ON A LEMMA OF KORAS-RUSSELL

KAROL PALKA

A log surface (X, E) consists of a normal projective surface X and an effective Weil Qdivisor E with coefficients of irreducible components not bigger than 1. By K_X we denote the canonical divisor on X. X is \mathbb{Q} -factorial if every Weil divisor is \mathbb{Q} -Cartier.

A log surface (X, E) can be studied using the log Minimal Model Program in terms of contractions of log extremal curves which are negative with respect to $K_X + E$. We are interested in a situation where we have to run the program in a presence of some other effective divisor D on X. More precisely, we want to analyze when is it possible to find (-1)curves on X with controlled intersection with D and E or, more concretely, curves which are both $(K_X + E)$ - and $(K_X + D)$ -negative.

Definition 1.1. Let D, C be effective \mathbb{Q} -divisors on a normal projective surface X.

(a) C is $(K_X + D)$ -negative if $(K_X + D) \cdot C < 0$.

(b) C is $(K_X + D)$ -neutral if $h^0(m(K_X + D + nC)) = h^0(m(K_X + D))$ for every $n, m \ge 0$.

Note that if C is irreducible and $(K_X + D)$ -negative then it is $(K_X + D)$ -neutral. If $\kappa(K_X + D)$ -D = $-\infty$ then C is $(K_X + D)$ -neutral if and only if $\kappa(K_X + D + nC) = -\infty$ for every natural n.

The lemma below generalizes Theorem 4.2 in [KR99], which treats the case of X smooth, $E := \frac{1}{r}E', r \in \mathbb{N}_+, D$ and E' reduced. Our proof can be considered a limit version of the original proof. Even in the latter case 1.2 is stronger by avoiding assumptions on Pic(X) and by replacing the assumptions (v,vi) of 4.2 loc. cit. with a weaker assumption that K + E is not nef. The theorem generalizes or simplifies proofs of various other instances of 4.2 which were successfully applied to many geometric problems concerning surfaces (see Kor07, 2.6, 2.7], [KR07, 5.10], [CNKR09, 2.4, 2.6], [Kor11, 2.2, 2.3], [KR11, 2.3, 2.4], [PUB4, 4.2]).

Lemma 1.2. Assume:

(1) (X, E) is a log surface which is log canonical or \mathbb{Q} -factorial,

(2) D is an effective divisor such that $\kappa(K+D) = -\infty$,

(3) $(K+D) \cdot (K+E) \le 0.$

Then either K + E is nef or there exists a (K + E)-negative log extremal rational curve ℓ which is $(K_X + D)$ -neutral. Every such curve satisfies $\ell^2 < 0$.

Note that if $\ell^2 = 0$ then $\rho(X) = 2$ by extremality.

Proof of 1.2. With our assumptions the log Minimal Model Program works (see [Fuj12, 3.2]). Let $\mathcal{S} = \overline{NE}(X) \subseteq \mathrm{NS}(\overline{X}) \otimes_{\mathbb{Z}} \mathbb{R}$ be the closure of the (convex) cone of effective 1-cycles on X. Since K + E is not nef, there exists a (K + E)-negative log-extremal curve $A \subseteq X$. Note that by [Fuj12, 3.8] such a curve is rational. We may assume that A is not (K + D)-neutral, that is, $\kappa(K + D + mA) \geq 0$ for some $m \in \mathbb{N}$, otherwise we take $\ell = A$. (We postpone the proof that $\ell^2 \leq 0$ to the end). Then $K + D + mA \in \mathcal{S}$. For $\alpha \geq 0$ put

$$z_{\alpha} = \alpha m A + K + D$$

and let $\alpha_0 = \inf \{ \alpha : z_\alpha \in \mathcal{S} \}$. Since $\kappa(K + D) = -\infty$, we have $z_0 \notin \mathcal{S}$ by [Fuj12, 5.2]. The cone \mathcal{S} is closed, so $\alpha_0 > 0$. We have

$$z_{\alpha_0} \cdot (K+E) = \alpha_0 m A \cdot (K+E) + (K+D)(K+E) \le \alpha_0 m A \cdot (K+E) < 0,$$

so by the logarithmic version of the Cone Theorem (see [Mat02, Theorem 7.2.1]) there exists a finite set L of (K + E)-negative log-extremal curves on X, such that

$$z_{\alpha_0} - \sum_{\ell \in L} r_\ell \ell,$$

where $r_{\ell} > 0$, belongs to S and intersects K+E non-negatively. In particular, L is non-empty. Suppose $\kappa(K + D + n\ell) \ge 0$ for some $\ell \in L$ and $n \ge 0$. Then consequently

$$\varepsilon(K+D) + \frac{r_{\ell}}{\varepsilon} \ell \in \mathcal{S} \quad \text{for some } \varepsilon > 0,$$

$$\varepsilon(K+D) + z_{\alpha_0} \in \mathcal{S},$$

$$\alpha_0 mA + (1+\varepsilon)(K+D) \in \mathcal{S},$$

$$\frac{\alpha_0}{1+\varepsilon} mA + K + D \in \mathcal{S}.$$

The latter contradicts the definition of α_0 . Thus every $\ell \in L$ is (K + D)-neutral.

It remains to show that $\ell^2 \leq 0$. Suppose $\ell^2 > 0$. By the extremality of ℓ , $\rho(X) = 1$. Let H be an ample divisor on X. Then $K + D \equiv aH$ and $K + E \equiv a'H$ for some $a, a \in \mathbb{R}$. By assumptions a, a' < 0, hence $(K + D) \cdot (K + E) = aa'H^2 > 0$; a contradiction.

Remark 1.3.

- (a) If X has only rational singularities then it is Q-factorial ([Lip69]). The converse fails (see [Fuj12, 2.3]). A normal Q-factorial surface is automatically quasi-projective (see for example [Fuj12, 2.2]).
- (b) If $(K + E)^2 < 0$ then K + E is not nef, because a nef divisor is a limit of ample divisors. It is also not nef if $\kappa(K + E) = -\infty$ (see [Fuj12, 5.1]).
- (c) If ℓ is a (K + E)-negative log extremal curve with $\ell^2 \ge 0$ then (X, E) is a log Mori fiber space. This means that either $\ell^2 > 0$ and (X, E) is a log del Pezzo surface of rank 1 or $\ell^2 = 0$ and there exists a \mathbb{P}^1 -fibration $X \to (\text{curve})$ with irreducible fibers and such that $E \cdot \ell < 2$. In case $\ell^2 < 0$ the curve ℓ may be contained in D or E.
- (d) Assumptions imply that $X \neq \mathbb{P}^2$, so we can choose ℓ so that $(K+E) \cdot \ell > -2$ (see [Fuj12, 3.8]). If (X, E) is log canonical then $\ell \cong \mathbb{P}^1$ (see [KK94, 2.3.5]).

The following lemma shows that induction is possible.

Lemma 1.4. Let (X, D, E) be a triple satisfying (1) - (3) of 1.2 with K + E not nef and let σ be the contraction of a curve ℓ given by the lemma. If $\ell^2 \neq 0$ and ℓ is not (K+D)-negative then $(\sigma(X), \sigma_*D, \sigma_*E)$ satisfies (1)-(3).

Proof. The birational morphism $\sigma: (X, D, E) \to (\bar{X}, \bar{D}, \bar{E}) = (\sigma(X), \sigma_* D, \sigma_* E)$ exists by the contraction theorem (it contracts only ℓ). Put $\bar{K} = K_{\bar{X}}$. If (X, E) is \mathbb{Q} -factorial or projective log canonical, so is (\bar{X}, \bar{E}) (see [Fuj12]). Let $d, d' \in \mathbb{Q}$ be such that

$$\sigma^*(\bar{K}+\bar{D}) = K+D+d\ell \text{ and } \sigma^*(\bar{K}+\bar{E}) = K+E-d'\ell.$$

By the projection formula $d'\ell^2 = (K+E) \cdot \ell < 0$, so d' > 0. We have $\kappa(\bar{K}+\bar{D}) = -\infty$. Indeed, otherwise $\kappa(K+D+d\ell) \ge 0$ and hence $\kappa(K+D+n\ell) \ge 0$ for any integer n > d, which contradicts the properties of ℓ . Since $(K+D) \cdot \ell \ge 0$, we get

$$(\bar{K} + \bar{D}) \cdot (\bar{K} + \bar{E}) = (K + D) \cdot (K + E - d'\ell) = (K + D) \cdot (K + E) - d'(K + D) \cdot \ell \le \le (K + D) \cdot (K + E) \le 0.$$

Finally we find a common extremal ray negative with respect to K + E and K + D.

Theorem 1.5. Assume D and E are effective \mathbb{Q} -divisors such that: (1) (X, E) is a log canonical or \mathbb{Q} -factorial log surface, (2) $\kappa(K+D) = -\infty,$ (3) $(K+D) \cdot (K+E) \le 0.$

Then there is a sequence of birational extremal contractions

$$(X, D, E) \to \ldots \to (\bar{X}, \bar{D}, \bar{E})$$

of log extremal curves which with respect to the push-forwards of K + E and K + D are respectively negative and neutral and such that

(i) either $K_{\bar{X}} + \bar{E}$ is nef

(ii) or there exists a log extremal curve $\bar{\ell} \subseteq \bar{X}$ such that

 $\bar{\ell}^2 \leq 0$, $(K_{\bar{X}} + \bar{E}) \cdot \bar{\ell} < 0$ and $(K_{\bar{X}} + \bar{D}) \cdot \bar{\ell} < 0$.

In case there exists an irreducible (K + E)-negative curve A which is not (K + D)-neutral then (\bar{X}, \bar{E}) is not nef and $\bar{l}^2 < 0$.

Proof. The first part follows from 1.2 and 1.4. Assume A as above exists. Then K + E is not nef, so there exists a (K + E)-negative log extremal curve ℓ such that $\ell^2 \leq 0$ and $\kappa(K + D + n\ell) = -\infty$ for all $n \geq 0$. Suppose $\ell^2 = 0$. Now (X, E) is a log Mori fiber space over a curve, i.e. $\rho(X) = 2$, ℓ is a fiber of a \mathbb{P}^1 -fibration of X and $\ell \cdot (K + E) < 0$. Let C be a section of the \mathbb{P}^1 -fibration. Then $\{C, \ell\}$ is a basis of the vector space $\mathrm{NS}(X) \otimes_{\mathbb{Z}} \mathbb{Q}$. Put $a = (K + D) \cdot \ell$ and suppose $a \geq 0$. Then $K + D + n\ell \equiv aC + n\ell$ is a nef divisor for $n \gg 0$, so $\kappa(K + D + n\ell) \geq 0$ for $n \gg 0$; a contradiction.

Thus $\ell^2 < 0$. We may assume $(K+D) \cdot \ell \ge 0$, otherwise we are done. In particular, $A \ne \ell$. Let σ be the contraction of ℓ . By 1.4 $(\sigma(X), \sigma_*D, \sigma_*E)$ satisfies (1)-(3). Let d' be as in the proof of 1.4. We have $\sigma_*A \cdot (K_{\sigma(X)} + \sigma_*E) = A \cdot (K + E - d'\ell) \le A \cdot (K + E) < 0$. and $\kappa(K_{\sigma(X)} + \sigma_*D + n\sigma_*A) \ge \kappa(K_X + D + nA) \ge 0$ for some $n \ge 0$, so we replace (X, D, E, A) with $(\sigma(X), \sigma_*D, \sigma_*E, \sigma_*A)$ and we proceed by induction.

References

- [CNKR09] Pierrette Cassou-Nogues, Mariusz Koras, and Peter Russell, Closed embeddings of C^{*} in C². I, J. Algebra 322 (2009), no. 9, 2950−3002.
- [Fuj12] Osamu Fujino, Minimal model theory for log surfaces, Publ. Res. Inst. Math. Sci. 48 (2012), no. 2, 339–371.
- [KK94] J. Kollár and Sándor Kovács, Birational geometry of log surfaces, https://web.math.princeton. edu/~kollar/FromMyHomePage/BiratLogSurf.ps, 1994.
- [Kor07] Mariusz Koras, On contractible plane curves, Affine algebraic geometry, Osaka Univ. Press, Osaka, 2007, pp. 275–288.
- [Kor11] Mariusz Koras, \mathbb{C}^* in \mathbb{C}^2 is birationally equivalent to a line, Affine algebraic geometry, CRM Proc. Lecture Notes, vol. 54, Amer. Math. Soc., Providence, RI, 2011, pp. 165–191.
- [KR99] Mariusz Koras and Peter Russell, \mathbf{C}^* -actions on \mathbf{C}^3 : the smooth locus of the quotient is not of hyperbolic type, J. Algebraic Geom. 8 (1999), no. 4, 603–694.
- [KR07] Mariusz Koras and Peter Russell, Contractible affine surfaces with quotient singularities, Transform. Groups 12 (2007), no. 2, 293–340.
- [KR11] Mariusz Koras and Peter Russell, Some properties of C^{*} in C²., Affine algebraic geometry. Proceedings of the conference, Osaka, Japan, March 3–6, 2011. Dedicated to Professor Masayoshi Miyanishi on the occasion of his 70th birthday., Hackensack, NJ: World Scientific, 2011, arXiv:1202.4738v1, pp. 160–197 (English).
- [Lip69] Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. (1969), no. 36, 195–279.
- [Mat02] Kenji Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002.
- [PUB4] Karol Palka and Mariusz Koras, Singular Q-homology planes of negative Kodaira dimension have smooth locus of non-general type, Osaka J. Math. 50 (2013), no. 1, 61–114, arXiv:1001.2256.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES *E-mail address*: palka@impan.pl