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F (f ) = {z ∈ C : {f n} normal in z} = Fatou set

J(f ) = C\F (f ) = {z ∈ C : {f n} not normal in z} = Julia set

I (f ) = {z ∈ C : f n(z) → ∞} = escaping set

Eremenko 1989: I (f ) 6= ∅ and ∂I (f ) = J(f )

Examples of Julia sets in the family f (z) = cos(αz + β)
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∞

n=0 f n(sing(f −1)) ⊂ F (f )

⇔ ∃K ⊂ F (f ) compact, f (K ) ⊂ int(K ), sing(f −1) ⊂ K

f hyperbolic ⇒ F (f ) consists of finitely many attracting basins
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Theorem 1: For hyperbolic f ∈ B and a periodic component D of
F (f ) the following are equivalent:

(a) the orbit of D contains no asymptotic curves and only finitely
many critical points

(b) D is bounded

(c) D is a Jordan domain

Idea of proof: Choose K ⊂ F (f ) compact with f (K ) ⊂ int(K )
and sing(f −1) ⊂ K .

Put W := C\K and V := f −1(W ) ⊂ W .

With hyperbolic metric ρW define

DW f (z) := hyperbolic derivative := lim
ζ→z

ρW (f (ζ), f (z))

ρW (ζ, z)
.

Rempe-Gillen: DW f (z) ≥ λ > 1 for z ∈ V .

May now use similar techniques as for hyperbolic polynomials.
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Theorem 2: Let f ∈ B be hyperbolic with no asymptotic values.
Suppose that there exists N such that every component of F (f )
contains at most N critical points, counting multiplicity. Then J(f )
is locally connected.

Proof uses previous theorem and well-known

Lemma: A compact subset of the Riemann sphere is locally
connected if and only if the following two conditions are satisfied:

(a) the boundary of each complementary component is locally
connected,

(b) for every positive ε there are only finitely many complementary
components of spherical diameter greater than ε.

Corollary: Let f ∈ S be hyperbolic with no asymptotic values.
Suppose the critical values are all in different components of F (f )
and that there is a uniform bound on the multiplicity of the critical
points. Then J(f ) is locally connected.
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by Schwarz reflection principle.
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Missing slit (ak = −∞) corresponds to ck = 0.

Method of MacLane, Vinberg, Eremenko-Sodin, Eremenko-Yuditskii



Laguerre-Pólya functions



Laguerre-Pólya functions

Ω

iπ

iπN2

iπN3

−iπ

−iπN2

−iπN3



Laguerre-Pólya functions

Ω

iπ

iπN2

iπN3

−iπ

−iπN2

−iπN3

Choose Ω as sketched, with a rapidly increasing
sequence (Nk) of odd numbers, where N1 = 1.



Laguerre-Pólya functions

Ω

iπ

iπN2

iπN3

−iπ

−iπN2

−iπN3

Choose Ω as sketched, with a rapidly increasing
sequence (Nk) of odd numbers, where N1 = 1.

Obtain f ∈ LP with critical values −1 and 0.



Laguerre-Pólya functions

Ω

iπ

iπN2

iπN3

−iπ

−iπN2

−iπN3

Choose Ω as sketched, with a rapidly increasing
sequence (Nk) of odd numbers, where N1 = 1.

Obtain f ∈ LP with critical values −1 and 0.

Critical points corresponding to ±iπNk are sim-
ple and give critical value −1.



Laguerre-Pólya functions

Ω

iπ

iπN2

iπN3

−iπ

−iπN2

−iπN3

Choose Ω as sketched, with a rapidly increasing
sequence (Nk) of odd numbers, where N1 = 1.

Obtain f ∈ LP with critical values −1 and 0.

Critical points corresponding to ±iπNk are sim-
ple and give critical value −1.

Critical points corresponding to gaps between
iπNk−1 and iπNk have multiplicity Nk−Nk−1−1
and give critical value 0.



Laguerre-Pólya functions

Ω

iπ

iπN2

iπN3

−iπ

−iπN2

−iπN3

Choose Ω as sketched, with a rapidly increasing
sequence (Nk) of odd numbers, where N1 = 1.

Obtain f ∈ LP with critical values −1 and 0.

Critical points corresponding to ±iπNk are sim-
ple and give critical value −1.

Critical points corresponding to gaps between
iπNk−1 and iπNk have multiplicity Nk−Nk−1−1
and give critical value 0.

Look at graph and Julia set



Laguerre-Pólya functions

Ω

iπ

iπN2

iπN3

−iπ

−iπN2

−iπN3

Choose Ω as sketched, with a rapidly increasing
sequence (Nk) of odd numbers, where N1 = 1.

Obtain f ∈ LP with critical values −1 and 0.

Critical points corresponding to ±iπNk are sim-
ple and give critical value −1.

Critical points corresponding to gaps between
iπNk−1 and iπNk have multiplicity Nk−Nk−1−1
and give critical value 0.

Look at graph and Julia set (N2 = 5, N3 = 25):



Laguerre-Pólya functions

Ω

iπ

iπN2

iπN3

−iπ

−iπN2

−iπN3

Choose Ω as sketched, with a rapidly increasing
sequence (Nk) of odd numbers, where N1 = 1.

Obtain f ∈ LP with critical values −1 and 0.

Critical points corresponding to ±iπNk are sim-
ple and give critical value −1.

Critical points corresponding to gaps between
iπNk−1 and iπNk have multiplicity Nk−Nk−1−1
and give critical value 0.

Look at graph and Julia set (N2 = 5, N3 = 25):



Laguerre-Pólya functions

Ω

iπ

iπN2

iπN3

−iπ

−iπN2

−iπN3

Choose Ω as sketched, with a rapidly increasing
sequence (Nk) of odd numbers, where N1 = 1.

Obtain f ∈ LP with critical values −1 and 0.

Critical points corresponding to ±iπNk are sim-
ple and give critical value −1.

Critical points corresponding to gaps between
iπNk−1 and iπNk have multiplicity Nk−Nk−1−1
and give critical value 0.

Look at graph and Julia set (N2 = 5, N3 = 25):



Laguerre-Pólya functions

Ω

iπ

iπN2

iπN3

−iπ

−iπN2

−iπN3
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sequence (Nk) of odd numbers, where N1 = 1.
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Obtain very large bounded Fatou components.
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