ON A LEMMA OF KORAS-RUSSELL

KAROL PALKA

A \log surface (X, E) consists of a normal projective surface X and an effective Weil \mathbb{Q} divisor E with coefficients of irreducible components not bigger than 1 . By K_{X} we denote the canonical divisor on $X . X$ is \mathbb{Q}-factorial if every Weil divisor is \mathbb{Q}-Cartier.

A \log surface (X, E) can be studied using the log Minimal Model Program in terms of contractions of \log extremal curves which are negative with respect to $K_{X}+E$. We are interested in a situation where we have to run the program in a presence of some other effective divisor D on X. More precisely, we want to analyze when is it possible to find (-1)curves on X with controlled intersection with D and E or, more concretely, curves which are both $\left(K_{X}+E\right)$ - and $\left(K_{X}+D\right)$-negative.

Definition 1.1. Let D, C be effective \mathbb{Q}-divisors on a normal projective surface X.
(a) C is $\left(K_{X}+D\right)$-negative if $\left(K_{X}+D\right) \cdot C<0$.
(b) C is $\left(K_{X}+D\right)$-neutral if $h^{0}\left(m\left(K_{X}+D+n C\right)\right)=h^{0}\left(m\left(K_{X}+D\right)\right)$ for every $n, m \geq 0$.

Note that if C is irreducible and $\left(K_{X}+D\right)$-negative then it is $\left(K_{X}+D\right)$-neutral. If $\kappa\left(K_{X}+\right.$ $D)=-\infty$ then C is $\left(K_{X}+D\right)$-neutral if and only if $\kappa\left(K_{X}+D+n C\right)=-\infty$ for every natural n.

The lemma below generalizes Theorem 4.2 in KR99], which treats the case of X smooth, $E:=\frac{1}{r} E^{\prime}, r \in \mathbb{N}_{+}, D$ and E^{\prime} reduced. Our proof can be considered a limit version of the original proof. Even in the latter case 1.2 is stronger by avoiding assumptions on $\operatorname{Pic}(X)$ and by replacing the assumptions (v, vi) of 4.2 loc. cit. with a weaker assumption that $K+E$ is not nef. The theorem generalizes or simplifies proofs of various other instances of 4.2 which were successfully applied to many geometric problems concerning surfaces (see [Kor07, 2.6, 2.7], [KR07, 5.10], CNKR09, 2.4, 2.6], Kor11, 2.2, 2.3], [KR11, 2.3, 2.4], [PUB4, 4.2]).

Lemma 1.2. Assume:
(1) (X, E) is a log surface which is log canonical or \mathbb{Q}-factorial,
(2) D is an effective divisor such that $\kappa(K+D)=-\infty$,
(3) $(K+D) \cdot(K+E) \leq 0$.

Then either $K+E$ is nef or there exists a $(K+E)$-negative log extremal rational curve ℓ which is $\left(K_{X}+D\right)$-neutral. Every such curve satisfies $\ell^{2} \leq 0$.

Note that if $\ell^{2}=0$ then $\rho(X)=2$ by extremality.
Proof of 1.2. With our assumptions the log Minimal Model Program works (see Fuj12, 3.2]). Let $\mathcal{S}=\overline{N E}(X) \subseteq \mathrm{NS}(\bar{X}) \otimes_{\mathbb{Z}} \mathbb{R}$ be the closure of the (convex) cone of effective 1-cycles on X. Since $K+E$ is not nef, there exists a $(K+E)$-negative log-extremal curve $A \subseteq X$. Note that by [Fuj12, 3.8] such a curve is rational. We may assume that A is not $(K+D)$-neutral, that is, $\kappa(K+D+m A) \geq 0$ for some $m \in \mathbb{N}$, otherwise we take $\ell=A$. (We postpone the proof that $\ell^{2} \leq 0$ to the end). Then $K+D+m A \in \mathcal{S}$. For $\alpha \geq 0$ put

$$
z_{\alpha}=\alpha m A+K+D
$$

and let $\alpha_{0}=\inf \left\{\alpha: z_{\alpha} \in \mathcal{S}\right\}$. Since $\kappa(K+D)=-\infty$, we have $z_{0} \notin \mathcal{S}$ by Fuj12, 5.2]. The cone \mathcal{S} is closed, so $\alpha_{0}>0$. We have

$$
z_{\alpha_{0}} \cdot(K+E)=\alpha_{0} m A \cdot(K+E)+\underset{1}{(K+D)}(K+E) \leq \alpha_{0} m A \cdot(K+E)<0,
$$

so by the logarithmic version of the Cone Theorem (see [Mat02, Theorem 7.2.1]) there exists a finite set L of $(K+E)$-negative log-extremal curves on X, such that

$$
z_{\alpha_{0}}-\sum_{\ell \in L} r_{\ell} \ell
$$

where $r_{\ell}>0$, belongs to \mathcal{S} and intersects $K+E$ non-negatively. In particular, L is non-empty.
Suppose $\kappa(K+D+n \ell) \geq 0$ for some $\ell \in L$ and $n \geq 0$. Then consequently

$$
\begin{aligned}
\varepsilon(K+D)+\frac{r_{\ell}}{\varepsilon} \ell & \in \mathcal{S} \quad \text { for some } \varepsilon>0 \\
\varepsilon(K+D)+z_{\alpha_{0}} & \in \mathcal{S} \\
\alpha_{0} m A+(1+\varepsilon)(K+D) & \in \mathcal{S} \\
\frac{\alpha_{0}}{1+\varepsilon} m A+K+D & \in \mathcal{S}
\end{aligned}
$$

The latter contradicts the definition of α_{0}. Thus every $\ell \in L$ is $(K+D)$-neutral.
It remains to show that $\ell^{2} \leq 0$. Suppose $\ell^{2}>0$. By the extremality of $\ell, \rho(X)=1$. Let H be an ample divisor on X. Then $K+D \equiv a H$ and $K+E \equiv a^{\prime} H$ for some $a, a \in \mathbb{R}$. By assumptions $a, a^{\prime}<0$, hence $(K+D) \cdot(K+E)=a a^{\prime} H^{2}>0$; a contradiction.

Remark 1.3.

(a) If X has only rational singularities then it is \mathbb{Q}-factorial ([Lip69). The converse fails (see [Fuj12, 2.3]). A normal \mathbb{Q}-factorial surface is automatically quasi-projective (see for example [Fuj12, 2.2]).
(b) If $(K+E)^{2}<0$ then $K+E$ is not nef, because a nef divisor is a limit of ample divisors. It is also not nef if $\kappa(K+E)=-\infty$ (see [Fuj12, 5.1]).
(c) If ℓ is a $(K+E)$-negative log extremal curve with $\ell^{2} \geq 0$ then (X, E) is a \log Mori fiber space. This means that either $\ell^{2}>0$ and (X, E) is a log del Pezzo surface of rank 1 or $\ell^{2}=0$ and there exists a \mathbb{P}^{1}-fibration $X \rightarrow$ (curve) with irreducible fibers and such that $E \cdot \ell<2$. In case $\ell^{2}<0$ the curve ℓ may be contained in D or E.
(d) Assumptions imply that $X \neq \mathbb{P}^{2}$, so we can choose ℓ so that $(K+E) \cdot \ell>-2$ (see Fuj12, 3.8]). If (X, E) is \log canonical then $\ell \cong \mathbb{P}^{1}$ (see [KK94, 2.3.5]).

The following lemma shows that induction is possible.
Lemma 1.4. Let (X, D, E) be a triple satisfying (1) - (3) of 1.2 with $K+E$ not nef and let σ be the contraction of a curve ℓ given by the lemma. If $\ell^{2} \neq 0$ and ℓ is not $(K+D)$-negative then $\left(\sigma(X), \sigma_{*} D, \sigma_{*} E\right)$ satisfies (1)-(3).

Proof. The birational morphism $\sigma:(X, D, E) \rightarrow(\bar{X}, \bar{D}, \bar{E})=\left(\sigma(X), \sigma_{*} D, \sigma_{*} E\right)$ exists by the contraction theorem (it contracts only ℓ). Put $\bar{K}=K_{\bar{X}}$. If (X, E) is \mathbb{Q}-factorial or projective \log canonical, so is (\bar{X}, \bar{E}) (see Fuj12]). Let $d, d^{\prime} \in \mathbb{Q}$ be such that

$$
\sigma^{*}(\bar{K}+\bar{D})=K+D+d \ell \text { and } \sigma^{*}(\bar{K}+\bar{E})=K+E-d^{\prime} \ell
$$

By the projection formula $d^{\prime} \ell^{2}=(K+E) \cdot \ell<0$, so $d^{\prime}>0$. We have $\kappa(\bar{K}+\bar{D})=-\infty$. Indeed, otherwise $\kappa(K+D+d \ell) \geq 0$ and hence $\kappa(K+D+n \ell) \geq 0$ for any integer $n>d$, which contradicts the properties of ℓ. Since $(K+D) \cdot \ell \geq 0$, we get

$$
\begin{aligned}
(\bar{K}+\bar{D}) \cdot(\bar{K}+\bar{E})=(K+D) \cdot\left(K+E-d^{\prime} \ell\right) & =(K+D) \cdot(K+E)-d^{\prime}(K+D) \cdot \ell \leq \\
\leq & (K+D) \cdot(K+E) \leq 0 .
\end{aligned}
$$

Finally we find a common extremal ray negative with respect to $K+E$ and $K+D$.
Theorem 1.5. Assume D and E are effective \mathbb{Q}-divisors such that:
(1) (X, E) is a \log canonical or \mathbb{Q}-factorial log surface,
(2) $\kappa(K+D)=-\infty$,
(3) $(K+D) \cdot(K+E) \leq 0$.

Then there is a sequence of birational extremal contractions

$$
(X, D, E) \rightarrow \ldots \rightarrow(\bar{X}, \bar{D}, \bar{E})
$$

of \log extremal curves which with respect to the push-forwards of $K+E$ and $K+D$ are respectively negative and neutral and such that
(i) either $K_{\bar{X}}+\bar{E}$ is nef
(ii) or there exists a log extremal curve $\bar{\ell} \subseteq \bar{X}$ such that

$$
\bar{\ell}^{2} \leq 0, \quad\left(K_{\bar{X}}+\bar{E}\right) \cdot \bar{\ell}<0 \quad \text { and } \quad\left(K_{\bar{X}}+\bar{D}\right) \cdot \bar{\ell}<0 .
$$

In case there exists an irreducible $(K+E)$-negative curve A which is not $(K+D)$-neutral then (\bar{X}, \bar{E}) is not nef and $\bar{l}^{2}<0$.
Proof. The first part follows from 1.2 and 1.4 . Assume A as above exists. Then $K+E$ is not nef, so there exists a $(K+E)$-negative log extremal curve ℓ such that $\ell^{2} \leq 0$ and $\kappa(K+D+n \ell)=-\infty$ for all $n \geq 0$. Suppose $\ell^{2}=0$. Now (X, E) is a log Mori fiber space over a curve, i.e. $\rho(X)=2$, ℓ is a fiber of a \mathbb{P}^{1}-fibration of X and $\ell \cdot(K+E)<0$. Let C be a section of the \mathbb{P}^{1}-fibration. Then $\{C, \ell\}$ is a basis of the vector space $\operatorname{NS}(X) \otimes_{\mathbb{Z}} \mathbb{Q}$. Put $a=(K+D) \cdot \ell$ and suppose $a \geq 0$. Then $K+D+n \ell \equiv a C+n \ell$ is a nef divisor for $n \gg 0$, so $\kappa(K+D+n \ell) \geq 0$ for $n \gg 0$; a contradiction.

Thus $\ell^{2}<0$. We may assume $(K+D) \cdot \ell \geq 0$, otherwise we are done. In particular, $A \neq \ell$. Let σ be the contraction of ℓ. By $1.4\left(\sigma(X), \sigma_{*} D, \sigma_{*} E\right)$ satisfies (1)-(3). Let d^{\prime} be as in the proof of 1.4. We have $\sigma_{*} A \cdot\left(K_{\sigma(X)}+\sigma_{*} E\right)=A \cdot\left(K+E-d^{\prime} \ell\right) \leq A \cdot(K+E)<0$. and $\kappa\left(K_{\sigma(X)}+\sigma_{*} D+n \sigma_{*} A\right) \geq \kappa\left(K_{X}+D+n A\right) \geq 0$ for some $n \geq 0$, so we replace (X, D, E, A) with ($\sigma(X), \sigma_{*} D, \sigma_{*} E, \sigma_{*} A$) and we proceed by induction.

References

[CNKR09] Pierrette Cassou-Nogues, Mariusz Koras, and Peter Russell, Closed embeddings of \mathbb{C}^{*} in $\mathbb{C}^{2} . I$, J. Algebra 322 (2009), no. 9, 2950-3002.
[Fuj12] Osamu Fujino, Minimal model theory for log surfaces, Publ. Res. Inst. Math. Sci. 48 (2012), no. 2, 339-371.
[KK94] J. Kollár and Sándor Kovács, Birational geometry of log surfaces, https://web.math.princeton. edu/~kollar/FromMyHomePage/BiratLogSurf.ps, 1994.
[Kor07] Mariusz Koras, On contractible plane curves, Affine algebraic geometry, Osaka Univ. Press, Osaka, 2007, pp. 275-288.
[Kor11] Mariusz Koras, \mathbb{C}^{*} in \mathbb{C}^{2} is birationally equivalent to a line, Affine algebraic geometry, CRM Proc. Lecture Notes, vol. 54, Amer. Math. Soc., Providence, RI, 2011, pp. 165-191.
[KR99] Mariusz Koras and Peter Russell, \mathbf{C}^{*}-actions on \mathbf{C}^{3} : the smooth locus of the quotient is not of hyperbolic type, J. Algebraic Geom. 8 (1999), no. 4, 603-694.
[KR07] Mariusz Koras and Peter Russell, Contractible affine surfaces with quotient singularities, Transform. Groups 12 (2007), no. 2, 293-340.
[KR11] Mariusz Koras and Peter Russell, Some properties of \mathbb{C}^{*} in \mathbb{C}^{2}., Affine algebraic geometry. Proceedings of the conference, Osaka, Japan, March 3-6, 2011. Dedicated to Professor Masayoshi Miyanishi on the occasion of his 70th birthday., Hackensack, NJ: World Scientific, 2011, arXiv:1202.4738v1, pp. 160-197 (English).
[Lip69] Joseph Lipman, Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math. (1969), no. 36, 195-279.
[Mat02] Kenji Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002.
[PUB4] Karol Palka and Mariusz Koras, Singular \mathbb{Q}-homology planes of negative Kodaira dimension have smooth locus of non-general type, Osaka J. Math. 50 (2013), no. 1, 61-114, arXiv:1001.2256.

Institute of Mathematics, Polish Academy of Sciences
E-mail address: palka@impan.pl

