Entire functions in the Eremenko-Lyubich class
which have bounded Fatou components

(joint work with Naria Fagella and Lasse Rempe-Gillen)

Walter Bergweiler

Christian-Albrechts-Universitat zu Kiel
24098 Kiel, Germany

bergweiler@math.uni-kiel.de

Perspectives of Modern Complex Analysis
Bedlewo, July 2014



Joensuu, 1991




Kommern, 1993



Complex dynamics



Complex dynamics
f:C— Centire, f"=fofo---of



Complex dynamics
f: C— Centire, f"=fofo---of
F(f)={z € C: {f"} normal in z} = Fatou set



Complex dynamics
f: C— Centire, f"=fofo---of
F(f)={z e C: {f"} normal in z} = Fatou set
J(f)=C\F(f) ={z € C: {f"} not normal in z} = Julia set



Complex dynamics
f: C— Centire, f"=fofo---of
F(f)={z e C: {f"} normal in z} = Fatou set
J(f)=C\F(f) ={z € C: {f"} not normal in z} = Julia set
I(f)={z € C: f"(z) — oo} = escaping set



Complex dynamics
f: C— Centire, f"=fofo---of
F(f)={z e C: {f"} normal in z} = Fatou set
J(f)=C\F(f) ={z € C: {f"} not normal in z} = Julia set
I(f)={z € C: f"(z) — oo} = escaping set
Eremenko 1989: /(f) # () and 9I(f) = J(f)



Complex dynamics
f: C— Centire, f"=fofo---of
F(f)={z e C: {f"} normal in z} = Fatou set
J(f) =C\F(f) ={z € C: {f"} not normal in z} = Julia set
I(f) ={z € C: f"(z) — oo} = escaping set
Eremenko 1989: /(f) # () and 9I(f) = J(f)
Examples of Julia sets in the family f(z) = cos(az + )
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Fatou: U Ui Nising(f1) # 0
j=0

Definition: f € B is called hyperbolic if sing(f~—1) is contained in
attracting basins.

f hyperbolic < P(f) := U,y f"(sing(f~1)) C F(f)
& 3K C F(f) compact, f(K) C int(K), sing(f 1) c K
f hyperbolic = F(f) consists of finitely many attracting basins
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Theorem 1: For hyperbolic f € B and a periodic component D of
F(f) the following are equivalent:

(a) the orbit of D contains no asymptotic curves and only finitely
many critical points

(b) D is bounded

(c) D is a Jordan domain

Idea of proof: Choose K C F(f) compact with f(K) C int(K)
and sing(f 1) C K.

Put W:=C\K and V := f"}(W) c W.

With hyperbolic metric py, define

Dwf(z) := hyperbolic derivative := Cll‘nz W

Rempe-Gillen: Dy f(z) > A > 1forze V.

May now use similar techniques as for hyperbolic polynomials.
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Theorem 2: Let f € B be hyperbolic with no asymptotic values.
Suppose that there exists N such that every component of F(f)
contains at most N critical points, counting multiplicity. Then J(f)
is locally connected.

Proof uses previous theorem and well-known

Lemma: A compact subset of the Riemann sphere is locally
connected if and only if the following two conditions are satisfied:

(a) the boundary of each complementary component is locally
connected,

(b) for every positive € there are only finitely many complementary
components of spherical diameter greater than ¢.

Corollary: Let f € S be hyperbolic with no asymptotic values.
Suppose the critical values are all in different components of F(f)
and that there is a uniform bound on the multiplicity of the critical
points. Then J(f) is locally connected.
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The hypothesis on the multiplicity of the critical points is essential:
Example: There exists a hyperbolic function f € S with no
asymptotic values and exactly two critical values such that
(a) the critical values are superattracting fixed points,
(b) every Fatou component of f is bounded by a Jordan curve,
(c) the Julia set of f is not locally connected.
The example is from another famous class of functions, namely the
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asz + 3mi Q
¥
ax + 2mi
{z: Imz <0}
| ay +mi
Choose conformal map ¢ from lower do
half-plane onto “comb domain” Q.
Extend exp oy to entire function f 1
by Schwarz reflection principle. i
a_p — 27i
Obtain f € LP with critical values
ck = (—1)* exp(ax). a_3 — 3mi

Missing slit (ax = —o0) corresponds to ¢, = 0.
Method of MacLane, Vinberg, Eremenko-Sodin, Eremenko-Yuditskii
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Obtain very large bounded Fatou components.
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