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Abstract: We propose new tests for testing the validity of a semiparametric
random-design linear regression model. The construction consists of several steps.
First, we follow the classical idea of overfitting and replace the basic problem by a
series of auxiliary subproblems. Next, to test whether extra terms are significant we
construct a counterpart of classic score statistic. Finally, we combine the solution
with smoothing methods providing guidelines to choose the right subproblem. This
leads to data driven score tests for the initial testing problem. Under the null model
our construction is asymptotically distribution free, as shown in Inglot and Ledwina
[19], [20]. We illustrate the result by a small simulation study. We also compare
the finite sample performace of our tests with the recent solution introduced by
Guerre and Lavergne [9], as well as to Cramér-von Mises type construction. The
simulation experiment indicates the very good performance of the proposed tests.
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1 Introduction

The problem of verifying the linear structure of a regression function is central in
applied statistics. Therefore, it is not surprising that there is an extensive literature
on several possible solutions under a variety of different restrictions. For the set-
up which is considered in this paper, current literature is dominated by two, not
very much different, ideas in approaching the problem. The first one exploits old
Cramér-von Mises, Kolmogorov-Smirnov and other similar solutions. For some
evidence see Stute [31], Stute et al. [32] and [33], Diebolt and Zuber [6], Koenker
and Xiao [25], Khmaladze and Koul [24] e.g. The second one relies on comparing
some parametric and nonparametric fits, cf. Kozek [26], Härdle and Mammen [10],
Horovitz and Spokoiny [12], Zhang and Dette [34], Guerre and Lavergne [9], to
mention few of them. Some different ideas are exploited in Dette nad Munk [4]
and Dette [5]. For some more specialized situations, mostly focused on the fixed

The second named author is deeply indebted to A. Schick for insightful discussion in Oberwol-

fach, September 2003. The discussion resulted, in particular, in sharpening the previous version

of present Theorem 2.2. The authors are grateful to J. Mielniczuk for comments. The program-

ming work was done by A. Janic under support from the KBN 5 P03A 03020 grant. Her kind

co-operation is gratefully acknowledged. The computations were partly done at the Institute of

Mathematics and Informatics of Wroc law University of Technology. We especially thank M. Kacz-
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design and Gaussian errors, some new ideas were introduced recently. For some
evidence see Baraud et al. [1] and Fan and Huang [7]. For further references, again
mostly concerning the fixed design situation, see Hart [11]. For some comparison of
few of these solutions with adequate data driven score test see Inglot and Ledwina
[18],[21].

The purpose of this paper is to propose and investigate some new tests of fit
for the problem described below. The solutions shall be derived via elaborating on
some ideas sketched in Choi et al. [3] and matching the result with the approach
proposed in Ledwina [27] and extended in Inglot, Kallenberg and Ledwina [13],
among others.

Let Z = (X, Y ) denote a random vector in I × R, I = [0, 1]. We would like to
verify the null hypothesis H0 asserting

Y = β[v(X)]T + ε, (1.1)

where X and ε are independent, Eε = 0, Eε2 < ∞, β ∈ Rq is a vector of unknown
real valued parameters while v(x) = (v1(x), ..., vq(x)) is a vector of known functions.
The symbol T denotes transposition. All vectors are considered to be row vectors.

We start with the classical idea of overfitting and reducing the verification of
(1.1) to testing whether extra terms are significant. More precisely, given a fixed
k, we embed our null model (1.1) into the following auxiliary model

M(k) Y = θ[u(X)]T + β[v(X)]T + ε, (1.2)

which satisfies the following assumptions

u(x) = (u1(x), ..., uk(x)), v(x) = (v1(x), ..., vq(x)), x ∈ I, and the
measurable functions u1, ..., uk, v1, ..., vq are bounded and linearly
independent; θ ∈ Rk, β ∈ Rq are unknown parameters;

< M1 > X has an unknown density g with respect to the Lebesgue
measure λ supported on I;
ε has an unknown density f with respect to the Lebesgue measure
λ on R. The density f satisfies Ef ε = 0, τ = Ef ε2 and 0 < τ < ∞;
X and ε are independent.

At the first step we construct appropriate score test statistic [precisely: efficient
score statistic], for the given fixed k, for testing H0(k) : θ = 0 against θ 6= 0 in M(k)
satisfying < M1 > and some further regularity conditions < M2 > and < M3 >.
An efficient score vector along with its appropriate estimator play the central role
in this construction. Section 2.1 presents the efficient score vector while Section 2.2
contains some general class of estimators of this entity. Theorem 2.2, the basic result
of Section 2.3, gives conditions under which the influence of nuisance parameters
β, f, g on the limiting behaviour of the related score statistic is asymptotically
negligible. Section 2.4 contains the next step of our construction, i.e. incorporating
into the score statistic a score-based selection rule for determining the dimension k.
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We discuss two selection rules and call the resulting statistics the data driven score
tests. Section 3 presents the results of our simulation study. The simulation results
show that these data driven constructions possess two fundamental advantages
of efficient score statistics. Namely, for moderate sample sizes the critical values
are stable for a variety of nuisance parameters, while empirical powers are high,
considerably exceeding those of the best existing solutions of the problem.

2 Data driven score tests

Before we introduce the test statistics, we present a series of auxiliary constructions
and results.

2.1 Efficient score vector for testing θ = 0 in M(k)

A general result for score vectors in some large class of regression models is given in
Schick [30]. For completeness, in Inglot and Ledwina [15] some existing results on
score vectors in the model M(k) were reproved and results on efficient score vectors
for testing (1.2) were derived. This paper also concerns more general heteroscedastic
case. Below we quote some of these results.

In the case under consideration, in addition to the basic model assumptions
< M1 > we need the following ones

< M2 > f ′(y) exists for all y ∈ R and J = J(f) =
∫

R [f ′(y)]2/f(y)λ(dy) < ∞,

< M3 > g > 0 λ - a.e.

Under these three assumptions the efficient score vector for testing H0(k) : θ = 0
in M(k), calculated at z = (x, y), is of the form

`∗(z) = −{[f ′/f ] (ε)} [ũ(x) − ṽ(x)V−1M] + τ−1ε[m1 − m2V
−1M],

where

ε = y − v(x)βT , m1 = Egu(X), m2 = Egv(X), m = (m1, m2),

w̃(x) = (ũ(x), ṽ(x)), ũ(x) = u(x) − m1, ṽ(x) = v(x) − m2,

while M and V are blocks in

W =

(
U MT

M V

)
=

1

4

{
JEg[w̃(X)]T [w̃(X)] +

1

τ
mT m

}
.

Note that, due to < M3 >, W is positive definite [cf. Remark C.13 in Inglot and
Ledwina [15]].
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2.2 Efficient score statistic and a general result

We introduce the additional notation

ϑ = (
√

g,
√

f), η = (β, ϑ) and `∗(z; η) = `∗(z).

Moreover, Pn
η denotes the joint distribution of Z1, ..., Zn under the null model (1.1).

Finally set W11 = (U − MTV−1M)−1, L = 4−1W11 and define

Wk(η) =

[
1√
n

n∑

i=1

`∗(Zi; η)

]
L

[
1√
n

n∑

i=1

`∗(Zi; η)

]T

.

From < M1 > − < M3 >, Corollaries C.16, C.18 and Remark C.13 of Inglot and
Ledwina [15], e.g., under the null hypothesis H0(k), L is positive definite and it
holds that

Eη`∗(Z; η) = 0,
{
Eη[`∗(Z; η)]T [`∗(Z; η)]

}−1
= L, Wk(η)

D→ χ2
k, (2.1)

where χ2
k denotes a random variable from the central chi-square distribution with

k degrees of freedom.

Define

Wk(η̂) =

[
1√
n

n∑

i=1

ˆ̀∗(Zi; η̂)

]
L̂

[
1√
n

n∑

i=1

ˆ̀∗(Zi; η̂)

]T

, (2.2)

where ˆ̀∗(•; η̂) is an estimator of `∗(•; η), while L̂ is an estimator of L.

Finally, let ||• || denote the Euclidean norm of a given vector. The relation (2.1)
and a simple argument yield the following result.

Proposition 2.1. Assume the null hypothesis H0(k) : θ = 0 is true and the as-

sumptions < M1 >, < M2 > and < M3 > are fulfilled. Suppose that L̂ is a
consistent estimator of L and the estimator ˆ̀∗(•; η̂) satisfies the following condition

Pn
η

(∣∣∣∣∣

∣∣∣∣∣

n∑

i=1

[ˆ̀∗(Zi; η̂) − `∗(Zi; η)]

∣∣∣∣∣

∣∣∣∣∣ ≥ δ
√

n

)
→ 0 as n → ∞ for every δ > 0. (2.3)

Then for the test statistic Wk(η̂) defined in (2.2) it holds that

Wk(η̂)
D→ χ2

k, as n → ∞.

Wk(η̂) is an efficient score statistic for testing H0(k) in M(k). As said before,
we shall abbreviate this name to score statistic. Choi et al. [3] used the name
efficient test statistic for such a construction.
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2.3 Some class of estimators ˆ̀∗ of `∗ satisfying (2.3)

We follow some well established ideas. On one hand, our construction is obviously
linked to the approach of Bickel [2], Example 3. On the other, it incorporates the
very useful contribution of Schick [29] showing that using only a small fraction of
the sample to estimate the score function, as in Bickel [2] , can be avoided.

Suppose Z1, ..., Zn are i.i.d. vectors obeying (1.2). Note that, as usual in the
score test theory, all considerations below are done under the assumption θ = 0.

Take ζ =
[

n
2

]
and divide Z1, ..., Zn into two parts Z1, ..., Zζ and Zζ+1, ..., Zn.

In order to clearly show an important feature of our construction, we shall, for a
moment, display in formulas the expectation m as if it were the next nuisance pa-
rameter. Additionally set < 1 >= {1, ..., ζ}, < 2 >= {ζ + 1, ..., n}. The superscript
(j), j = 1, 2, appearing below, indicates from which part of the sample we estimate
the related quantity.

The basic structure of ˆ̀∗ at the observed points Z1, ..., Zn is as follows

ˆ̀∗(Zi; η̂) =

{
`∗(Zi; β̂

(2)
∗ , ĝ(2), f̂ (2), m̂(1)), if i ∈< 1 >,

`∗(Zi; β̂
(1)
∗ , ĝ(1), f̂ (1), m̂(2)), if i ∈< 2 >,

where

m̂
(1)
1 =

1

ζ

∑

i∈<1>

u(Xi), m̂
(2)
1 =

1

n − ζ

∑

i∈<2>

u(Xi), ũ(j)(•) = u(•)− m̂
(j)
1 , j = 1, 2,

m̂
(1)
2 , m̂

(2)
2 and ṽ(j)(•), j = 1, 2, are defined analogously, while β̂

(j)
∗ is a discretized

version of a
√

n - consistent estimator β̂(j) of β, based on the jth part of the sample.
The specific form of m̂(j), together with the fact that in the construction of ˆ̀∗

only the estimators m̂(j) are matched to Zi with i from < j > and the requirements
for

√
n - consistency of an estimator for β are the strongest requirements on esti-

mators we imposed in the construction. When estimating other quantities there is
a lot of freedom, as seen from Theorem 2.2, below.

To write the form of the estimators ˆ̀∗(Zi; η̂), i ∈< j >, j = 1, 2, explicitly

denote by V̂(j), M̂(j), τ̂ (j), τ̂ (j) > 0 − a.e. and [̂f ′/f ]
(j)

the related estimators of
the appropriate quantities. Note that having these estimators, we do not need to

estimate the density g itself. Set ε̂
(j)
i = Yi − v(Xi)[β̂

(j)
∗ ]T . For i ∈< 1 > we have

ˆ̀(Zi; η̂) = −[̂f ′/f ]
(2) (

ε̂
(2)
i

) [
ũ(1)(Xi) − ṽ(1)(Xi)[V̂

(2)]−1M̂(2)
]

+
1

τ̂ (2)

[
ε̂
(2)
i

] [
m̂

(1)
1 − m̂

(1)
2 [V̂(2)]−1M̂(2)

]
,

and for i ∈< 2 > the definition is analogous.

Theorem 2.2. Suppose that under the null distribution Pn
η for j = 1, 2 the fol-

lowing hold : β̂(j) are
√

n - consistent estimators of β, while τ̂ (j), V̂(j) and M̂(j)
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are consistent estimators of τ,V and M, respectively. Moreover, assume that the

estimators [̂f ′/f ]
(j)

, j = 1, 2, of f ′/f are consistent in the L2 norm, i.e. for every
δ > 0

Pn
η

(∫

R

(
[̂f ′/f ]

(j)
(y) − [f ′/f ](y)

)2

f(y)λ(dy) > δ

)
→ 0 as n → ∞.

Then the estimator ˆ̀∗ of ` defined above satisfies the condition (2.3) of Proposition
2.1.

A proof of Theorem 2.2 is given in Inglot and Ledwina [19],[20].

2.4 Determining k in Wk(η̂) by some score-based selection
rules

We now consider a nested family of auxiliary models M(k), k = 1, ..., d, where d
is fixed but otherwise arbitrary. Following the construction proposed in Ledwina
[27], as e.g. in Kallenberg and Ledwina [22] we define score-based selection rule S1
as follows

S1 = min{1 ≤ k ≤ d : Wk(η̂) − k log n ≥ Ws(η̂) − s log n, s = 1, ..., d}.

The rule S1 mimics the Schwarz BIC criterion. Since the penalty s log n is relatively
heavy, S1 is well suited to detect low dimensional models M(k). In contrast, the
rule

A1 = min{1 ≤ k ≤ d : Wk(η̂) − 2k ≥ Ws(η̂) − 2s, s = 1, ..., d},
imitating the Akaike AIC criterion, is expected to work well when high dimensional
disturbances M(k) of the null model M(0): Y = β[v(X)]T + ε are present. Based
on our experience and some previous research, the following ”intermediate” solution
was proposed and discussed in Inglot and Ledwina [17]: use A1 when the distri-
bution of the data at hand is very distinct from the null model and S1 otherwise.
To provide a threshold defining which rule should be applied, we propose to con-
sider the magnitude of the estimated standardized components of the efficient score
vector. More precisely, in the present set-up, under the assumptions and notation

of Proposition 2.1, set (Y1, ...Yk) =
[
n−1/2

∑n
i=1

ˆ̀∗(Zi; η̂)
]
L̂1/2. Then, obviously,

Wk(η̂) = ||(Y1, ...,Yk)||2. Following the discussion presented in Inglot and Ledwina
[17], we propose to use the following penalty in this problem

π(s, n, p) =

{
s log n, if max1≤t≤d |Yt| ≤

√
p log n,

2s, if max1≤t≤d |Yt| >
√

p log n,
(2.5)

where p is some fixed positive number. This strategy leads to the following refined
selection rule

T 1 = min{1 ≤ k ≤ d : Wk(η̂) − π(k, n, p) ≥ Ws(η̂) − π(s, n, p), s = 1, ..., d}.
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It is evident that small p’s result in T 1 being in practice equivalent to A1, while large
p’s lead to T 1 being very similar to S1. ”Moderate” values of p give a meaningful
”switching effect”.

For n ≥ 8, S1 ≤ T 1 ≤ A1. Moreover, since under the null model (Y1, ...,Yk)
D→

N(0, Ik), then Pn
η (T 1 6= S1) → 0 as n → ∞. On the other hand, under H0, for

any s ∈ {2, ..., d}, Pn
η (S1 = s) ≤ Pn

η (Ws(η̂) ≥ (s − 1) log n). Hence, Proposition
2.1 yields

Proposition 2.3. Under the null hypothesis H0 : Y = β[v(X)]T + ε, the assump-
tions of Proposition 2.1 and n → ∞, it holds that

Pn
η (S1 > 1) → 0, WS1(η̂)

D→ χ2
1, and Pn

η (T 1 > 1) → 0, WT1(η̂)
D→ χ2

1.

3 Simulation study

Practical implementation of WS1 and WT1 requires some specification of the esti-
mators appearing in (2.2) and (2.4). So, we shall first discuss this point.

3.1 Specification of estimators

We define WS1 and WT1 in the following way. The sample splitting scheme and

estimators m
(j)
i , i, j = 1, 2, were applied according to the description in Section 2.3.

The remaining parameters were estimated on the basis of the jth part of the sample,
j = 1, 2, as follows. The components of β̂(j) were ordinary least square estimators.
The discretization was neglected in the simulations. τ̂ (j) was the adjusted Rice [28]

estimator. We estimated f ′/f by [f̃ (j)]′/f̃ (j), where f̃ (j) is the kernel estimator of
f defined as follows

f̃ (1)(y) = γζ+
1

ζα̂
(1)
ζ

∑

i∈<1>

K

(
y − ε̂

(1)
i

α̂
(1)
ζ

)
, f̃ (2)(y) = γζ+

1

ζα̂
(2)
ζ

∑

i∈<2>

K

(
y − ε̂

(2)
i

α̂
(2)
ζ

)
,

where K is the standard Gaussian kernel, while γζ = 0.0001, α̂
(j)
ζ =

(0.9)[τ̂ (j)]1/2ζ−1/7, ε̂
(j)
i = Yi − v(Xi)[β̂

(j)]T . To have some flexibility, we used a
simple random bandwidth.

We estimated J in the first part of the sample by Ĵ (1) =

ζ−1
∑

c∈<1>

{
[f̃ ′(2)/f̃ (2)]

(
ε̂
(2)
c

)}2

and in the second part of the sample by the

analogous expression. We estimated W by Ŵ = (Ŵ(1) + Ŵ(2))/2, where Ŵ(1) =
1
4

{
Ĵ (1) 1

ζ

∑
i∈<1>[w̃(1)(Xi)]

T [w̃(1)(Xi)] + 1
τ̂ (1) [m̂(1)]T m̂(1)

}
and Ŵ(2) is defined

analogously. Finally, we considered the natural estimator L̂ of L given by
L̂ = 1

4 (Û−M̂T V̂−1M̂)−1, where M̂, Û and V̂ are blocks of Ŵ. Following our ear-
lier considerations [cf. the discussion in Inglot and Ledwina [17]], we took p = 2.4
in (2.5). The choice of ui’s and d is given in Section 3.2.
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Detailed proofs verifying the assumptions of Theorem 2.2 for this application
are contained in Inglot and Ledwina [19].

3.2 Models used in the simulations

The scheme of our study matches those used in the papers by Baraud et al. [1],
Diebolt and Zuber [6], Guerre and Lavergne [8],[9], as well as Horowitz and Spokoiny
[12]. We considered the problem of testing H0 : Y = 1 + 2X + ε. To construct
WS1 and WT1 we considered d = 10 auxiliary models M(k), which pertain to
ui(x) = cos([i + 1]πx), i = 1, ..., 10. We decided to consider the cosine system in
view of the competitors we shall investigate. The statistic of Guerre and Lavergne
is based on equispaced partitions, while the Cramér-von Mises test is tightly linked
to cosine functions. Therefore, such a choice gives conditions for fair comparison.

We consider ε obeying one of three laws: Gaussian with 0 mean and standard
deviation σ [G(σ) for short], Laplace with 0 mean and standard deviation

√
2/ϕ

[ L(ϕ) for short] and normal mixture (0.7)φ(x − µ/(0.7)) + (0.3)φ(x + µ/(0.3))
[denoted NM(µ) in what follows], where φ is the N(0, 1) density function.

X was assumed to be independent of ε and obeying a beta distribution on [0,1].
Since changing, to some reasonable extent, the parameters of the beta distribution
had no essential influence on the general picture, we restricted the presentation of
results to the case where X is uniformly distributed.

The alternatives were defined by disturbing the pattern 1 + 2x [with each type
of error: G(σ), L(ϕ), NM(µ)] by one of the functions rl(x), l = 1, ..., 6, where

r1(x) = c × cos(oπx), c ∈ R, o = 2, 3, ...

r2(x) = c × Ls(x), c ∈ R, s = 2, 3, ... Ls − sth normalized Legendre polynomial

on [0, 1],

r3(x) = c × 1

t
φ

(
x − 0.5

t

)
, c ∈ R, t ∈ R+, φ − the N(0, 1) density function,

r4(x) = c × (x − a)1[a,1](x), c ∈ R, a ∈ (0, 1),

r5(x) = c × arctg[b(2x − 1)], c ∈ R, b ∈ (0,∞),

r6(x) = c × max{min{(2x − 1)/(1 − 2a), 1},−1}, c ∈ R, a ∈ (0, 1/2).

3.3 Empirical behaviour of test statistics under H0

All simulation experiments presented in the paper were done for the same sample
size n = 300 and N = 10000 Monte Carlo [MC] runs. Throughout we considered
tests at the significance level α = 0.05.

Let us start our discussion with some remarks on the behaviour of WS1 and
WT1 under H0. The asymptotic critical value of WS1 and WT1 is 3.841. In order
to illustrate how the asymptotic theory works in the case of our implementation,
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Table 1 presents simulated critical values of WS1 and WT1 under different error
distributions.

Error Parameter Variance Critical values

distribution WS1 WT1 CvM

G(σ) 0.25 0.063 5.91 6.11 27.88
0.50 0.250 5.63 5.92 7.00
0.75 0.563 5.83 6.04 3.22
1.00 1.000 5.79 6.02 1.73

L(ϕ) 4.00 0.125 5.29 5.57 15.72
2.00 0.500 5.27 5.50 3.86
1.00 2.000 5.75 5.93 0.94
0.50 8.000 5.61 5.82 0.23

NM(µ) 0.20 1.191 5.94 6.08 1.52
0.40 1.762 5.67 6.00 0.97
0.60 2.714 5.81 6.05 0.63
0.80 4.048 5.66 5.85 0.43

Table 1: Simulated critical values of WS1, WT1 and CvM under the null model
Y = 1 + 2X + ε with X uniform on [0,1] and different errors. Sample size n = 300.
5% significance level, N = 10000 MC runs.

As seen, an evident feature of the new procedures is that the critical values are
very stable to changes of the error distributions and their parameters. Since the
penalty in the selection rule T 1 is slightly smaller, the respective critical values of
the test WT1 are slightly larger. We would like to emphasize that critical values
are also very stable with respect to the choice of d. Any choice of d ≥ 4 gives
practically the same simulated critical value. This follows from the fact that, under
the null model and n = 300, in all the considered cases, the proportion of cases
with {S1 = 1} and {T 1 = 1} is in [0.97, 0.98] and [0.96, 0.97], respectively, and
the remaining mass is mostly concentrated on dimensions 2 - 3. On the other
hand, the simulated critical values are larger than the limiting values. This is a
characteristic phenomenon for data driven tests, which was discussed in detail in
some earlier papers. In the present set-up, to provide a practical way of generating
critical values, one can apply the residual bootstrap, described e.g. on pp. 142 - 143
of Stute et al. [33]. We implemented this procedure in our simulation study and
found that it works well. Anyway, to save simulation time, we present simulated
powers for WS1 and WT1 in the case the averaged, from Table 1, critical values
5.68 and 5.91 are used. Finally, we would like to emphasize that the stability of
critical values of the data driven tests with respect to the choice of d allows us to
choose practically arbitrary d ≥ 4. Enlarging d does not spoil empirical powers
achieved for choices of smaller d’s. Therefore, reasonable choice of d only depends
on two factors: how complicated alternatives one likes to detect and how much time
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consuming calculations are reasonable in this context.
In our implementation of Guerre and Lavergne’s [8],[9] solution we took bin-

widths in {2−2, 2−3, ..., 2−7}, c = 1.5, Jn = 6 and used the adjusted Rice es-
timator for the variance of errors [cf. p. 17 in Guerre and Lavergne [8]]. In our
simulation study we followed their prescription and applied the wild bootstrap with
the two-point distribution for wi given on p. 17 of Guerre and Lavergne [8]. We
did B = 400 bootstrap replications and N = 10000 MC runs in each experiment.
For simplicity, we shall denote the test statistic introduced by Guerre and Lavergne
[8],[9] by T̂ .

To complete the picture, we also investigated the empirical behaviour of a trans-
formed Cramér-von Mises statistic, which was developed in Stute et al. [32]. We
shall denote this statistic by CvM. This transformation was introduced by Khmal-
adze [23] to remove the influence of nuisance parameters on the null distribution.
The simulations reported in Table 1 show that the simulated critical values of CvM
are highly unstable. A similar observations were made earlier in Diebolt and Zuber
[6] and can be infered from Koenker and Xiao [25].
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Figure 1: Simulated powers of tests based on WT1, WS1, T̂ and CvM under the
alternatives Y = 1 + 2X + rl(X) + ε, l = 1, 2, X uniform on [0, 1] and different
errors. Signal/noise 0.25. 5% nominal level, n=300, N=10000 MC runs
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3.4 Empirical powers

In order to simulate powers of WS1 and WT1, T̂ , as well as CvM, we used the
averaged, bootstrap and ”actual” critical values from Table 1, respectively.

A representative selection of simulation results is presented in Figures 1 and 2.
In Figure 1 we show results of experiments which serve to understand the behaviour
of test statistics when alternatives are oscillating, i.e. r1 and r2, given in Section
3.2, are taken into account. In all four cases considered there, the ratio signal/noise
= ||rl||2/

√
Varε, where || • ||2 denotes the L2[0, 1] norm, equals 0.25.

Figure 2 exhibits the behaviour of tests under more ”smooth” deviations i.e.
the disturbances r3 - r6.
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Figure 2: Simulated powers of tests based on WT1, WS1, T̂ and CvM under the
alternatives Y = 1+2X +rj(X)+ ε, l = 3, 4, 5, 6, X uniform on [0, 1] and different
errors. 5% nominal level, n=300, N=10000 MC runs

The simulation results confirm what might have been expected from our earlier
experience.

As characteristic to data-driven Neyman tests with the Schwarz penalty, WS1 is
powerful for ”smooth” deviations from linear regression, while the minimax data-
driven chi-square-type statistic T̂ of Guerre and Lavergne [9] is more powerful for
some extreme deviations, [such as highly oscillating alternatives, in particular].
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However, Figure 1 [see the case NM(0.6), r1] shows that under large variance the
T̂ test has difficulty in detecting some high frequency oscillations. Under smaller µ
and the same signal/noise ratio this drawback disappears. We also observed that
T̂ loses a lot of its power when the variance of the model error is small [cf. Figure
1, G(0.25), r1] or the model is very close to the null model [cf. Figure 2]. Note also
that in Guerre and Lavergne [8] it is shown that T̂ compares favourably with the
solution of Horovitz and Spokoiny [12]. The refined selection rule T 1 works very
well. In comparison to WS1, one observes only a slight decrease in power of WT1

under low dimensional deviations and, simultaneously, a great gain in power under
high dimensional alternatives. In all the cases considered, except L(4) and r2 with
o = 6, 7, 8, the power of WT1 is larger than that of T̂ and in many cases powers
dramatically differ in favour of WT1.

The behaviour of CvM is unsatisfactory. Obviously, the low power of CvM test
is not due to the transformation, but follows from the nature of such a statistic.

4 Asymptotic comparisons

It is known that the Cramér-von Mises test is only capable of detecting very smooth
deviations from the null model. Various known and recently studied aspects of
its power behaviour are discussed in Inglot and Ledwina [14], [16], e.g. Guerre
and Lavergne [9] have proved that their test is rate-optimal. It seems that this
optimality notion does not have clear practical interpretation [cf. [16] for some
illustration]. Our constructions would require a nonstandard analysis, as using
Schwarz rule in some neibhourhood of the null model excludes standard approaches.
Some more detailed comments on this issue are given in [14], e.g.
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