Entire functions in the Eremenko-Lyubich class which have bounded Fatou components

(joint work with Núria Fagella and Lasse Rempe-Gillen)

Walter Bergweiler

Christian-Albrechts-Universität zu Kiel 24098 Kiel, Germany

bergweiler@math.uni-kiel.de

Perspectives of Modern Complex Analysis Bedlewo, July 2014

Joensuu, 1991

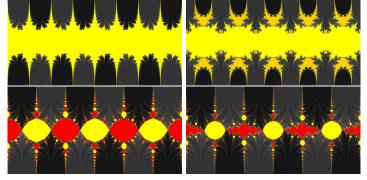
Kommern, 1993

Complex dynamics

$$f: \mathbb{C} \to \mathbb{C}$$
 entire, $f^n = f \circ f \circ \cdots \circ f$
 $F(f) = \{z \in \mathbb{C} : \{f^n\} \text{ normal in } z\} = \text{Fatou set}$
 $J(f) = \mathbb{C} \setminus F(f) = \{z \in \mathbb{C} : \{f^n\} \text{ not normal in } z\} = \text{Julia set}$
 $I(f) = \{z \in \mathbb{C} : f^n(z) \to \infty\} = \text{escaping set}$

Eremenko 1989: $I(f) \neq \emptyset$ and $\partial I(f) = J(f)$

Examples of Julia sets in the family $f(z) = \cos(\alpha z + \beta)$



Singularities of the inverse

$$w$$
 critical value $:\Leftrightarrow \exists \xi \in \mathbb{C} \colon f'(\xi) = 0$ and $f(\xi) = w$ $(\xi := \text{critical point})$ w asymptotic value $:\Leftrightarrow \exists \text{ curve } \gamma \text{ with } \gamma(t) \to \infty \text{ and } f(\gamma(t)) \to w$ $(\gamma := \text{asymptotic curve})$ $\sin g(f^{-1}) = \text{set of singularities of } f^{-1} = \text{set of critical values and asymptotic values of } f$

— Eremenno Lyubien elass — Speise

Eremenko-Lyubich: $f \in \mathcal{B} \Rightarrow I(f) \subset J(f)$

E-L, Goldberg-Keen: $f \in \mathcal{S} \Rightarrow f$ has no wandering domains, i.e., if U_0 is a component of F(f) and U_n is the component containing $f^n(U_0)$, then there exist $m \neq n$ with $U_m = U_n$

Hyperbolicity

```
z_0 attracting periodic point :\Leftrightarrow \exists p\colon f^p(z_0)=z_0 and |(f^p)'(z_0)|<1 U_j= immediate attracting basin := component of F(f) containing z_j=f^j(z_0) \subseteq attracting basin :=\{z\colon f^{np}(z)\to z_j\} p-1
```

Fatou: $\bigcup_{j=0} U_j \cap \operatorname{sing}(f^{-1}) \neq \emptyset$

Definition: $f \in \mathcal{B}$ is called *hyperbolic* if $sing(f^{-1})$ is contained in attracting basins.

$$f$$
 hyperbolic $\Leftrightarrow P(f) := \overline{\bigcup_{n=0}^{\infty} f^n(\operatorname{sing}(f^{-1}))} \subset F(f)$
 $\Leftrightarrow \exists K \subset F(f) \text{ compact}, f(K) \subset \operatorname{int}(K), \operatorname{sing}(f^{-1}) \subset K$
 f hyperbolic $\Rightarrow F(f)$ consists of finitely many attracting basins

Hyperbolicity

Theorem 1: For hyperbolic $f \in \mathcal{B}$ and a periodic component D of F(f) the following are equivalent:

- (a) the orbit of *D* contains no asymptotic curves and only finitely many critical points
- (b) D is bounded
- (c) D is a Jordan domain

Idea of proof: Choose $K \subset F(f)$ compact with $f(K) \subset \text{int}(K)$ and $\text{sing}(f^{-1}) \subset K$.

Put $W := \mathbb{C} \backslash K$ and $V := f^{-1}(W) \subset W$.

With hyperbolic metric ρ_W define

$$D_W f(z) := ext{hyperbolic derivative} := \lim_{\zeta o z} rac{
ho_W (f(\zeta), f(z))}{
ho_W (\zeta, z)}.$$

Rempe-Gillen: $D_W f(z) \ge \lambda > 1$ for $z \in V$.

May now use similar techniques as for hyperbolic polynomials.

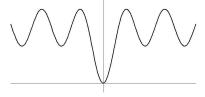
Hyperbolicity

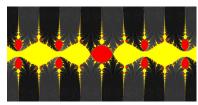
Corollary 1: Let $f \in \mathcal{S}$ be hyperbolic with no asymptotic values. Suppose the critical values are all in different components of F(f). Then all components of F(f) are bounded.

Corollary 2: Let $f \in \mathcal{S}$ be hyperbolic with no asymptotic values and exactly two critical values. Then either all components of F(f) are bounded, or all components of F(f) are unbounded.

Corollary 2 does not hold for functions with three critical values:

$$f(z) = \frac{1}{4} \left(3 - \cos \sqrt{\left(\operatorname{arcosh}^2 3 + \pi^2\right) z^2 - \operatorname{arcosh}^2 3} \right)$$





Local connectivity

Theorem 2: Let $f \in \mathcal{B}$ be hyperbolic with no asymptotic values. Suppose that there exists N such that every component of F(f) contains at most N critical points, counting multiplicity. Then J(f) is locally connected.

Proof uses previous theorem and well-known

Lemma: A compact subset of the Riemann sphere is locally connected if and only if the following two conditions are satisfied:

- (a) the boundary of each complementary component is locally connected,
- (b) for every positive ε there are only finitely many complementary components of spherical diameter greater than ε .

Corollary: Let $f \in \mathcal{S}$ be hyperbolic with no asymptotic values. Suppose the critical values are all in different components of F(f) and that there is a uniform bound on the multiplicity of the critical points. Then J(f) is locally connected.

Local connectivity

The hypothesis on the multiplicity of the critical points is essential:

Example: There exists a hyperbolic function $f \in \mathcal{S}$ with no asymptotic values and exactly two critical values such that

- (a) the critical values are superattracting fixed points,
- (b) every Fatou component of f is bounded by a Jordan curve,
- (c) the Julia set of f is not locally connected.

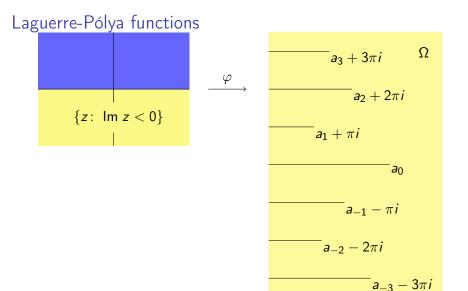
The example is from another famous class of functions, namely the

 ${\sf class} = {\sf closure} \ {\sf of} \ {\sf real} \ {\sf polynomials} \ {\sf with} \ {\sf real} \ {\sf zeros}$

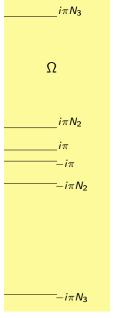
$$= \left\{ e^{-az^2 + bz + c} \prod_{k=1}^{\infty} \left(1 - \frac{z}{x_k} \right) e^{z/x_k} \colon a, b, c, x_k \in \mathbb{R}, a \ge 0 \right\}$$

= Laguerre-Pólya class

$$=\mathcal{LP}$$



Laguerre-Pólya functions



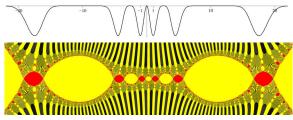
Choose Ω as sketched, with a rapidly increasing sequence (N_k) of odd numbers, where $N_1 = 1$.

Obtain $f \in \mathcal{LP}$ with critical values -1 and 0.

Critical points corresponding to $\pm i\pi N_k$ are simple and give critical value -1.

Critical points corresponding to gaps between $i\pi N_{k-1}$ and $i\pi N_k$ have multiplicity $N_k-N_{k-1}-1$ and give critical value 0.

Look at graph and Julia set ($N_2 = 5$, $N_3 = 25$):



Obtain very large bounded Fatou components.

Laguerre-Pólya functions

The "large" Fatou components can be made arbitrarily large by choosing (N_k) rapidly increasing.

These components have preimages intersecting the unit disk \mathbb{D} , since $\mathbb{D} \cap J(f) \neq \emptyset$.

These preimages are also large, and thus intersect $\{z \colon |z| = 2\}$, provided N_k increases rapidly.

Have infinitely many Fatou components intersecting both $\{z\colon |z|=1|\}$ and $\{z\colon |z|=2\}$; that is, infinitely many Fatou components of spherical diameter greater than $\frac{1}{2}$.

This contradicts the local connectivity criterion stated earlier.

