 $)I$. Since 2 is not available in K-logic, we cannot use 
it there for the rule of modus ponens. If we take the connective (cp -,$) instead 
(where (p -,q) = i(p A iq) = ( 1  p v q)) we do have closure under the rule cp, 
(cp -, $)I$ in the K-valid formulas, but we then run into trouble elsewhere; for 
example, the expected axioms (cp -,cp), Vxcp(x) -,cp(z), etc. are not K-valid. 

l9 The inconsistency can be demonstrated more simply in L ( I ) ,using 3a(x E a E [x  E x 2 i (x E x ) ] )  
since ( ( p2 i p ) 2 p) is L-valid. This applies similarly to (TA). in L ( I ) .  
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An axiomatization of K-logic was given in Wang [I9611 by use of an auxiliary 
symbol (here denoted) I-,which is not iterated. Given formulas cp, $ in L, we say that 
9 I- $ is K-valid if for every partial structure 93 and assignment to the free variables 
of cp, $ in M we have 1 )  cp 1 )  = t => ) I  $ 1 1  = t. Wang gave a simple natural system of 
axioms and rules of inference for combinations (cp I- $) which is complete for this 
extended notion of validity. He also axiomatized the K*-valid combinations cp I- $, 
which are defined to be those K-valid 9 I- $ such that for every 93 and assignment to 
the free variables, also 1 1  $ 1 1  = f * 1 1  cp 1 1  = J: 

Wang's system has the character of a Gentzen sequential calculus. More recently, 
Scott [I9751 gave a complete Gentzen-style system for sequents 9 , ,  . . . ,cp, I-
$,, . .. ,$,whose validity is defined like that of K*-validity, namely: for each llJZ and 
interpretation in M of the variables, (i) / I  cp, I /  = . . . = / /  cp, / /  = t * some / /  $j / /  = t 
and (ii) 1 1  $, / I  = . . . = / I  $,,, 1 1  = f => some I /  cpi I /  = f. 

The K-valid formulas are just those cp with I- 9 derivable in Wang's or Scott's 
system. Thus one obtains a very satisfactory axiomatization of K-logic in this way. 
The question then is how type-free principles corresponding to (TA) and (CA) are to 
be formulated in such K-logics. We cannot use Kleene's -of §8 as the principal 
connective, since p - i  p is never t. Scott's solution is to introduce the symbol H, 
where ( 9  H $)abbreviates (cp I- $)and ($ I- cp). Of course we cannot literally form 
the conjunction of (cp I- $) and ($ I- cp), but we could say that a system based on 
"axioms" of the form cp H $ is consistent if there is a model which satisfies both 
9 I- $ and $ I- cp for each assignment to the free variables. In this sense the scheme 
(for each 9 in L) 

(CAI, X E {uI(P(u,  yn)) ( ~ ( ~ 2Y I , . ~ . ,  y l , . . . ,  yn) 

is consistent, as is the schema 

(TA), T('cp-9 9 

for each cp in L. This is a direct consequence of the fixed-model theorem and the fact 
that 1 1  cp - $ 1 1  = t * 1 1  cp 1 1  = 1 1  $11. It follows by the same result that we have 
consistency of the schemata (TkA), in this sense for each k. Note that the use of 
abstracts is essential to state these consistency results, for there is no direct sense 
given in the formalism to such combinations as 3aVx[x E a H cp(x)]. 

DISCUSSION.Both the type-free systems in t-logic and K-logic that we have just 
described are superficially attractive. However, to my mind they are unsatisfactory 
in a number of respects which I shall now detail. 

(i)The main defect for the scheme (CA), as restricted above is that the basic 
connectives 3 and = of L ( 1 )  may not appear in the formula to the right of the =-
sign. 

(ii) Similarly, the main defect for the scheme (CA), is that the "operator" H may 
not be iterated. 

(iii) The same criticism applies mutatis mutandis to the other schemes (T,A), and 
(TkA),. 

(iv) In each logic there are laws which we might expect to hold that don't. Of 
course (cp v icp) does not hold in either logic; but also i(cp A icp) is not derivable. 
We have (cp 3 9 )  but not 9 A (cp 3 $) 3 $ in L-logic; nor do we derive (cp 3i9) 
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3 icp. On the other hand we don't have (cp + cp) in K-logic. In the system of Wang 
[I9611 (or Scott [1975]) for K-logic, we don't have implication introduction (i.e. the 
Deduction Theorem) for the + operator. Multiplying such examples, I conclude 
that nothing like sustained ordinary reasoning can be carried on in either logic. 

(v) It was stressed in the analyses of the Liar and Russell's paradoxes in $03 and 5 
that the contradiction in each case is carried out within intuitionistic logic. The 
conclusion was drawn that a solution to the paradoxes ought to accomodate itself 
equally well to a constructive as well as a classical setting. But in L-logic 
nonconstructive statements like ( 1 1 9  3 9 )  are valid while in K-logic there is 
nothing like the constructive use of implication (cp +I) is not constructively 
equivalent to icp v I)). Finally, the dual treatment of A ,  v and V, 3 is completely 
nonconstructive. 

DISCUSSION, The objections so far have been based on formal, logical CONTINUED. 
considerations. One may ask to what extent the proposed 3-valued solutions which 
have been described are satisfactory from a philosophical point of view. Some of the 
considerations here are, briefly, as follows. 

(vi) If the basic idea is that the sentences appearing in the paradoxes are 
meaningless, then t-logic is clearly not the appropriate one. For this gives the truth- 
value t to compounds of entirely meaningless statements, e.g. p 3ip when p has 
the value u. Lukasiewicz' own interpretation was of "u" as contingent, but this has 
been much disputed (cf. e.g. Prior [1967]). Indeed, my impression is that no really 
satisfactory informal interpretation of t-logic has ever been given. 

(vii) On the other hand Kleene's logic does seem to correspond more closely to the 
interpretation of u as meaningless. However, some argue that only his weak 
connectives are appropriate for that interpretation, since the result of combining a 
meaningless statement with meaningful ones should still be regarded as meaning- 
less. The strong connectives are appropriate instead for the interpretation in terms of 
what is known in the process of an investigation, with u interpreted as unknown. 

(viii) For the latter point of view it seems that one should ascribe a definite truth- 
value t or f to each statement, and that u only reflects incompleteness of our 
knowledge. But in that case we ought to accept statements such as (cp + cp) and 
(cp v icp) for each cp. It seems that considerations like this have led van Fraassen 
[I9681 to argue for looking at partial structures within a logical framework which 
he calls superualuations. A statement cp is said to be true in van Fraassen's sense in 
IMZ = (IMZ,, E) if cp is true (in the usual sense) in every total extension IMZ' = (IMZ,, R') 
of IMZ. In this picture, not all statements R(m) are true or false, but all classically 
valid statements are automatically true. 

(ix) Finally, there have been objections to "truth-gap" theories on the grounds 
that they too are subject to paradoxes, e.g. the Extended Liar; cf. e.g. Burge 1979. 
Indeed, at an informal level this criticism is valid. Namely one looks again at a cp 
which is supposed to be the same as iT('ql). According to the truth-gap argument, 
cp is neither true nor false. But since cp says of itself it is not true, it is true after all. 
So there is no gap, and the usual Liar paradox is then produced as before. 

If we analyze the preceding argument in terms of the model-theoretic construc- 
tion of IMZ* in $9, the paradox disappears. In IMZ* we have 9with ) (  9 -= T('cp1) 11 = t ,  
and by self-referential construction 11 cp = iT('cpl) 11 = t. It follows that II 9 II # t ,f. 
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Thus cp is not true in m*,  i.e. 1 )  cp 1 1  f t, so 1 1  T('cpl) 1 1  # t. But that does not tell us that 
iT(rcpl) is true in m*.  The puzzle is sorted out by the inequivalence between "cp is 
not true" and "iT('cpl) is true". Still, consideration of the Extended Liar does 
leave one with a further bit of malaise about truth-gap approaches, since the formal 
model-theoretic constructions don't match up with informal usage. 

$11. A type-free formal system in an extension of the classical predicate calculus. 
In this section we will describe results concerning a new type-free system S(=)  
presented in AczelIFeferman [1980]. S(-) overcomes two of the defects of 3-valued 
systems brought out in the preceding section, namely: (i) it is based on type-free 
principles like (CA), where now any formula of L(-) can stand to the right of the = 
sign, and (ii) the logic is that of full classical predicate calculus (CPC) augmented by 
natural laws for =.However, S(=)  is not fully satisfactory in other respects which 
will be brought out in the discussion at the end of the section and in $13. 

We assume So satisfies the conditions of $9, and that one or more of the predicate 
symbols T,is adjoined to Lo to provide the atomic symbols of L. We also follow the 
abbreviations for abstracts An, A,, A, of $9. The formulas of L ( )  are built up using 
i ,  A ,  = and V. Write cp f $ for i(cp = I)). The operators v ,+,t,,3 are defined 
classically as before. Let t = (0 = 0), f = i t  and, for each cp, 

D(cp) is read: cp is determinate. The axioms for =,denoted Ax(=), are as follows (over 
and above the axioms of CPC): 

(1) = is an equivalence relation. 
(2) - is preserved by i ,  A ,  = and V. 
(3) (i) (cp = t) t,cp for cp atomic, and (ii) (cp _= f )t,icp for cp atomic in Lo.  
(4) (i)(icp)- t-cp - f ,and( i i ) ( icp)  = f t , c p  = t. 
(5) ( i ) ( c p ~ $ ) - t t t c p - t ~ $ = t , a n d ( i i ) ( c p ~ $ ) =  f v $ = &f t , c p =  
(6) (i) (Vxcp(x)) - t-Vx[cp(x) = t], and (ii) (Vxcp(x)) = f -3x(cp(x) = f). 
(7) ( i ) (cp=$)=t-cp=$,and(i i )(cp=$)= f * D ( c p ) ~ D ( $ ) ~ c p f$. 
The following explains (1) and (2) in more detail. (1) consists of the schemata 

(cp = cp), (cp = $)+($ = cp), and (cp $) A ($ = 9) + (cp = 9). For (2), let 0 be one 
of the n-ary operations 7 ,  A ,  _= (SOn = 1 or 2). The statement that - is preserved 
by 0 is: 

The statement that = is preserved by V is given by 

(2b) Vx[cp(x) = $(x)] + [Vxcp(x) = V X $ ( X ) ] . ~ O  

We shall also consider a (seemingly) slight variant Ax'(=) obtained by modifying 
(7) to (7)', where (7)'(ii) is the same as (7)(ii) while (7)(i) is replaced by 

(7)'(i) (cp = $) = t t,D(cp) A D($) A (cp = $). 

20 The axioms for E given in AczelIFeferman [I9801 are a little different; the operators A and V are 
there treated in Kleene's weak sense, so that D(rp A $)-D(rp) A D($)and D(Vxrp(x))-VxD(q(x)).Here 
A and V are treated in Kleene's strong sense. The handling of the systems is the same, otherwise. 
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LEMMA.The following are consequences of both Ax( =) and Ax'( =). 
(i) t + J: 

(ii) ( 1  f )  = t. 
(iii) D is closed under 1,A ,  = and V, i.e. 

D(cp) +D ( 1  (PI, D(cp) A D(*) +D(cp A *) A D(cp = $1, 

VxD(cp(x))+D(Vxcp(x)) for any cp, *. 


(iv) D(cp) for each cp of Lo. 
(v) (cp = t) + cp and (cp = f )  + i c p ,  for each cp. 
(vi) D(cp) + [(cp = t) tt cp] A [(cp = f )  tt1cp], for each cp. 
PROOF. (i) follows from Axiom (3)(ii) taking cp = t, using symmetry of =. (ii)-(iv) 

are immediate. The statements in (v) are proved simultaneously by induction on cp. 
Then (vi) follows directly. 

The axioms of S(=),  resp. S'(=), are those of So plus Ax(=), resp. Axt(=), 
together with all formulas of the following form for T, a symbol of L, and cp any 
formula of L(=): 

THEOREM.The systems S (= )  and S t (=)  are both conservative extensions of So. 
PROOF. The first of these is the main result of AczelIFeferman [1979]. For its 

proof we developed an analogue of the Church-Rosser theorem. A much simpler 
proof due to Aczel (in $6 of our joint paper) can be given for conservation of the 
system S'(=) over So. We shall follow that here; it makes use instead of the results 
for 3-valued models established in $9 above." 

The method is to expand any model llJZo of So in Lo to a model 93 = 
(%X0,...,T,,...) of S t (=)  in L(=).  93 is a 2-valued model. We shall use as an 
intermediary the 3-valued fixed-point model of $9. The crucial point is that 

1 1  cp - t,b /I,, will be evaluated according to the rules for Kleene tt.To make the 
different treatments of equivalence clear, let us write cp(K) for the result of replacing 
each operation symbol - in cp by the operation symbol tt.However we still write 
cp[C,,. . . ,yn] for the term q~(~)[f i , , .  . . ,yn]. The fixed-model theorem thus provides 
us with a partial structure llJZ* = (m0,. ..,E , .. .) such that 

for each cp with the appropriate free variables. To simplify matters we shall illustrate 
the further work just with themembership relation (TI )and drop the subscript llJZ* in 
evaluations. Thus 

for all q(x, y,, . . . ,yn) of L(=) .  Now define satisfaction for sentences of L(M)(=) in 

2 1  The systems corresponding to S( G )and S ' ( = )  in AczelIFeferman [I9801 were theories of classes, i.e. 
only involved, the axioms (CA), for the predicate TI.Furthermore, the abstracts {x I q(x, y,, . . . ,y,)} were 
treated as new (iterable) term-builders. This caused (what I now view as) unnecessary complications, esp. 
op, cit., $4.2. 
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the 2-valued model IMZ as follows: -
(i) 93+ ( [ m ~ I ) o I / f i ~111 = t; 

(ii) IMZ + i c p o I M Z  !# cp; 
(3) (iii) IMZl=(q A $)o93)-f lcp&&+$; 

(iv) I M Z +  (cp = $1 -/ I  cp(K) / I  = / I  $(K) 1 1 ;  
(v) 93 I= Vxcp(x)ofor each m E M, 93 + cp([m). 

(In other words, the relation T,in 93is the positive part of %considered as a disjoint 
pair (T,,q).)To show that IMZ is a model of St(=) ,  we first verify 

(4) rn nz [[m E {uI cp(u,rn ,,...,mn))= cp([m,[ml,...,fin)] 

for each cp. This is immediate from (2) and (3)(iv). It is straightforward to show that 
each of the axioms Ax1(=) is true in 93 under the definition (3)(iv). Here we consider 
only the axioms (7)', leaving the others for the reader to check. Let cp, $ be sentences 
of L(M)(_=).For (7)', we use 

IMZ nz [(cp = $) = t] o 1 1  cp'K' o$(K) / (  = t 

and 

IMZ I= [(cp $) = f ]o J J  q(K)o$(K) 1 1  = f: 

Now 1 1  cp(K) o$(K) 1 )  receives one of the values t, f only if each of 1 )  cp(K) / /  and ( 1  $(K) I (  
receives the values t or f: Further, IMZ + D(cp)oIMZ + (cp - t) or 93 + ( q  = f), so 
IMZ + D(cp)o ( 1  cp(K)ll = t or 1 1  cp(K) 1 1  = f: The conclusion is that 

(i) IMZ+[(cp=$)=t]oIMZ)32D(cp)&93+D($)&93)- f l (cp=$);
( 5 )  (ii) 93b [(cp = $) -f]oIMZ+D(cp)&93+ D($)&IMZU1P(p - J). 
Thus (7)'(i), (ii) of Ax1(=) is true in IMZ. This completes the proof. 

REMARKS. (i) The unexpected aspect of Aczel's proof is that it uses two different 
interpretations of =,namely first as Kleene's oin the 3-valued model 93* and then 
as Lukasiewicz' in passing from 93* to IMZ (in (3)(iv)). The first interpretation is 
necessary in order to be able to apply the fixed-model theorem of §9. One also sees 
clearly from the last part of the proof why his method fails to give a model of 
(cp - $) = t o ( cp  = $). 

(ii) Consider the system St (=)  with axioms for the erelation (TI), 

let r = {UI u $ u), SO $ = i$ for $ = (r E r). It follows that iD($), for otherwise 
we should have t = f. Further we can prove i$in this system since we have 
$ +($ = t) ($ being atomic) and then successively $ = t + ( 1$) = t, ( i  $) = 
t + $ =  f , $ =  f + ( i $ ) a n d f i n a l l y $ + i $ .  

(iii) By the preceding, we do not have closure of S'(=) (or S(=) )  under the rule 
cp,, cpl = cpz/cp2; otherwise the system would be inconsistent. Nor do we have 
closure under cp, = cp2, cpl tf cp;, cp2 C* cp;/cp; = cpi. In that sense, = is an inten- 
sional operator. 

(iv) What informal interpretation is to be given of = as it is used in the systems 
S t (=)  and S(=)? In the paper Aczel/Feferman [1980] it was proposed to read cp = $ 
as cp is equivalent to $ in consequence of basic definitions, namely the axioms (T,A), , 
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which are taken to be definitions of application of abstracts cp[u ,̂, . . .,i?,, y,, . . . ,y,], 
i.e, of the conditions under which they apply to elements (x,, . . .,x,). This is a 
reading for which the axioms Ax(=) are plausible, though our intuitions are not firm 
in this respect. If this interpretation is accepted, our conservation results which give 
eliminability of the additional axioms provide one precise realization of the ideas of 
Behmann [I9311 for a resolution of the paradoxes.'' What is attractive about the 
reading is that given definitions may be "internally self-contradictory", i.e. lead to 
statements cp = i9yet without leading to any inconsistency. In opposition to it, the 
logical points of the preceding remark may be considered as disturbing to the 
proposed interpretation. 

(v) A clear informal interpretation of -= would decide between the axioms (7)(i) 
and (7)'(i) of Ax(=), which give some quite distinct results. Take (CA), for $ = 
(r E r). With (7)(i) one has ($ -i$) - t while with (7)'(i) one has ($ = i$) f t. The 
interpretation proposed in the preceding remark (iv) seems to me to favor (7)(i). But 
as we shall see in $12, the useful consequences of S(-) follow just as well from S'(=). 

(vi)The systems considered provide us with the advantage of full use of ordinary 
reasoning, if that is understood in the sense of classical logic. But the approach of 
this section does not meet the overall criterion (proposed earlier) that a solution of 
the paradoxes ought to be equally satisfactory within the setting of constructive 
logic. 

(vii)As a final technical point, it should be noted that there is an obvious extension 
of S1(=) to a system S'( 3 )  in L (3 ) ,  for which the conservation theorem still holds. In 
L(3) ,  we define (cp -= $) as (cp 3 $) A ($ 3 cp). Then take for Ax'(3) the same (1)- 
(6) as before (expanding (2) to preservation of 	 = by 3)'but with (7)' replaced by 

(7)"(i) (cp 3 $) - t-D(q) A D($) A (cp f v $ -= t); 
(ii) ( q ~ $ ) =  f o c p = t ~  $ 5  

Then we take S ' ( 3 )  to consist of Ax'(3) with the (T,A), axioms. I don't know a 
corresponding extension S ( 3 )  of S(=). For efforts in this direction cf. Bunder 
[1982]. 

812. A type-free "modal" theory. To get a good view of the consequences of S(-) 
or St(=)  formulated entirely in a classical language (i.e, without the connective =),it 
proves useful to pass first through a language L(O)  with laws of modal character. 
L(O)  is obtained from L by adjoining the unary propositional operator 0 ,  where i ,  
A 	 and V continue to be the basic operators of L. 

Take Ax(O) to consist of all formulas of the following form in L(O): 
(1) Ocp + cp. 
(2) Ocp + oocp.
(3) cp + Ocp, for any atomic cp. 
(4) icp + O i  cp, for Lo atomic 9. 
( 5 )  O l l c p *  Ocp. 
(6) (i) O(cp A $)-Ocp A O$,and(ii)  O i ( c p  A $ ) - O i c p  v O i $ .  
(7) (i) O(Vxcp) tt VxOcp, and (ii) 0 i V x c p  tt 3 x 0 7  cp. 

22 Cf. also Behmann [I9591 and 814 below. The connection with Behmann's work was brought to our 
attention both by W. Craig and G. Kreisel. 
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REMARK.The statement that these laws are of modal character is rather loose. 
Though we use the q symbol familiar from modal theory as the necessity operator, 
it should not be interpreted in that way here. Rather it is preferable to read Ocp as: cp 
is established, thinking in terms of the investigative interpretation discussed at the 
end of $7. One basic difference in the two interpretations is that O(cp v icp) is 
accepted in modal logic, but not here since by (5) and (6) q (cp v $)-Ocp v 0$(cf. 
the next lemma). There is a similar divergence with respect to 3. Finally, Barcan's 
formula (7)(i) is not always accepted in modal logic. 

In the following we define Dcp = Ocp v O i  cp. 
LEMMA.The following are consequences of Ax(0): 

(i) 1(cp A 01cp). 
(ii) 1( O q  A Oicp ) .  

(iii) 0(cp v $)-0cp v 0 $ , a n d  O i ( q  v $) -Oicp  A m i $ .  
(iv) O(cp +$) (Ocp O$).+ + 

(v) 0(3x(p)tt3xOcp, and Oi(3xcp)-VxOicp. 
(vi) Dcp + (cp- Ocp). 

(vii) Dcp for each formula cp of Lo. 
The proofs are straightforward. We note only (iii). By definition, (cp v $) = 

i( 1cp A i$), so we have the chains of equivalences 

and 

Now for each of the relation symbols T,(x,,. . . ,x,, z) of L - Lo define 

It follows from (i) of the preceding lemma that (T,,Z) form a disjoint pair. The 
associated abstraction axioms are here formulated as follows, for each symbol T,of 
L and each formula q(x, , .  . .,xk,  yl, .  . .,yn) of L(O). 

We define S(O) to consist of So plus Ax(O) plus (TkA), for T,in L. 
THEOREM.S(O) is interpretable in both S(=)  and S1(=) by 0cp = (cp = t). Hence 

S(O)  is a conservative extension of So. 
PROOF.Note first that O i  cp tt cp = f for any cp. Then it is a routine check to show 

that Ax(O) follows from Ax(=); here (7)(i) is used only in the form 

which follows from both forms (7)(i) and (7)'(i). Now for (TkA),, let 6 = 

T,(xl,. . . ,xk,  cp[UI1,. . . ,iik, yl , .  . .,y,]), and the same with Tk, and write cp for 
cp(xl,. . .,x,, y,, . . . ,y,). The axiom (TkA), tells us that 6 = cp. Hence B = t -cp = t, 
soBttOcp,Bbeingatomic.AlsoB= f - q n  = f ; so  O i B - O i c p , i . e . 8 - 0 1 ~  
by the definition (-), Thus the axioms (TkA), are verified. 
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As always, the two cases of (TkA),of special interest to us are those for k = 0 , l :  

Consistency of a scheme (CA),is due to Fitch [1966]. 

$13. Theories in the CPC for partial predicates as disjoint pairs. Finally we pass to 
a completely classical language. The price for doing this is to replace each basic 
relation symbol Tk of L (outside Lo) by a pair of basic symbols (T,,c ) .  The resulting 
language is denoted L(+/-).  It is useful here to take all of 1,A ,  v,  V, 3 as basic 
operators. A formula of L(+/ - )  is said to be positive over Lo if it is equivalent to 
one built up without i from atomic formulas and negations of Lo-atomic formu- 
las. Every formula cp has associated with it a formula cp+ which is positive over Lo 
and which approximates cp. One way to obtain cp + is to put cp in prenex disjunc- 
tive normal form and replace each occurrence 7T, or 7T, by Tkor T,, resp. Let 
cp- = ( 1  cp)' be the positive approximant of the negation of cp. We can also define 
cp + and cp - inductively as follows: 

(i) cp + = cp for all atomic cp. 
(ii) If cp is Lo-atomic, cp- = i c p ;  if cp = T,(...) then cp- = %(. ..); and if 

cp = %(. . .) then cp- = T,(.. .). 
(iii) ( 1  cp)+ = cp- and ( 1  cp)- = cpt. 
(iv) (cp A I))' = c p +  A I)+ and(cp A I))- = c p - v I)-. 
(v) (cp v $)+= cp+ v $+ and(cp v $)- = cp- A I,-. 
(vi) (Vxcp)' = Vxcp and (Vxcp)- = 3xq- .+ 

(vii) (3xcp)+ = 3xq+  and (3xcp)- = Vxcp-. 

LEMMA1. (i) For each cp both cp * and cp- are positive over Lo. 

(ii) If cp is positive over Lo then cp is equivalent to  cp +. 

As basic axioms in L(+ / -) we take 


which express that (T,,c )  form a disjoint pair. Dis is used to denote the collection of 
all these axioms for T,a symbol of L. 

LEMMA.2. Dis implies (cp+ -+ cp) and (cp- +icp) for each cp. 
Now we take S(+/-)  to consist of So + Dis plus the following for each symbol T, 

of the language and each formula cp(x,, .. . ,xk ,y l , .  ..,y,): 

THEOREM.S ( + / - - )  is interpretable in S(O)by the definition (-) in512 of % in L(O). 
Hence S(+/-)  is conservative over So. 

PROOF.Assume Ax(0)  and define 8,...) = O i  T,(...) as in 512. Then one proves 
cp' ct ncp and cp- ct O i  cp by induction on cp. Note that here v and 3 are treated 
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as basic operators while in S(O)  they were treated as defined operators. For 
example, to prove (cp v $)+t,0 ( q  v $) and (cp v $)--O i  (cp v I)), assum-
ing cp+t*Ocp, cp--Oicp, $+ -O$ ,  $ - - O i $ ,  we use (cp v $1' = 
cp + v $ -Ocp v 01) q(cp v $) (by the Lemma (iii) of 512) while (cp v $)- =+ t, 


cp- A I/- -O i  cp A O i $ - O i  (cp v $) (again by Lemma (iii) of 512). 3 is 
handled similarly. 

As usual the two cases of the schemes (T,A)(+/-, of special interest to us are those 
fork = 0, l .  

iT('cpl)- cp+, for each sentence cp; 
T('cpl) t* cp-, 

x E { U I ( P ( K  Yn),YI , . . . ,  Y,))-(P+(x, Y I , * . * ,  
(CAI(+/-) iXE{UI~(~,YI,...,Y,))-~P-(~,YI,...,Y,), 


for each formula cp(x, y,, . . .,y,). 

The consistency of the scheme (CA)(+/-, is (essentially) due to Gilmore 
[1974].23 Gilmore obtained a fixed-model result for structures of the form 'ill= 

(M,E, E) by an inductive argument, observing that positive formulas are preserved 
under 5.Extensions of this were given in Feferman [1975b], [1977]. 

We now look at mathematical consequences for a theory of classes. The axioms 
Dis(€,E) and (CA)(+/-, are assumed in the following without further remark. The 
first problem is to see for which cp we have the ordinary instance of 

derivable. The second problem is to see for which cp we have 

There are some immediate easy answers: (CA) holds for all cp which are positive over 
Lo,  and the above equivalence of E with $ holds when cp- t,icp, so it holds when 
icp is positive over Lo. 

DEFINITION.(i) Cl(a) = Vx(x E a v x E a). 
(ii) Cl = {a 1 Cl(a)}. 
We are thus treating C1 both as a formula and as an object. But since the formula is 

positive, we have a E Cl -Cl(a). Note that a E C1 iff VX[X E a t ,  x # a], and that 
a E C1 is false for all a. 

LEMMA3. C1 $ C1. 
PROOF. Suppose C1 E C1. The Russell argument is adapted to yield a contradic-

t ion .Le t r=  { a I a ~ C l  A a E a } . T h e n a ~ r t , a ~ C lA a E a - a ~ C 1  A a$a .Also  
by (CA)(+/-,, a E r t , ( a ~ C l  A a E a ) - c t a E C 1  v a E a .  Since C l c C l ,  we have 
a E C l t , a $ C l .  Thus a E r t , a $ C l  v a~ a - a $ r .  Hence r ~ C 1 .  It follows that 
r E r -r # r, which gives a contradiction. 

DEFINITION.(i) a c b t,Vx(x E a +x E b). 

( i i ) a=  b - a s  b A b ~ a .  


23 Gilmore first publicized his work in 1967;cf, the notes in $14below. 
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Since we are not assuming extensionality it is necessary to consider the relation = 
of extensional equality. Lemma 3 can be strengthened to: 73c(c = C1 A c E Cl), 
using the same argument. 

The elements of C1 are called total classes, thinking of a partial class c as one 
for which we need not have x $ c tt x E c, or as a pair of disjoint classes ({x I x E c), 
{x I x E c)). By Lemma 3, C1 is an example of a partial class which is not total. We 
shall now derive some closure conditions on C1 which allow us to construct new 
total classes from given ones. 

Let cp(x, y,, . . .,y,, a,, . . . ,am) be a formula without any E symbols. We say that cp 
is in E (a,, . . .,am)-form if each atomic subformula s E t of cp is of the form s E a, for 
some i. (There are no other restrictions, e.g. we might have a, E a, in cp.) Write 
X, ,...,x , ~ a f o r x ,  E a  A . . .  A x , ~ a .  

LEMMA4. If cp = q(x, y,,. . . ,y,, a , , .  . . , am)  is in E (a,, .. . , am)  form, then 

Hence 

a,, . . . , amE C1 -,{x 1 cp(u, y,,. ..,y,,al,. . . ,a,)) E C1. 

PROOF. We can prove this by induction on cp in E (a,, . . . ,am)-form, relative to 
given a,, . . . ,am in C1. The basis step is with cp of the form (s E a,). Here (s E a,)- = 

(S 5 a,)oi(s E a,). 
DEFINITION.(i) V = {XI x = X) and A = {x I x # x). 

(ii) {Y,, ~ 2 )  = {x Ix = Y l  v x = ~ 2 ) .  
(iii) a u  b =  { x l x ~ a  v x ~ b ) a n d a n  X E ~ ) .b =  { X ~ X E ~ A  
(iv) -a  = {xlx  $ a). 
(v) a x b = {x I x = (P,(x),P, (x)) A P, (x) E a A P2(x)E b). 


( 4  a ( a )  = {x I 3y(x, y) E a). 

(vii) ci = {x I x = (PI(x),P, (x)) A (P,(x),PI(x))E a). 

(viii) U a  = {x I3y(y E a A x E y)). 
(ix) n a  = {x 1 Vy(y E a -,x E y)). 
(x) 9 a  = {x I Cl(x) A x G a). 


LEMMA.5. (i) A, I/:{ y,, y2)  E C1. 

(ii) a , b ~ C l - , a u b , a n b ,  - a , a  x b , S a , i i ~ C l .  

(iii) a E C1 A a E C1 -,Ua, n a  E Cl. 
PROOF. (i) and (ii) are by Lemma 4. (iii) requires an additional argument. By 

(CA)(+,-, we have X E U ~ + + ~ ~ ( ~ E ~ Aand x 5 U a * V y ( y 5 a  v x 5 y ) .x ~ y )  
Then the hypothesis a E C1 A a G C1 show x E U a t t  x $ Ua. Also X E  n a t t  
Vy(y C a v x E y) and x 5 n a o  3y(y E a A x C y). Once more the hypothesis gives 
X C ~ U - X $n a a n d i n d e e d x ~  n a * V y ( y ~ a - , x ~  y). 

Since Vx(x E V), we have V E V in particular. This is our first instance of self- 
application, though by itself not one of special interest. 

DISCUSSION.It appears that with Lemma 5 one is setting a course for a reasonable 
development of a (nonextensional) type-free theory of classes in this framework. 
However, the next steps usually taken run into obstacles, which are now taken up. 
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(i) First of all, a E C1 does not imply 9 a  E C1, since 9 V  is extensionally equal to 
C1.24 

(ii) The usual way of defining ordered pairs set-theoretically, (y,, y,) = 

{ {  y, ), { y,, yz)),  is also available to us here. However, that is unnecessary as ordered 
pairs (y,, y,) are already provided by the theory So. Thus in defining the notion of 
function from one class to another, we can take 

But if we then define ba = {c I Cl(c) A (c:a +b)) we are not able to show that 
a, b E C1 -,bn E C1. (In this case the counterexample is {O,l)" q! Cl.) Since the 
formation of function classes is essential to the definition of the real number system 
and analysis, this is a critical defect. (It is such even more so in view of our stated aim 
to deal with the analogous functor categories.) 

(iii)The natural number system would have to be treated prior to analysis. One way 
to try to introduce numbers would follow the Fregean approach through the 
cardinals. Define. 

(a - b) H 3c(Cl(c) A c:a + b A Vy E b3!x E a[(x, y) E c]). 

Then - is an equivalence relation on classes. The corresponding equivalence 
"classes" would be 

[a] = {blCl(b) A a - b). 

However, we do not have [a] E C1 when a E C1. Further, without extensionality we 
do not have the usual property [a] = [b] *a - b, only [a] = [b] *a -b. Thus we 
cannot develop the theory of cardinals as cardinal equivalence types. 

(iv)An alternative approach would be to try to define the natural numbers as the 
smallest class a containing 0 and closed under ',where these are defined in So by 59. 
Formally, this suggests taking 

While the matrix is equivalent to Va[Cl(a) +0 E a v 3y(y G a v y' E a) v x E a], 
there is still the negative subformula "Cl(a)" which cannot be circumvented. Thus we 
cannot prove that N satisfies its defining condition. Even if it did, we would not 
obtain full induction on N, since not every formula defines a member of C1. 

(v)One way around this problem is to build N in from the beginning by use of the 
quantifiers V, and 3, (58). Since these are monotonic, the fixed-model theorem and 
all the results of 559- 12 can be extended to include them in the language. Then N is 
definable as {x 1 3, y(x = y)); we have N E C1, and by the semantics of 3, we have 

0 E N, Vx(x E N +x' E N), and 
A Vx(cp(x)+ q(xl))+VX(X E N + q(x)) for each q .  

While this may be considered "cheating", it serves at least to show that one can 

24 One might think to define Ba instead as {x I x c a}. Then one would have x E BauVy(y  5x v 
y ~ a ) u ( - x ) u a ~ V . T a k e a = V - { C l } a n d x = C 1 . T h e n x c a b u t ( - x ) ~ A , s o ( - x ) u a ~ V .  
Thus it is not the case that x E Ba u x c a under this definition even for a E C1. 
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obtain consistent type-free theories of classes which include the (N)axioms for N as 
a total class. 

(vi) Similarly the notion of well-ordering relation with the usual inductive 
properties can be handled in this framework by the incorporation of a suitable 
generalized quantifier, but cannot be managed directly without such. In any case, we 
cannot develop the theory of ordinals as isomorphism types of well-ordered 
relations, for the same reasons as in (iii). 

(vii) To conclude, the mathematical content of the type-free theory of classes 
finally reached in this section is rather meager. Part I1 of this paper is devoted to the 
construction of much richer type-free mathematical theories. In addition, we should 
want such to be a theory of total classes to begin with (i.e, with the sole relation E of 
membership), since the idea of partial classes (in contrast to that of partial functions) 
is not felt to be a natural one, mathematically. 

$14. Summary and historical notes. In Part B ($97-13) we have rung a series of 
changes on the theme of type-free semantical and mathematical theories of partial 
predicates. In doing so we made a transition from theories in 3-valued logics to 
theories in the classical predicate calculus (CPC), passing via extensions of CPC by 
the additional operators = and 0.This has in effect constituted a transition from 
the solution route 2" for the paradoxes ("restriction of logic") to the solution route 3" 
("restriction of basic principles"). In addition, the treatment unified the semantical 
and mathematical theories by means of a more general theory of predicates T,.At 
each step the defects and disadvantages of a given formal solution were weighed 
against its attractions and advantages. Only at the end (in $13) did specifically 
mathematical goals make their appearance. These goals will take control in Part I1 
in order to move toward improved solutions. The work carried out so far will help 
there to focus both on what is to be avoided and what is to be accomplished. In 
addition, the criterion that a solution should be equally satisfactory from a 
constructive point of view, which has not so far been met, will be dealt with there. 

The work described above has not been presented in the historical order in which 
it evolved, and the references to other sources have been rather perfunctory. We thus 
conclude this part with some notes on relevant work, presented in (essentially) 
chronological order. Even so, what follows is far from comprehensive, especially on 
the semantical side. In addition, the notes only attempt to indicate what I take to be 
the main direction or character of the contributions (insofar as they are connected 
with the present 

Behmann [I9311 presented informal ideas for the avoidance of paradoxical 
abstraction, by analysis of reduction procedures such as that of t E {x: cp(x)) to cp(t). 
Paradoxical abstraction leads to nonterminating reduction sequences. These ideas 
were spelled out more fully in Behmann [I9591 but never in exact form. (The 
handling of the system S ( = )  in AczelIFeferman [I9801 is motivated by similar 
ideas.). 

In 1941 and during the 1950s, Ackermann published a series of papers on type- 
free systems; cf. e.g. Ackerman [I9501 and [1957]. Some of these were simplified and 

2 5  I believe a serious comparative study would be of value in this subject, since in many cases it is not 
easy to assess what is accomplished. 
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extended by Schiitte; cf. Schiitte [I9521 and [1960, Chapter VIII]. A common 
feature of these systems is that they do not contain the full law of excluded middle, 
but are classical in other logical respects; in that sense they are based on a form of 3-
valued logic. However, they are not keyed to any prior semantics. Some of the 
systems make use of an additional unary propositional operator B ("Beweisbar") 
which has a 0-like character. 

Fitch [I9481 inaugurates a series of papers (continuing to Fitch [1980]) in which 
the inductive method is used to set up consistent combinatory systems with strong 
means for representing logical and mathematical notions. I trace the use of the 
inductive method in this subject (for the construction of partial fixed-point models) 
to Fitch's work. (Readers may not find the connection so clear, since his systems 
involve an unusual mixing of combinatory and logical syntax and since his pursuit 
of extensionality complicates matters.) 

Hallden [I9491 is an original and ambitious essay on the philosophical side 
setting up a "logic of nonsense" to deal with the paradoxes and other problems. This 
is based on a form of (Kleene) weak 3-valued logic. Hallden also suggested modal 
extensions. Unfortunately, this work is not easily available. (More recent treatments 
of some of his systems are to be found in Segerberg [I9651 and Woodruff [1973].) 

The study of the comprehension scheme (CA), in tukasiewicz 3-valued logic was 
initiated by Skolem [1960j (ef. also Skolem [I9631 and the work of Brady below). 

As explained in $10,Wang [I9611 gave a complete Gentzen-style axiomatization 
of Kleene's strong 3-valued logic.26Apparently a successor to that paper with 
applications to set theory was planned, but does not appear t'o have been published. 

Fitch [I9631 is central to his approach inaugurated in 1948, described above. 
Somewhat differently, in an abstract Fitch [1966], he states the consistency of the 
scheme 3aVx[x E a tt cp(x)] for arbitrary cp in an extension of ordinary predicate 
calculus. But in a detailed paper in this JOURNAL,vol. 32 (1967), pp. 93-103, Fitch 
returns to a modal extension of a combinatory system closer to his system CA of 
[I9631 (though weaker in other respects); cf. also Fitch's article in Monist, vol. 51 
(1967), pp. 104-109. 

In 1967 Gilmore wrote a report on his system of partial set theory where one 
works in the classical logic of a disjoint pair (E,Z) (as taken up in $13 above). This 
was reported to the 1967Institute on Set Theory at UCLA (but not published until 
Gilmore [1974]), and is where I first saw the use of partial predicate models and the 
inductive method of building fixed-point models.27 

In the discussion (viii) of $10 we have already mentioned the interesting idea of 
van Fraassen [I9681 to use partial models so as to avoid the semantic paradoxes but 
at the same time retain classical logical validity through the device of supervalua-
tions. Though the motivation to stay within ordinary reasoning is the same as here, 
the solution is different. As far as I know, the logic of supervaluations has not been 

26 Such systems keep being rediscovered; cf. e.g. Thomason [I9691 and Scott [1975].
''At the time I did not pay much attention to these methods and results, and in fact my view then of 

work on type-freetheories was rather negative. What I did not realize was the potential utility of type-free 
theories for fairly specificmathematical purposes. In contrast, the work I had seen was dominated (at least 
implicitly) by an attempt to reconstruct Frege's global program for the foundations of mathematics. It 
took me a while to recognize that formal work for the latter could be enlisted in the cause of the former. 
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pursued in any detailed systematic way, though the idea has been applied further by 
van Fraassen and others, e.g. Skyrms [1970]; cf, also the collection Martin [I9701 of 
essays on the Liar paradox for a number of related discussions and suggestions of 
alternative approaches. In addition that volume contains a very good bibliography 
(further extended in the 1978 edition), particularly on the semantical side of the 
subject. 

Brady [I9711 much strengthened Skolem's result for consistency of forms of 
(CA), in Lukasiewicz 3-valued logic, using Gilmore's inductive method. He ex- 
tended this in 1972 to a system containing Bernays-Godel set theory, but the idea of 
the proof is the same. 

The paper Nepeivoda [I9731 presents an infinitary system for Kleene 3-valued 
logic in the context of number theory. Though the stated interest there is in the 
subject of predicativity, in effect he builds a partial model for (CA), in that system. 
(Nepeivoda had several related papers in the period 1973-74.) 

Kripke [I9751 appears to be the first paper on the semantical side to make use of 
the inductive construction of fixed-point models, in this case with Kleene strong 3- 
valued logic. Kripke's paper contains an interesting discussion of the problems 
which that construction solves and considerations of some alternatives. The 
construction itself was carried out independently by Kindt [1976]. Also independ- 
ently, Martin/Woodruff ,[1.975] dealt with fixed points for partial truth predicates, 
but instead of producing minimal fixed points inductively, applied Zorn's lemma to 
obtain maximal fixed points. 

My own work on type-free theories dates to 1974, with the first publications being 
in 1975.2@The first of these, [1975a], was concerned with nonextensional theories of 
partial functions and total classes (called operations and classifications, resp.) for 
the formalization of Bishop-style constructive mathematics. While this provided 
examples of self-membership, the framework did not appear adequate for appli- 
cations to an unrestricted theory of structures and categories. Pursuit of the latter 
led me to theories of partial functions and partial classes wherein, like the 
constructive systems, functions appear prior to classes. This "two-stage" approach 
was a principal new feature of the work. It can be described in terms of the 
presentation here as the assumption that So contains a suitably strong theory of 
partial functions (and secondarily that abstracts (x 1 q(x, y,, . . . ,y,)) in S are 
functions of their parameters y,, . . .,y, in the sense of So). In this paper such an 
assumption will only make its explicit appearance and be motivated in Part 11. 

My notes [1975b] presented a form of S(O) for (CA), over a theory So of partial 
functions, reading C]q as "q is established in the course of a (possibly transfinite) 
investigation" (cf. 512 above). This was followed in [1975c] by a system like S(+, -,for 
(CA)(+,-, over such So. In my notes [I9761 I initiated a comparative (and parallel) 
study of semantical and mathematical type-free theories in various logics for partial 
models. The present paper grew out of those notes and incorporates most of the 
material from there. A Part I1 was planned for the paper [1975c] but never 

2 8  Actually my interest in the foundations of category theory goes back somewhat earlier. In Feferman 
[I9691 I had applied the reflection principle in ZF to avoid the distinction between "small" and "large" 
categories. 
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published; however, much of the intended material was eventually used in Feferman 
[1977], which described the 0-systems and also sketched applications to category 
theory. 

The paper Scott 119751 combines features of (one stage of) my [1975c] paper with 
the system SH for (CA), in Kleene 3-valued logic, described above in $10. Cantini 
[1979a] adapted Nepeivoda [I9731 and Feferman [1975c] to a semantical type-free 
theory; the approach through a modal system like S(O) was similarly adapted in 
Cantini [1979b]. 

The axioms for S(E) and the idea for a conservation proof by Church-Rosser 
methods were first introduced in 1977 at a symposium at Yale in honor of Professor 
Fitch. As a result of later improvements and additions by Aczel, particularly with 
the approach to S1(=)  described in $11 above, the work appeared finally as 
AczelIFeferman [1980]. No special strong assumptions were made on So there, 
though it can also be made part of a two-stage theory as indicated above. The 
interesting constructive semantical theory of Aczel [I9801 will be described in 
Part 11, where its relevance will become clear. 

I have concentrated here on works most directly relevant to the approaches and 
matters taken up in this part; admittedly even that has been far from compre- 
hen~ive .~ 'Nothing has been said about quite different type-free approaches e.g. via 
stratified theories or illative combinatory systems.30 It is my plan to comment on 
those and others at the end of Part 11. Finally, the issue of extensionality vs. 
nonextensionality, which has been largely ignored here, will be taken up there. 

REFERENCES 

W. ACKERMANN 
[I9501 	 Widerspruchsfreier Aufbau der Logik. Typenfreies System ohne Tertium non datur, this 

JOURNAL,v01. 15, pp. 33-37. 
[I9581 Ein typenfreies System der Logik mit ausreichender mathematischer Anwendungsfahigkeit. I, 

Avchiu fur Mathematische Logik und Gvundlagenforschung vol. 4, pp. 1-26. 
P. ACZEL 

[I9801 Frege structures and the notions of proposition, truth and set, The Kleene symposium (J. Barwise, 
H. J. Keisler and K. Kunen, editors), North-Holland, Amsterdam, pp. 31-59. 

P. ACZEL and S. FEFERMAN 
[I9801 	 Consistency of the unrestricted abstraction principle using an intensional equivalence operator, 

in Seldin/Hindley [1980], pp. 67-98. 
H. BEHMANN 

[I9311 	Z u  den Widerspriichen der Logik und aer Mengenlehre, Jahvesbericht dev Deutschen 
Mathematiker-Vereinigung vol. 40, pp. 37-48. 

29 Some further references that I have not mentioned or only barely touched on can be found in the 
present bibliography and in that of Feferman [1976c] as well, of course, as in Martin [I9701 (+ 1978). 
For a useful bibliography of many-valued logic cf. Wolf C1977.1 Added note: the interesting paper 
Bochvar [I9811 (translation of a 1939 paper) was brought to my attention by Albert Visser, at a point too 
late to mention in the historical notes of the text. This introduces a logic of 'internal' and 'external' 3- 
valued operators. The former corresponds to Kleene's weak operators; the latter includes truth and falsity 
operators, which allow one to define Jp ("pis meaningless, i.e. not true or false"). It appears that Bochvar 
anticipated Hallden [I9491 in major respects. 

30 Good introductions to the work of the Curry school on illative combinatory logic are to be found in 
Bunder [I9801 and Curry [1980]. 



109 USEFUL TYPE-FREE THEORIES 

119591 	Der Priidikatenkalkiil mit limitierten Variablen: Grundlegung einer natiirlichen exakterz Logik, 
this JOURNAL, vol. 24, pp. 112-140. 

D .  A. BOCHVAR 
119811 	On a three-valued logical calculus and its application to the analysis of the paradoxes of the 

classical extendedfunctional calculus, Matemati?eskiiSbornik, vol. 4(46) (1939), pp. 287-308; 
English translation in Hi.~tory and Philosophy of Logic, vol. 2 (1981). pp. 87-1 12. 

R. T. BRADY 
[I9711 	 The consistency of the axiorns of abstraction and extensionality in three-valued logic, Notre 

Dame Journal of Formal Logic, vol. 12, pp. 447-453. 
M.  W. BUKDER 

[I9801 The naturalness of illative combinatory logic as a basis for matl?ematics,in Seldin/Hindley 
[1980], pp. 55-64. 

[I9821 	 Some results in Aczel-Feferman logic and set theory. Zeitschrift fur Mathematische Logik und 
Grnndlagen der Mathematik, vol. 28, pp. 269-276. 

T. BURGE 
[I9791 Semarttical paradox, Journal of Philosophy, vol. 76, pp. 169-198. 

A. CANTINI 
[1979a]A note on three-valued logic and Tarski theorern on truth definitions, preprint, Mathe-

matisches Institut, Miinchen, 16 pp. (published in Studia Logica, vol. 39 (1980), pp. 405-414). 
[1979b]"Tarski extensions" of theories, preprint, Mathematisches Institut, Miinchen, 18 pp. 

H .  B. CURRY 
[I9421 The illconsistellcy of' certainformal logics, this JOURNAL, vol. 7, pp. 115-1 17. 
[I9801 Some philosophical espects of combinatory logic, The KIeene svmposium (J. Barwise, 

H. J. Keisler and K. Kunen, editors), North-Holland, Amsterdam, pp. 85-101. 
S. FEFERMAN 

[I9671 	Set-theoretical foundations of category theory (with an appendix by G. Kreisel), Reports of the 
Midwest Category Seminar. iii,Lecture Notes in Mathematics, vol. 106, Springer-Verlag, 
Berlin, 1969, pp. 207-246. 

[1975a]A language and axioms ,for explicit mathematics, Algebra and logic, Lecture Notes in 
Mathematics, vol. 450, Springer-Verlag, Berlin, pp. 87- 139. 

[1975b]lnvestigatice logic for theories of partial j'iuirctioizs atzd relatiotzs. I and 11, unpublished notes, 
Stanford University, Stanford, California, 21 pp. and 13 pp. 

[1975c] Non-extensional type-free theories of partial operations and classifications. I ,  I=ISILC Proof 
Theory Symposion, Kiel, 1974, Lecture Notes in Mathematics, vol. 500, Springer-Verlag, 
Berlin, pp. 73- 118. 

[I9761 	 Comparisor~ of some type-fr.ee sernantic and mathematical theories, unpublished notes, Stanford 
University, Stanford, California, 18 pp. 

[I9771 Categorical foundations and foundatiorzs of category theory, Logic, foundations of mathenzatics 
andcomputability theory (R .  Butts and J. Hintikka, editors), Reidel, Dordrecht, pp. 149-169. 

[I9791 Constructive theories of ,functions and classes, Logic Colloquinm '78 ( M .  Boffa, D. van Dalen 
and K .  McAloon, editors), North-Holland, Amsterdam, pp. 159-224. 

F. B. FITCH 
[I9481 An extension of' basic logic, this JOURXAL, vol. 13. pp. 95-106. 
[I9631 The systenz C A  of combinatory logic, this JOURNAL, vol. 28, pp. 87-97. 
119661 A consistent modal set t /~eory (abstract), this JOURNAL vol. 31, p. 701. 

[I9801 A consistent combinatory logic with an inverse to equality, this JOURNAL, 
vol. 45, pp. 529-543. 

P. C.  GILMORE 
[I9741 The consistellcy of partial set theory without extensionality, Axiomatic set theovy, Proceedings 

of Symposia in Pure Mathematics, vol. 13, Part 11, American Mathematical Society, 
Providence, R.I., pp. 147- 153. 

[I9801 	 Con~bining unrestricted abstraction with unioersal quantification, in Seldin/Hindley 119801, 
pp. 99-123. 

K.  GOVEL 
[I9311 	 ijber forrnal unentscheidbare Satze der Pri~zcipia Mathematics und verwandter Systeme. I ,  

Monatshefte fiiv Mathematik und Physik, vol. 38, pp. 173-198. 



110 SOLOMON FEFERMAN 

S. HALLDEN 
[I9491 The logic of nonsense, Uppsala Universitets Arsskrifr, vol. 1949, no. 9. 

H. G. HERZBERGER 
119701 Paradoxes of grounding in semantics, Journal of Philosophy, vol. 67, pp. 145-167. 

R. G. JEROSLOW 
119731 	Redundancies in the Hilbert-Bernays derivability conditions for Godel's second incompleteness 

theorem, this JOURNAL, vol. 38, pp. 359-367. 
A. KECHRISand Y. MOSCHOVAKIS, 

119771 	Recursion in higher types, Handbook of Mathematical Logic (J. Barwise, editor), North- 
Holland, Amsterdam, pp. 681-737. 

W. KINDT 
[I9761 ~ b e r  Sprachen mit Wahrheitspriidikat, Sprachdynamik und Sprachstruktur (C. Habel and 

S. Kanngiesser, editors), Niemeyer, Tiibigen, 1978. 
S. C. KLEENE 

[I9521 Introduction to metamathematics, Van Nostrand, Princeton, N.J. 
S. C.  KLEENE and R. VESLEY 

[I9651 	 The foundations of intuitionistic mathematics, especially in relation to recursive functions, 
North-Holland, Amsterdam. 

M. KRASNER 
[I9621 	 Le dbjnitionnisme, Acres du Colloques de Mathimatiques, Pascal Tricentenaire. I ,  Annales de la 

Faculti des Sciences, Uniuersiti de Clermont, no. 7, pp. 55-8 1. 
G. KREISELand A. S. TROELSTRA 

119701 	Formal systems for some branches of intuitionistic analysis, Annals of Mathematical Logic, 
vol. 1, pp. 229-387. 

S. KRIPKE 
[I9751 Outline of a theory of truth, Journalof Philosophy, vol 72, pp. 690-716. 

R. L. MARTIN(EDITOR) 
'[I9701 	 The paradox of the liar, Yale University Press, New Haven, Connecticut; second edition, 

Ridgeview Publishing Co., Atascadero, California, 1978. 
R. L. MARTINand P. W.WOODRUFF 

[I9751 On representing "true-in-L" in L, Philosophia, vol. 5, pp. 213-217. 
S. MCCALL(EDITOR) 

[I9671 Polish logic: 1920-1939, Clarendon Press, Oxford. 
S. MACLANE 

[I9711 Categories for the working mathematician, Springer-Verlag, Berlin. 
N.  N. NEPE~VODA 

[I9731 	 A new notion of predicative truth and dejnability, MatematiCeskie Zametki, vol. 13, pp. 735- 
745; English translation, Mathematical Notes of the Academy of Sciences of the USSR, 
vol. 13, pp. 439-445. 

C. PARSONS 
[I9741 The liar paradox, Journal of Philosophical Logic, vol. 3, pp. 381-412. 

D. PRAWITZ 
119651 Natural deduction. A proof-theoretical study, Almqvist and Wiksell, Stockholm. 

A. PRIOR 
[I9671 Many-valued logic, Encyclopedia of Philosophy, vol. 5, MacMillan, New York, pp. 1-5. 

F. P. RAMSEY 
[I9251 	 The foundations of mathematics, Proceedings of the London Mathematical Society, ser.2, 

vol. 25, pp. 338-384 (also in Foundations, Humanities Press, 152-212). 
J. B. ROSSER and A. R. TURQUETTE 

[I9521 Many-valued logics, North-Holland, Amsterdam. 
K. SCHUTTE 

[I9531 Zur Widerspruchsfreiheit einer typenfreien Logik, Mathematische Annalen, vol. 125, pp. 394- 
400. 


[I9601 Beweistheorie, Springer-Verlag, Berlin. 

D. SCOTT 

119601 The notion of rank in set-theory, Summaries of talks presented at the Summer Institute for 



USEFUL TYPE-FREE THEORIES 	 111 

Symbolic Logic, Cornell University, 1957,2nd ed., Institute for Defense Analyses, Princeton, 
N.J., (1960) pp. 267-269. 

[I9751 	 Combinators and classes, I-calculus and computer science theory, Lecture Notes in Computer 
Science, vol. 37, Springer-Verlag, Berlin, pp. 1-26. 

K .  SEGERBERG 
[I9651 A contribution to nonsense-logics, Theoria, vol. 31, pp. 199-217. 

J. P SELDIN and J .  R. HINDLEY(EDITORS) 
[I9801 	 To H. B. Curry: Essays on combinatory logic, lambda calculus and formalism, Academic Press, 

New York. 
B. SKYRMS 

[I9701 	Return of the liar: three-valued logic and the concept of truth, American Philosophical 
Quarterly, vol. 7, pp. 153-161. 

T. SKOLEM 
[I9601 A set theory based on a certain three-valued logic, Mathematica Scandinavica, vol. 8, pp. 127- 

136. 
[I9631 Studies on the axiom of comprehension, Notre Dame Journal of Formal Logic, vol. 4, pp. 162- 

170. 
A. TARSKI 

119561 	Logic, semantics and metamathematics. Papers from 1923 to 1938 (J. H .  Woodger, editor), 
Clarendon Press, Oxford. 

R. THOMASON 
[I9691 	 A semantical study of constructivefalsity, Zeitschrift fur Mathematische Logik und Grundlag- 

en der Mathematik, vol. 15, pp. 247-257. 
B. VAN FRAASSEN 

[I9681 Presupposition, implication and self-reference, Journal of Philosophy, vol. 65, pp. 135-152. 
H. WANG 

[I9611 The calculus of partial predicates and its extension to  set theory. I, Zeitschrifr fur 
Mathematische Logik und Grundlagen der Mathematik, vol. 7, pp. 283-288. 

R G. WOLF 
[I9771 	A survey of many-valued logic (1966-1974), Modern uses of multiple-valued logic (J. M .  Dunn 

and G .  Epstein, editors), Reidel, Dordrecht, pp. 167-323. 
P. WOODRUFF 

[I9691 Foundations of three-valued logic, Dissertation, Department of Philosophy, University of 
Pittsburgh, Pittsburgh, Pennsylvania. 

[I9731 	 On constructive nonsense logic, Modality, morality and other problems of sense and nonsense. 
Essays dedicated to Siiven Halldin, CWK Gleerup Bokforlag, Lund, pp. 192-205. 

STANFORD UNIVERSITY 


STANFORD,
CALIFORNIA 94305 



You have printed the following article:

Toward Useful Type-Free Theories. I
Solomon Feferman
The Journal of Symbolic Logic, Vol. 49, No. 1. (Mar., 1984), pp. 75-111.
Stable URL:

http://links.jstor.org/sici?sici=0022-4812%28198403%2949%3A1%3C75%3ATUTTI%3E2.0.CO%3B2-D

This article references the following linked citations. If you are trying to access articles from an
off-campus location, you may be required to first logon via your library web site to access JSTOR. Please
visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

[Footnotes]

11 The Inconsistency of Certain Formal Logic
Haskell B. Curry
The Journal of Symbolic Logic, Vol. 7, No. 3. (Sep., 1942), pp. 115-117.
Stable URL:

http://links.jstor.org/sici?sici=0022-4812%28194209%297%3A3%3C115%3ATIOCFL%3E2.0.CO%3B2-9

22 Der Prädikatenkalkül mit Limitierten Variablen Grundlegung Einer Natürlichen Exakten
Logik
Heinrich Behmann
The Journal of Symbolic Logic, Vol. 24, No. 2. (Jun., 1959), pp. 112-140.
Stable URL:

http://links.jstor.org/sici?sici=0022-4812%28195906%2924%3A2%3C112%3ADPMLVG%3E2.0.CO%3B2-I

References

Der Prädikatenkalkül mit Limitierten Variablen Grundlegung Einer Natürlichen Exakten
Logik
Heinrich Behmann
The Journal of Symbolic Logic, Vol. 24, No. 2. (Jun., 1959), pp. 112-140.
Stable URL:

http://links.jstor.org/sici?sici=0022-4812%28195906%2924%3A2%3C112%3ADPMLVG%3E2.0.CO%3B2-I

http://www.jstor.org

LINKED CITATIONS
- Page 1 of 2 -

NOTE: The reference numbering from the original has been maintained in this citation list.

http://links.jstor.org/sici?sici=0022-4812%28198403%2949%3A1%3C75%3ATUTTI%3E2.0.CO%3B2-D&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-4812%28194209%297%3A3%3C115%3ATIOCFL%3E2.0.CO%3B2-9&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-4812%28195906%2924%3A2%3C112%3ADPMLVG%3E2.0.CO%3B2-I&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-4812%28195906%2924%3A2%3C112%3ADPMLVG%3E2.0.CO%3B2-I&origin=JSTOR-pdf


The Inconsistency of Certain Formal Logic
Haskell B. Curry
The Journal of Symbolic Logic, Vol. 7, No. 3. (Sep., 1942), pp. 115-117.
Stable URL:

http://links.jstor.org/sici?sici=0022-4812%28194209%297%3A3%3C115%3ATIOCFL%3E2.0.CO%3B2-9

An Extension of Basic Logic
Frederic B. Fitch
The Journal of Symbolic Logic, Vol. 13, No. 2. (Jun., 1948), pp. 95-106.
Stable URL:

http://links.jstor.org/sici?sici=0022-4812%28194806%2913%3A2%3C95%3AAEOBL%3E2.0.CO%3B2-V

The System C# of Combinatory Logic
Frederic B. Fitch
The Journal of Symbolic Logic, Vol. 28, No. 1. (Mar., 1963), pp. 87-97.
Stable URL:

http://links.jstor.org/sici?sici=0022-4812%28196303%2928%3A1%3C87%3ATSOCL%3E2.0.CO%3B2-6

Meeting of the Association for Symbolic Logic
Martin Davis
The Journal of Symbolic Logic, Vol. 31, No. 4. (Dec., 1966), pp. 697-706.
Stable URL:

http://links.jstor.org/sici?sici=0022-4812%28196612%2931%3A4%3C697%3AMOTAFS%3E2.0.CO%3B2-1

A Consistent Combinatory Logic with an Inverse to Equality
Frederic B. Fitch
The Journal of Symbolic Logic, Vol. 45, No. 3. (Sep., 1980), pp. 529-543.
Stable URL:

http://links.jstor.org/sici?sici=0022-4812%28198009%2945%3A3%3C529%3AACCLWA%3E2.0.CO%3B2-6

Redundancies in the Hilbert-Bernays Derivability Conditions for Gödel's Second
Incompleteness Theorem
R. G. Jeroslow
The Journal of Symbolic Logic, Vol. 38, No. 3. (Dec., 1973), pp. 359-367.
Stable URL:

http://links.jstor.org/sici?sici=0022-4812%28197312%2938%3A3%3C359%3ARITHDC%3E2.0.CO%3B2-L

http://www.jstor.org

LINKED CITATIONS
- Page 2 of 2 -

NOTE: The reference numbering from the original has been maintained in this citation list.

http://links.jstor.org/sici?sici=0022-4812%28194209%297%3A3%3C115%3ATIOCFL%3E2.0.CO%3B2-9&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-4812%28194806%2913%3A2%3C95%3AAEOBL%3E2.0.CO%3B2-V&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-4812%28196303%2928%3A1%3C87%3ATSOCL%3E2.0.CO%3B2-6&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-4812%28196612%2931%3A4%3C697%3AMOTAFS%3E2.0.CO%3B2-1&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-4812%28198009%2945%3A3%3C529%3AACCLWA%3E2.0.CO%3B2-6&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0022-4812%28197312%2938%3A3%3C359%3ARITHDC%3E2.0.CO%3B2-L&origin=JSTOR-pdf

