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Abstract. In this paper we study inhomogeneous Dirichlet boundary problems associ-
ated to the Poisson and heat equations on bounded and unbounded domains with smooth
boundary and random boundary data. The main novelty of this work is a convenient
framework for the analysis of equations excited by the white in time and/or space noise
on the boundary. Our approach allows us to show the existence and uniqueness of weak
solutions in the space of distributions. We also prove that the solutions can be identified as
smooth functions inside the domain, and finally the rate of their blow up at the boundary
is estimated. A large class of noises including Wiener and fractional Wiener space time
white noise, homogeneous noise and Lévy noise are considered.
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1. Introduction

The aim of this work is to develop a framework for a systematic analysis of elliptic and
parabolic boundary value problems with random boundary conditions including space-time
white noise.

We focus in this paper on the Dirichlet problem because the case of the Dirichlet bound-
ary conditions poses the greatest challenge. However, we emphasise that our approach
can be used to study both, the elliptic and the parabolic equations with various boundary
conditions in any dimension.

Let O be a (possibly unbounded) domain in Rd. If d > 1 then we will assume that
the boundary ∂O is of class C∞. In this paper we are concerned with the existence and
regularity of solutions to the following Poisson and heat equations

(1.1)

{
∆u = λu on O,
u = γ on ∂O,
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(1.2)


∂u

∂t
= ∆u on (0,+∞)×O,

u =
dξ

dt
on (0,+∞)× ∂O,

u(0, ·) = u0, on O,

where in (1.1), λ > 0, if the domain is unbounded and λ ≥ 0 in the case of a bounded O.
We note that in the parabolic case the boundary condition takes non-standard form dξ

dt
in

order to conform to notation used in the Itô calculus.
If γ and ξ are deterministic functions and ξ is differentiable with respect to the time

variable, then the elliptic and the parabolic problems (1.1) and (1.2) are special cases of
the general theory of boundary value problems that have been thoroughly studied, see for
instance the monograph by Lions and Magenes [21], where the theory of weak solutions
is developed. A semigroup approach to the inhomogeneous boundary value problems was
initiated by Balakrishnan [3], for further developments see e.g [7, 19].

Extension of the deterministic theory to the case of random boundary conditions is a
natural next step motivated by various problems of mathematical physics, see for example
a recent paper [4]. It turns out that, except certain degenerate problems, a solution to the
problem (1.2) cannot have Markov property if the noise ξ is regular in time. Therefore there
is a demand for the theory of equations with boundary data that are distributions in time.
In fact, we will demonstrate in Section 4 that if ξ is a Wiener or, more generally, a Lévy
process, then the solution has the Markov property in an appropriate state space. Another
generalisation of the classical boundary conditions leads to the space-time white noise on
the boundary. A typical example of such a situation arises, when O = (0,+∞)× R ⊂ R2

and formally

ξ(t, x) =
∞∑
k=1

Wk(t)ek(x) x ∈ ∂O ≡ R,

where {ek : k ≥ 1} is an orthonormal basis in L2(R,B(R), dx) and {Wk : k ≥ 1} is a collec-
tion of independent, one-dimensional Brownian Motions. Let us recall that such a process
ξ, known as a cylindrical or white in space Wiener process, is in fact a generalised random
process; that is a distribution-valued process. It will be shown in Section 6 that problem
(1.2) with such a noise still has a function-valued solution in O. Other classes of generalised
noises will be studied as well, see Section 2.

The existence of Markovian solutions to equation (1.2) with either Dirichlet or Neumann
boundary conditions has been studied in few papers only. It was proved in [12, 13, 17, 23,
32] that under some assumptions equation (1.2) with the Neumann boundary conditions
has an L2(O)-valued solutions. For the inhomogeneous Neumann boundary value problem
associated with the stochastic wave equations with noise entering through the boundary,
see for instance [10, 20].

It turns out that the Dirichlet boundary value problem is more difficult than the Neu-
mann one. In fact, Da Prato and Zabczyk demonstrated in [12], see also [13, 29], that even
in dimension one the solution to problem (1.2), with ξ being a Wiener process, takes values
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in the Sobolev space H−α only if α > 1
2
; hence is not function-valued. For this reason prob-

lem (1.2) has been usually studied with more regular boundary noise see [8, 9, 14]. However,
Alòs and Bonaccorsi observed in [1, 2] that solution to (1.2) considered on O = (0,+∞)
can be well defined in the weighted space L2(0,+∞; ρ(x)dx) with the weight function
ρ(x) = min

(
1, x1+θ

)
e−x and θ > 0. This idea was further developed in [16], where it was

shown that for θ ∈ (0, 1) the solution defined in [1] can be identified as a mild solution in
the spirit of [11].

Finally, it has been shown in [29] that if

ξ(t)(x) =

∫ t

0

∫
∂O

∫
S

φ(x, y, z)π̂(dr, dy, dz),

where φ : [0,+∞)×∂O×S 7→ R is sufficiently regular function and π̂ is a Poisson random
measure, then (1.2) defines Markov family on Lp(O) for some p ∈ [1, 2).

Another class of problems, the so-called random dynamic boundary value problems was
studied in [8]. We note that in this case, the boundary condition is regular in time and
therefore is not related to the main difficulty we deal with in this work. In this paper
we are concerned with elliptic or parabolic problems. For hyperbolic problems with noise
driven from the boundary see e.g. [6, 20].

Finally, we note that given a solution to the parabolic problem with boundary noise
(1.2) one can use the variation of a constant formula in order to define a mild solution to
the nonlinear equation

(1.3)


∂u

∂t
= ∆u+ f(u) on (0,+∞)×O,

u =
dξ

dt
on (0,+∞)× ∂O,

u(0, ·) = u0, on O.

If the drift function f is Lipschitz with respect to the norm on the state space considered,
then the existence and uniqueness of solutions can be proved by employing standard ar-
guments. More detailed analysis of such problems will be provided in a future work on
strongly nonlinear boundary value problems.

We will describe now in more detail the content of the paper. In Section 2 we present
some preliminary definitions and results needed in the following sections. The concepts of
weak solutions to problems (1.1) and (1.2) are introduced in Section 3. Then in Section 4
we show that the unique solution u to problem (1.2) is given by

(1.4) u(t) = T (t)u0 +

∫ t

0

T (t− r)(λ−∆τ )Ddξ(r), t ≥ 0,

where T is the semigroup generated in the space H′, see Section 4 for its definition, by the
Laplace operator ∆τ with the homogeneous boundary conditions, and D is the Dirichlet
map which is defined as a weak solution to (1.1). Therefore, u is a mild solution to the
evolution equation

(1.5) du = ∆τudt+ (λ−∆τ )Ddξ.
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Then we will show (see Theorems 2 and 3), that for any S ′(∂O)-valued random variable γ
and any S ′(∂O)-valued stochastic process ξ, there exist unique weak solutions to equations
(1.1) and (1.2) respectively. Extending the idea of Alòs and Bonaccorsi we show, see
Section 6, that under some natural assumptions on γ and ξ, the solutions to (1.1) and
(1.2) are C∞ in space (and in time in the case of the parabolic problem) inside the domain.
Finally, see Section 7 we calculate in particular cases the rate of blow up of the solutions
near the boundary ∂O.

2. Generalised random elements and processes

We shall denote by (·, ·) the duality form on S ′(Rd)× S(Rd). Let K be a closed subset
of Rd. We denote by S ′(K) the class of all tempered distributions on Rd such that

(γ, ψ) = 0, ∀ψ ∈ S(Rd) : ψ = 0 on K.

We shall denote by S(K) the space of the restrictions of the test functions from S(Rd) to
the set K. Obviously, S ′(K) is a closed subspace of S ′(Rd). Moreover the map

Λ : S ′(K)× S(K) 3 (γ, ψ|K) 7→ (γ, ψ) ∈ R
is well defined and bilinear. In what follows we will usually denote Λ(γ, ψ|K) by (γ, ψ|K).
On S ′(K) we consider the topology inherited from S ′(Rd). Then the Borel σ-field B(S ′(K))
is generated by the family of functions (·, ψ), ψ ∈ S(K). Note however that we do not
claim that the space S ′(K) is a dual of S(K).

Let (Ω,F,P) be a probability space. In this paper we assume that in the elliptic problem
γ is a measurable mapping from Ω to S ′(∂O), and in the parabolic problem ξ is an S ′(∂O)-
valued process with càdlàg trajectories.

Let L0(Ω,F,P) be the space of all real-valued random variables on (Ω,F,P) equipped with
the topology of convergence in probability. Assume that E is a locally convex topological
vector space and let E ′ be the topological dual space, see for instance [33]. Let (·, ·)
denote the corresponding duality bilinear form on E ′ × E. A linear continuous mapping
γ : E 7→ L0(Ω,F,P) is called generalised linear random element on E. For the reader
convenience we recall representation theorem for generalised linear random elements. For
its proof see e.g. [18].

Theorem 1. Assume that E is nuclear and γ is a generalised linear random element on
E. Then there exists a measurable γ̃ : Ω 7→ E ′ such that for any ψ ∈ E,

(2.1) γ(ψ) = (γ̃, ψ) , P− a.s.

A typical application of the above Theorem is for E = S(Rd). However, because of
separability of S(Rd), the following generalisation of it is also true. If γ is a generalised
linear random element on S(Rd) such that for all ψ ∈ S(Rd) : ψ = 0 on K,

(2.2) γ(ψ) = 0, P− a.s.

then there exists a measurable map γ̃ : Ω 7→ S ′(K) such that for any ψ ∈ S(K),

(2.3) γ(ψ) = (γ̃, ψ) , P− a.s.
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From now on we identify a generalised linear random element γ on E with the corre-
sponding E ′ valued random variable γ̃. We will also identify a generalised linear random
element γ on S(Rd) satisfying condition (2.2) with the corresponding S ′(K)-valued random
variable γ̃.

Let us present now the most typical examples of S ′(∂O)-valued random variables γ and
processes ξ. Below, ν is a Borel tempered measure on ∂O; that is ν ∈ S ′(∂O), and (ek) is
an orthonormal basis of L2(∂O,B(∂O), ν).

Example 1. Let (γk) be a sequence of independent identically distributed zero-mean
Gaussian real-valued random variables defined on (Ω,F,P). Then the formula

γ(ψ) =
∑
k

γk(ekν, ψ), ψ ∈ S(∂O),

where the series converges in L2(Ω,F,P), defines a generalised random element on S(∂O)
satisfying condition (2.2) and thus inducing an S ′(∂O)-valued random variable γ̃. As we
have explained earlier, we will identify γ with γ̃ and use the former notation to denote the
latter object. In particular, P-a.s.,

(γ, ψ) =
∑
k

γk(ekν, ψ), ψ ∈ S(∂O).

This γ will be called a cylindrical Gaussian random variable in L2(∂O,B(∂O), ν) or Gauss-
ian white noise on ∂O with intensity measure ν.

Example 2. Let (WH
k ) be a sequence of independent fractional Brownian Motions with a

Hurst index H ∈ (0, 1). Then the formula

(ξ, ψ)(t) =
∑
k

WH
k (t)(ekν, ψ), t ≥ 0, ψ ∈ S(∂O),

where the series converges in L2(Ω,F,P), defines an S ′(∂O)-valued random process. We
call ξ the cylindrical fractional Wiener process in L2(∂O,B(∂O), ν) with Hurst index H.
If H = 1/2, then ξ is called simply a cylindrical Wiener process in L2(∂O,B(∂O), ν).

Example 3. Let (γk) be a sequence of independent N (0, 1)-random variables, (WH
k ) be a

sequence of independent fractional Brownian Motions with Hurst index H and let (νk) be
a sequence of signed measures on (∂O,B(∂O)). Assume that∑

k

‖νk‖2Var <∞,

where ‖νk‖Var stands for the total variation of νk. Then

γ =
∑
k

γkνk,

and
WH(t) =

∑
k

WH
k (t)νk

are S ′(∂O) random variable and process.
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Let −∞ < a < b ≤ +∞. Assume now that O = (a, b) × Rl for some positive integer l.
Then ∂O can be identified with Rl and R2l, respectively. In these cases important classes
of random processes on the boundary are provided by the so-called homogeneous Wiener
processes, see [5, 28, 29, 26, 27].

Example 4. Let W be a Wiener process taking values in S ′(Rm), i.e. W is Gaussian pro-
cess with continuous trajectories in S ′(Rm) such that for each ψ ∈ S(Rm), t 7→ (W(t), ψ) is
a one dimensional Wiener process. Let Q : S(Rm)×S(Rm)→ R be the bilinear continuous
symmetric positive definite form defined by

E (W(t), ψ)(W(s), ϕ) = t ∧ sQ(ψ, ϕ) for (t, ψ), (s, ϕ) ∈ [0,+∞)× S(Rm).

We say thatW is spatially homogeneous if for each fixed t ≥ 0 the law ofW(t) is invariant
with respect to all translations τ ′h : S ′(Rm)→ S ′(Rm), h ∈ Rm, where τh : S(Rm)→ S(Rm),
τhψ(·) = ψ(·+ h) for ψ ∈ S(Rm). Thus we assume that

P (W(t) ∈ X ) = P
(
W(t) ∈ (τ ′h)

−1(X )
)

for h ∈ Rm, X ∈ B(S ′(Rm)).

The property above holds if and only if Q is translation invariant, that is

Q(ψ, ϕ) = Q(τhψ, τhϕ) for all ψ, ϕ ∈ S(Rm), h ∈ Rm,

see [28]. Next, see [28], Q is translation invariant if and only it is of the form Q(ψ, ϕ) =
〈Γ, ψ ∗ ϕ(s)〉, where Γ ∈ S ′(Rm) is the Fourier transform of a positive symmetric tempered

measure µ on Rm, and ϕ(s)(x) = ϕ(−x) for x ∈ Rd and a complex-valued function ϕ. The
form Q will be called the covariance form, and µ the spectral measure of W . Let us list
the main properties of W .

• For each ψ ∈ S(Rm), {(W(t), ψ)}t∈[0,∞) is a real valued Wiener process.
• There exists a distribution Γ ∈ S ′(Rm) such that for all ψ, ϕ ∈ S(Rm) one has

Q(ψ, ϕ) := E (W(1), ψ)(W(1), ϕ) = (Γ, ψ ∗ ϕ(s)).

• Γ is the Fourier transform of a positive and symmetric Borel measure µ on Rm,
satisfying

∫
Rd(1 + |x|)rdµ(x) <∞ for a certain r < 0.

• It was shown in [28] that W can be represented as a sum

W(t) =
∑
k

Wk(t)F(ekν),

where (Wk) are independent standard real-valued Wiener processes, F stands for
the Fourier transform, and (ek) is an orthonormal basis of the space L2

(s)(Rd,B(Rd), µ)

being the closed subspace of L2(Rd,B(Rd), dµ;C) over the real field, consisting of
all functions u such that u(s) = u.

Random field. Suppose that the spectral measure µ of W is finite, and consequently
Γ = F(µ) is a uniformly continuous bounded function. Then there exists a Gaussian
random field on [0,+∞)× Rm, which we also denote by W , such that:

• The mapping (t, x) 7→ W(t, x) is continuous with respect to the first and measurable
with respect to the both variables P-almost surely.



SECOND ORDER PDES WITH DIRICHLET WHITE NOISE BOUNDARY CONDITIONS 7

• For each x, {W(t, x)}t∈[0,+∞) is a one dimensional Wiener process.
• EW(t, x)W(s, y) = t ∧ sΓ(x− y) for t, s ∈ [0,∞) and x, y ∈ Rm.
• (W(t), ψ) =

∫
Rm ψ(x)W(t, x)dx for ψ ∈ S(Rm).

In particular, if Γ(x) = e−|x|
α
, where α ∈ (0, 2], then we obtain important examples

of random fields known as symmetric α-stable distributions. For α = 1 and α = 2 the
densities of the spectral measures are given by the formulas c1(1 + |x|2)−m+1

2 and c2e
−|x|2 ,

where c1 and c2 are appropriate constants.

White noise. If Q(ψ, ϕ) = (ψ, ϕ), then Γ is equal to the Dirac δ0-function, its spectral
density dµ

dx
is the constant function (2π)−

m
2 and W is a cylindrical Wiener process on

L2(Rm,B(Rm), dx), see Example 2, and Ẇ = ∂W
∂t

is a white noise on L2([0,+∞)×Rm). If
B(t, x), t ≥ 0 and x ∈ Rm, is a Brownian sheet on [0,+∞)×Rm, see [34], then W can be
defined by the formula,

W(t) =
∂dB(t)

∂x1 . . . ∂xd
, t ≥ 0.

Example 5. Assume that π and Π are Poisson random measures on ∂O and [0,+∞)×∂O
with intensity measures µ and dtν, respectively. Then

(γ, ψ) =

∫
∂O
ψ(y)π(dy), ψ ∈ S(∂O),

and

(ξ, ψ) (t) =

∫ t

0

∫
∂O
ψ(y)Π(dt, dy), t ≥ 0, ψ ∈ S(∂O),

define S ′(∂O)-valued random element and process, respectively. More generally, assume
that ρ : ∂O 7→ R is a measurable function of a polynomial growth. Then

(γρ, ψ) =

∫
∂O
ψ(y)ρ(y)π(dy), ψ ∈ S(∂O),

and

(ξρ, ψ) (t) =

∫ t

0

∫
∂O
ψ(y)ρ(y)Π(dt, dy), t ≥ 0, ψ ∈ S(∂O),

defines S ′(∂O)-valued random variable and process, respectively.

3. Weak solutions

Let n denote the unit normal to the boundary and pointing inwards. Taking into account
the Green formula (see e.g. [21]) we arrive at the following definitions of the weak solution
to (1.1).

Definition 1. Let γ be an S ′(∂O)-valued random variable. We call an S ′(O)-valued
random variable u a weak solution to (1.1) if

(u,∆ψ) +

(
γ,
∂ψ

∂n

∣∣∣∣
∂O

)
= λ(u, ψ), P− a.s. ∀ψ ∈ S(O) : ψ = 0 on ∂O.
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Note that the heat semigroup generated by the Laplace operator with Dirichlet boundary
condition is not strongly continuous on S(O). This is the main reason why in order to
consider the parabolic problem we have to introduce a certain scale of Hilbert spaces.
Namely, let ϑ(x) = (1 + |x|2)−1 for x ∈ Rd. Then, see e.g. [28, 5, 13], the heat semigroup
T (t), t ≥ 0, generated by the Laplace operator ∆τ with homogeneous Dirichlet boundary
conditions is analytic (but not symmetric) on each space L2

ϑr := L2(O,B(O), (ϑ(x))rdx),
r ≥ 0. Let λ > 0 and let Hr, r ≥ 0, be the domain of (λ − ∆τ )

r/2 considered on L2
ϑr .

The space Hr is a Hilbert space equipped with the scalar product induced from L2
ϑr by

(λ−∆τ )
r/2, i.e.

〈u, v〉Hr = 〈((λ−∆τ )
r/2u, (λ−∆τ )

r/2v〉L2
ϑr
.

Let H−r be the dual space of Hr, where the duality map is given by

Hr ↪→ L2
ϑr ≡

(
L2
ϑr

)′ ≡ L2(O,B(O), (ϑ(x))−rdx) ↪→ H−r.

Finally, let

H :=
⋂
r≥0

Hr,

with the Fréchet topology, and let H′ be the topological dual. It is known that

H′ :=
⋃
r≤0

H−r.

Note that since H is a nuclear space, H′ is a co-nuclear space. Next, the restriction of the
heat semigroup T to Hr, r ≥ 0, as well as to H, is a C0-semigroup. Moreover, T can be
extended to a C0-semigroup on any H−r-space as well as to H′. Note that the generator
of T considered either on H or on H′ is a continuous linear operator. With a bit of abuse
of notation, we will denote by ∆τ the generator of T regardless the space on which T is
considered.

Remark 1. Note that H is a subspace of S(O). Therefore any distribution from S ′(O)
can be treated as an element of H′. Note however that H is not a dense subspace of S(O).
In fact it is a closed proper subspace. Therefore it can happen that a non-zero ξ ∈ S ′(O)
vanishes on H.

Definition 2. Let ξ be an S ′(∂O)-valued random process. We say that an H′-valued
random process u is a weak solution to (1.2) starting from u0 ∈ H′, if

(u(t), ψ) = (u0, ψ) +

∫ t

0

(u(r),∆ψ)dr +

(
ξ(t),

∂ψ

∂n

∣∣∣∣
∂O

)
−
(
ξ(0),

∂ψ

∂n

∣∣∣∣
∂O

)
,

P-a.s. for all t > 0, and ψ ∈ H.

For the completeness of the presentation we present the following result on the uniqueness
of solutions.

Proposition 1. For any constant λ ≥ 0, and any S ′(∂O)-valued random variable γ, the
elliptic problem (1.1) has at most one solution.
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Proof. Clearly it is enough to show that solution to the problem with homogeneous bound-
ary conditions vanishes, and we take this for granted in the case of O = Rd. In other words
we will use the fact that if u is an S ′(Rd)-valued random variable such that

(u,∆ψ) = λ (u, ψ) , ∀ψ ∈ S(Rd),

then u ≡ 0.
Assume that u solves (1.1) with the homogeneous Dirichlet boundary condition u = 0

on ∂O. It is enough to show that the S ′(Rd)-valued random variable ũ defined by

(ũ, ψ) = (u, ψ |O), ψ ∈ S(Rd),

solves the problem on the whole space. To do this take ψ ∈ S(Rd). Let ψ̃ ∈ S(Rd) be such
that

∆ψ̃ = λψ̃ in O, ψ̃ = ψ on ∂O.
By the smoothness property of ψ̃, ∆ψ̃ = λψ̃ on O. Then

(ũ,∆ψ) = (u,∆(ψ − ψ̃) |O) + (u,∆ψ̃ |O)

= (u,∆(ψ − ψ̃) |O) + λ(u, ψ̃ |O)

= λ(u, (ψ − ψ̃) |O) + λ(u, ψ̃ |O)

= λ(u, ψ |O) = λ(ũ, ψ).

�

For the parabolic problem the uniqueness follows from the equivalence of mild and weak
formulation of the solution to the homogeneous problem

(3.1) du = ∆τudt, u(0) = u0.

Proposition 2. For any u0 ∈ H′ and any S ′(∂O)-valued random process ξ, the parabolic
problem (1.2) has at most one solution. Moreover, the solutions to (3.1) and (1.2) with
ξ ≡ 0 coincide and are equal to T (t)u0, t ≥ 0.

Proof. Let uξ and uη be two solutions corresponding to (1.2) with the same initial value
u0 but with boundary functions ξ and η. Since by the assumption uξ ≡ uη, we infer that(

ξ(t),
∂ψ

∂n

∣∣∣∣
∂O

)
=

(
η(t),

∂ψ

∂n

∣∣∣∣
∂O

)
, P− a.s. ∀ t ≥ 0, ∀ψ ∈ H.

Hence ξ(t) = η(t) for all t ≥ 0 as required. �

4. Mild formulation and existence

To solve the elliptic problem we will need the resolvent operator (∆τ − λ)−1 of the heat
semigroup T considered on L2(O) with λ from the resolvent set of ∆τ . Then for any
ψ ∈ S(O) ⊂ L2(O), the function

u = (∆τ − λ)−1 ψ
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solves

(∆− λ)u(x) = ψ(x), x ∈ O, u(x) = 0, x ∈ ∂O.

By the classical Agmon–Douglis–Nirenberg theory we have u ∈ S(O). Moreover, (∆τ − λ)
is a bounded linear operator from S(O) into itself. Define a continuous linear operator
D : S ′(∂O) 7→ S ′(O) by the formula

(Dγ, ψ) =

(
γ,− ∂

∂n
(∆τ − λ)−1 ψ

∣∣∣∣
∂O

)
, γ ∈ S ′(∂O), ψ ∈ S(O).

We call D the Dirichlet map. Using the formula above we extend the Dirichlet map to
random variables and obtain the following result.

Theorem 2. For any S ′(∂O)-valued random variable γ, Dγ is the unique solution to the
Poisson equation (1.1) in the sense of Definition 1.

Proof. Let ψ ∈ S(O) be such that ψ = 0 on ∂O. Then

(Dγ,∆ψ) =

(
γ,− ∂

∂n
(∆τ − λ)−1 ∆τψ

∣∣∣∣
∂O

)
=

(
γ,− ∂

∂n
ψ

∣∣∣∣
∂O

)
+

(
γ,− ∂

∂n
(∆τ − λ)−1 λψ

∣∣∣∣
∂O

)
=

(
γ,− ∂

∂n
ψ

∣∣∣∣
∂O

)
+ λ (Dγ, ψ) .

�

The following result ensures the Markov property of solution to (1.2) in case of ξ having
independent increments, see e.g. [11, 13, 29].

Theorem 3. For any u0 ∈ H′ and any S ′(∂O)-valued càdlàg random process ξ, the unique
solution to (1.2) is given by formula

(4.1) u(t) = T (t)u0 +

∫ t

0

T (t− s) (λ−∆τ )D
dξ

ds
(s),

where the integrant is defined, on a test function ψ ∈ H′, by the integration by parts formula(∫ t

0

T (t− s) (λ−∆τ )D
dξ

ds
(s), ψ

)
=

∫ t

0

(T (t− s)∆τ (λ−∆τ )Dξ(s), ψ) ds

+ ((λ−∆τ )Dξ(t), ψ)− ((λ−∆τ )T (t)Dξ(0), ψ) .

Moreover, u is a Markov and Feller process in H′.
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Proof. First note that u is given by the right hand side of (4.1) is well defined and càdlàg.
To see that it is weak solution take a ψ ∈ H. Write

R(t) :=

∫ t

0

((λ−∆τ )Dξ(r)− (λ−∆τ )T (r)Dξ(0),∆τψ) dr.

Then we have∫ t

0

(u(r),∆τψ)dr =

(∫ t

0

T (r)u0dr,∆τψ

)
+

(∫ t

0

∫ r

0

T (r − q)(λ−∆τ )∆τDξ(q)dqdr,∆τψ

)
+R(t)

=

(∫ t

0

∆τT (t− r)u0dr, ψ
)

+

(∫ t

0

∫ t

q

T (r − q)(λ−∆τ )∆τDξ(q)drdq,∆τψ

)
+R(t)

= (−u0 + T (t)u0, ψ)

+

(∫ t

0

(T (t− q)− I) (λ−∆τ )Dξ(q)dq,∆τψ

)
+R(t)

= − (u0, ψ) + (u(t), ψ)−
∫ t

0

((λ−∆τ )Dξ(q),∆τψ) dq +R(t) + r(t),

where

r(t) := − ((λ−∆τ )Dξ(t)− (λ−∆τ )T (t)Dξ(0), ψ) .

Now note that

−
∫ t

0

((λ−∆τ )Dξ(q),∆τψ) dq +R(t)

= −
∫ t

0

((λ−∆τ )T (q)Dξ(0),∆τψ) dq

= (−T (t)(λ−∆τ )Dξ(0) + (λ−∆τ )Dξ(0), ψ) .

Therefore ∫ t

0

(u(r),∆τψ)dr

= − (u0, ψ) + (u(t), ψ)− ([λ−∆τ ] [Dξ(t)−Dξ(0)] , ψ) .

Since

([λ−∆τ ] [Dξ(t)−Dξ(0)] , ψ) = (Dξ(t)−Dξ(0), (λ−∆)ψ) ,

we finally get

(u(t), ψ) = (u0, ψ) +

∫ t

0

(u(r),∆ψ)dr + (Dξ(t)−Dξ(0), (λ−∆τ )ψ) .
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This proves the first part of the theorem since

(Dξ(t)−Dξ(0), (λ−∆τ )ψ) =

(
ξ(t)− ξ(0),

∂ψ

∂n

∣∣∣∣
∂O

)
.

The Markov property follows by the same arguments as in [11] and the Feller property is
obvious. �

4.1. Examples.

Example 6. In the case of O = (0, 1), the space of distributions S ′(∂O) can be identified
with R2. Then, taking λ = 0, we obtain for (γ1, γ2) ∈ R2,

D(γ0, γ1)(x) = γ0 + (γ1 − γ0)x, x ∈ (0, 1), γ = (γ0, γ1) ∈ R2.

Example 7. Assume that O = (0,+∞). Then S ′(∂O) ≡ R, and the Dirichlet map
corresponding to λ = 1 calculated on γ ∈ R is given by

Dγ(x) = γe−x, x ≥ 0.

Example 8. Assume that O = {x ∈ Rd : |x| < 1} is the unit ball in Rd with center at 0.
Then the Dirichlet map corresponding to λ = 0 is given on a function γ : ∂O 7→ R by the
Poisson integral

Dγ(x) = Cd

∫
∂O

1− |x|2

|x− y|d
γ(y)ϑ(dy),

where ϑ is the surface measure.

In the mild formulation of (1.2) we will deal with the term ∆τξ. In the result below we
calculate ∆τ in the one dimensional case. To do this let us denote by δa the Dirac measure
at a and by δ′a its distributional derivative. Recall that ∆τ is a continuous linear operator
on H′.

Proposition 3. (i) Assume that O = (0, 1) and λ = 0. Let ψ1(x) = 1 and ψ2(x) = x for
x ∈ (0, 1). Then ψi ∈ H′ and

∆τψ1 = δ′0 − δ′1 and ∆τψ2 = −δ′1.

(ii) Assume that O = (0,+∞) and λ = 1. Let ψ(x) = e−x. Then ψ ∈ H′ and

∆τψ = −δ′0 + ψ.

Proof. First we will show part (i). We have ψi ∈ S ′(O) ⊂ H′. Let φ ∈ H. Recall that ∆τ

also denotes the adjoint operator on H. We have

(∆τψi, φ) = (ψi,∆τφ) =

∫ 1

0

ψi(x)φ′′(x)dx.

Now ∫ 1

0

ψ1(x)φ′′(x)dx =

∫ 1

0

φ′′(x)dx = φ′(1)− φ′(0) = (δ′0 − δ′1, φ)
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and ∫ 1

0

ψ2(x)φ′′(x)dx =

∫ 1

0

xφ′′(x)dx = φ′(1)−
∫ 1

0

φ′(x)dx = φ′(1)

= (−δ′1, φ).

In order to show (ii) take a test function φ ∈ H. Since φ(0) = 0, we have∫ ∞
0

e−xφ′′(x)dx = φ′(0) +

∫ ∞
0

e−xφ′(x)dx = φ′(0) +

∫ ∞
0

e−xφ(x)dx.

�

5. Green kernels

For further purposes we recall here some basic facts on the Green kernels to the heat
and Poisson equations. Assume that G is the Green kernel to the heat equation in O ⊂ Rd

with homogeneous Dirichlet boundary conditions. Thus the semigroup T generated by ∆τ

is given by

T (t)ψ(x) =

∫
O
G(t, x, y)ψ(y)dy.

Note that as ∆τ is self-adjoint, G(t, x, y) = G(t, y, x). Moreover, as the boundary and
the coefficients of the operator ∆ are C∞, we have the following bounds on G and its
derivatives (see [15, 31, 24]).

Theorem 4. The fundamental solution G is of class C∞((0,+∞)×O ×O) and for any
non-negative integer n, a multi-index α, and time S > 0, there are constants K1, K2 > 0
such that for all t ∈ (0, S] and z ∈ O,∣∣∣∣ ∂n∂tn ∂|α|∂zα

G(t, x, y)

∣∣∣∣ ≤ K1t
−(d+|α|+2n)/2e

− |x−y|
2

K2t .

On the space C∞((0,+∞)×O) we consider a family of semi-norms

pn,mK,S(f) := sup
x∈K

sup
t∈(0,S]

sup
α : |α|≤n

sup
k=0,...,m

∣∣∣∣∂k+|α|f∂tk∂xα
(t, x)

∣∣∣∣ ,
where n,m ∈ N and K is a compact subset of O.

The corollaries below can be easily derived from Theorem 4.

Corollary 1. For any compact K ⊂ O, any finite time S <∞, and all n,m ∈ N,

sup
y∈∂O

pn,mK,S (G(·, ·, y)) <∞.

Moreover, for any x ∈ O, δ > 0 such that the ball B(x, δ) ⊂ O, and for any t > 0,

∂G

∂ny
(t, x, ·) ∈ S(O \B(x, δ)).
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Let

G(x, y) =

∫ +∞

0

e−λtG(t, x, y)dt

be the Green kernel to the Poisson equation. On the space C∞(O) we consider a family of
semi-norms

pnK(f) := sup
x∈K

sup
α : |α|≤n

∣∣∣∣∂|α|f∂xα
(x)

∣∣∣∣ ,
where n ∈ N and K is a compact subset of O.

Corollary 2. There is a constant C such that for all x ∈ O and y ∈ ∂O,∣∣∣∣ ∂G∂ny
(x, y)

∣∣∣∣ ≤
{
C |x− y|1−d if d > 1,

C
[
1 + log+ |x− y|−1

]
if d=1.

Moreover, for any y ∈ ∂O, ∂G
∂n

(·, y) ∈ C∞(O) and for any compact K ⊂ O and n ∈ N there
is a constant C such that

pnK

(
∂G
∂ny

(·, y)

)
≤ C ∀ y ∈ ∂O.

Finally for any x ∈ O and δ > 0 such that B(x, δ) ⊂ O,

∂G
∂ny

(x, ·) ∈ S(O \B(x, δ)).

Let γ ∈ S ′(∂O). Write

(5.1) uγ(x) :=

(
γ,

∂G
∂ny

(x, ·)
∣∣∣∣
∂O

)
, x ∈ O

and

(5.2) vγ(t, x) :=

(
γ,
∂G

∂ny
(t, x, ·)

∣∣∣∣
∂O

)
, t > 0, x ∈ O.

Corollary 3. For any γ ∈ S ′(∂O), uγ ∈ C∞(O) and vγ ∈ C∞([0,+∞)×O).

Example 9. Assume that O = (0,+∞)×Rm. Then G(t, x, y) = Γ(t, x− y)− Γ(t, x− y),
where

Γ(t, x) = (4πt)−(m+1)/2 e−
|x|2
4t ,

and
x = (x0, x1, . . . , xm) = (−x0, x1, . . . , xm).

Then
∂G

∂ny
(t, x, y) = −∂G

∂y0
(t, x, y) =

y0 − x0
2t

Γ(t, x− y) +
−y0 − x0

2t
Γ(t, x− y).

In particular, we have

∂G

∂ny
(t, x, y) = −x0

t
Γ(t, x− y), y = (0, y1, . . . , ym) ∈ ∂O.
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Let y = (0, y1, . . . , ym) ∈ ∂O. We will need to calculate the Fourier transform

Fy
∂G

∂ny
(t, x, y) = −x0

t

∫
Rm

ei〈(z1,...,zm),(y1,...,ym)〉Γ(t, x− (0, z1, . . . , zm))dz1 . . . dzm

= − x0
2
√
πt3/2

e−
x20
4t ei〈x,y〉−

(2t)m

2
|y|2 .

Finally, for G(x, y) =
∫ +∞
0

e−λtG(t, x, y)dt, we have at y = (0, y1, . . . , ym),

∂G
∂ny

(x, y) = −x0
t

∫ +∞

0

e−λtΓ(t, x− y)dt

and

Fy
∂G
∂ny

(x, y) = −
∫ +∞

0

e−λt
x0

2
√
πt3/2

e−
x20
4t ei〈x,y〉−

(2t)m

2
|y|2dt.

In the calculation below c is a generic constant. For |y| ≥ 1 we have∣∣∣∣Fy ∂G∂ny
(x, y)

∣∣∣∣2 ≤ c

∫ +∞

0

e−λt
x20
t3

e−
x20
2t
−(2t)m|y|2dt

≤ cx−20

∫ +∞

0

e−λx
2
0s−2msmx2m0 |y|2ds

≤ cx−30

(∫ +∞

0

e−2
m+1smx2m0 |y|2ds

)1/2

≤ cx−40 |y|−1/m.

Since for |y| ≤ 1, ∣∣∣∣Fy ∂G∂ny
(x, y)

∣∣∣∣2 ≤ c

∫ +∞

0

e−λt
x20
t3

e−
x20
2t dt ≤ cx−20 ,

eventually we obtain the following a bit crude estimate

(5.3)

∣∣∣∣Fy ∂G∂ny
(x, y)

∣∣∣∣2 ≤ c
(
x−20 χ{|y|≤1} + x−40 |y|−1/mχ{|y|>1}

)
.

In the same way one obtains

(5.4)

∫ t

0

∣∣∣∣Fy ∂G∂ny
(s, x, y)

∣∣∣∣2 ds ≤ c
(
x−20 χ{|y|≤1} + x−40 |y|−1/mχ{|y|>1}

)
et.

6. Regularity of solutions inside domain

In this section we are concerned with the regularity of solutions inside the domain O.
Let us denote by C∞c (O) the space of all compactly supported C∞ functions on O. Recall
that uγ ∈ C∞(O) and vγ ∈ C∞((0,+∞)×O) are defined by (5.1) and (5.2), respectively.
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Theorem 5. (i) Let γ be an S ′(∂O)-valued random variable, and let u = Dγ be the solution
to the elliptic problem (1.1). Then u = uγ on O; that is

(6.1) (u, ψ) =

∫
O
uγ(x)ψ(x)dx

for any ψ ∈ C∞c (O). Moreover, the solution u is C∞ inside the domain O. (ii) Let ξ be a
process with càdlàg trajectories in S ′(∂O) and let u be the solution to the parabolic problem
(1.2). Then

(6.2) (u, ψ) =

∫
O
uξ,u0(t, x)ψ(x)dx, ψ ∈ C∞c (O),

where

(6.3) uξ,u0(t, x) =

∫
O
G(t, x, y)u0(y)dy +

∫ t

0

∆xvξ(s)(t− s, x)ds− vξ(0)(t, x),

and in particular, u is C∞ on (0,+∞)×O.

Proof. The first part of the theorem says that

(Dγ, ψ) = (uγ, ψ), ∀ψ ∈ C∞c (O).

We have

(Dγ, ψ) =

(
γ,− ∂

∂n
(∆τ − λ)−1 ψ

∣∣∣∣
∂O

)
=

(
γ,

∂

∂n

∫
O
G(x, ·)ψ(x)dx

∣∣∣∣
∂O

)
=

(
γ,

∫
O

∂G
∂ny

(x, ·)ψ(x)dx

∣∣∣∣
∂O

)
.

Since ψ has a compact support in O, there is a sequences (xnk), k = 1, . . . , n, of variables
of the support of ψ and reals (ank) such that∫

O

∂G
∂ny

(x, ·)ψ(x)dx = lim
n→∞

n∑
k=1

∂G
∂ny

(xnk , ·)ψ(xnk)ank ,

where ∂G
∂ny

(xnk , ·) ∈ S(Rd) is an extension of ∂G
∂ny

(xnk , ·), and the convergence is in the topology

of S(Rd), and

lim
n→∞

n∑
k=1

uγ(x
n
k)ψ(xnk)ank =

∫
O
uγ(x)ψ(x)dx.

Thus (
γ,

∫
O

∂G
∂ny

(x, ·)ψ(x)dx

∣∣∣∣
∂O

)
= lim

n→∞

n∑
k=1

(
γ,

∂G
∂ny

(xnk , ·)
∣∣∣∣
∂O

)
ψ(xnk)ank

= lim
n→∞

n∑
k=1

uγ(x
n
k)ψ(xnk)ank =

∫
O
uγ(x)ψ(x)dx.

Regularity of u inside the domain now follows from Corollary 3.
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Let u be the solution to (1.2). To prove the second part of the theorem, note that

((λ−∆τ )T (t− s)Dξ(s), ψ) =

(
ξ(s),− ∂

∂n
(∆τ − λ)−1(λ−∆τ )T (t− s)ψ

∣∣∣∣
∂O

)
=

(
ξ(s),

∂

∂n
T (t− s)ψ

∣∣∣∣
∂O

)
.

Using the arguments from the proof of the first part we obtain

((λ−∆τ )T (t− s)Dξ(s), ψ) =

∫
O
vξ(s)(t− s, x)ψ(x)dx, ∀ψ ∈ C∞c (O)

and

(∆τ (λ−∆τ )T (t− s)Dξ(s), ψ) =

∫
O

(∆xvξ(s)(t− s, x))ψ(x)dx, ∀ψ ∈ C∞c (O).

Let ψ ∈ C∞c (O). Taking into account (4.1) we obtain

(u(t), ψ) = (T (t)u0, ψ) +

∫ t

0

∫
O

(∆xvξ(s)(t− s, x))ψ(x)dxds

+

(
ξ(t),

∂ψ

∂n

∣∣∣∣
∂O

)
−
∫
O
vξ(0)(t, x)ψ(x)dx.

Since ∂ψ
∂n

∣∣∣∣
∂O
≡ 0, by taking into account (6.3), we obtain (6.2). �

7. Regularity of solutions at the boundary

Our aim in this section is to investigate the space regularity of u defined by (1.1) or
(1.2) at the boundary. To this end we will evaluate the expectations Eu2(x) and Eu2(t, x)
where x is near the boundary ∂O and we will obtain the bounds of the type

Eu2(x) ≤ f(dist (x, ∂O)) and Eu2(t, x) ≤ f(dist (x, ∂O)).

In a similar way one can evaluate u(x) and u(t, x) in order to obtain the estimates of the
form

u2(x;ω) ≤ c(ω)f(dist (x, ∂O)) and u2(t, x;ω) ≤ c(ω)f(dist (x, ∂O)),

for P almost all ω.

7.1. The case of the Poisson equation. Recall, see Theorem 5, that the solution u to
(1.1) inside of O can be identified with smooth random field

u(x) =

(
γ,

∂G
∂ny

(x, ·)
∣∣∣∣
∂O

)
, x ∈ O.

Assume now that γ =
∑

k γkekν is as in Example 1. Then

u(x) =
∑
k

γk

∫
∂O

∂G
∂ny

(x, y)ek(y)ν(dy), x ∈ O.
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Therefore, for every x ∈ O,

Eu2(x) =
∑
k

(∫
∂O

∂G
∂ny

(x, y)ek(y)ν(dy)

)2

=

∫
∂O

(
∂G
∂ny

(x, y)

)2

ν(dy).

Taking into account the estimates of Corollary 2 we obtain the following result.

Proposition 4. Let u be the solution to (1.1) with γ as in Example 1. Then

Eu2(x) ≤ C ×

{∫
∂O |x− y|

2−2dν(dy) if d > 1,[
1 + log+ dist(x, ∂O)

]2
if d = 1.

, x ∈ O.

Assume now that γ =
∑

k γkνk is as in Example 3. Then, for every x ∈ O,

Eu2(x) =
∑
k

(∫
∂O

∂G
∂ny

(x, y)νk(dy)

)2

≤
∑
k

‖νk‖2Var sup
y∈∂O

(
∂G
∂ny

(x, y)

)2

,

and consequently we have the following.

Proposition 5. Let u be the solution to (1.1) with γ as in Example 3. Then

Eu2(x) ≤ C ×

{
dist(x, ∂O)2−2d if d > 1,[
1 + log+ dist(x, ∂O)

]2
if d = 1,

x ∈ O.

Assume that O = (0,+∞) × Rm. An important case can be obtained if γ = W(1)
where W is a homogeneous Wiener process, see Example 4. Then γ =

∑
kWk(1)F(ekν).

Obviously

u(x0, x1, . . . , xm) =
∑
k

Wk(1)

∫
Rm

∂G
∂ny

((x0, . . . xm, 0, y1, . . . ym)F(ekν)(y)dy.

Consequently, see Example 9, for every x ∈ O,

Eu2(x) =

∫
Rm

∣∣∣∣Fy ∂G∂ny
((x0, . . . xm, 0, y1, . . . ym)

∣∣∣∣2 ν(dy)

=

∫
Rm

∣∣∣∣∫ +∞

0

e−λt
x0

2
√
πt3/2

e−
x20
4t ei〈x,y〉−

(2t)m

2
|y|2dt

∣∣∣∣2 ν(dy).

Using now the crude estimate (5.3) we obtain:

Proposition 6. Let u be the solution to (1.1) with γ as in Example 4. Then

Eu2(x) ≤ C

∫
Rm

(
x−20 χ{|y|≤1} + x−40 |y|−1/mχ{|y|>1}

)
ν(dy), x ∈ O.

Remark 2. Note that for an arbitrary (tempered) spectral measure ν, u is a Gaussian
field in O and consequently Eu2(x) < +∞ even if the integral appearing on the right hand
side of the estimate in the proposition above is infinite.
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Let us now consider the case of Lévy measure on the boundary. Namely, see Example
5, assume that γ = ρπ, where ρ is a function and π is a Poisson random measure on ∂O
with intensity measure ν. Then

u(x) =

∫
∂O

∂G
∂ny

(x, y)ρ(y)π(dy) x ∈ O.

Taking into account, see e.g. [29], the following estimate valid for any measurable f : E 7→ R
and Poisson random measure π on E with intensity measure ν,

E
(∫

E

f(x)π(dx)

)2

≤ 2

[∫
E

f 2(x)ν(dx) +

(∫
E

f(x)ν(dx)

)2
]
, x ∈ O,

and taking into account the estimates of Corollary 2 we obtain the following result.

Proposition 7. Let u be the solution to (1.1) with γ as in Example 5. Then, for x ∈ O,

Eu2(x) ≤ C ×

{∫
∂O |x− y|

2−2dρ(y)2ν(dy) +
(∫

∂O |x− y|
1−d|ρ(y)|ν(dy)

)2
if d > 1,[

1 + log+ dist(x, ∂O)
]2

if d = 1.

Remark 3. In the Lévy case with a bounded ρ and finite ν, it is easy to obtain the
following pointwise estimate

|u(x;ω)| ≤ C(ω)×

{
(distx, ∂O)1−d if d > 1,[
1 + log+ dist(x, ∂O)

]
if d = 1,

x ∈ O.

where the random variable C has all moments finite. Using the fact that for p ∈ [1, 2),

E
∣∣∣∣∫
E

f(y)π(dy)

∣∣∣∣p ≤ Cp

∫
E

|f(y)|pν(dy)

one can show that

E|u(x;ω)|p ≤ C ×

{∫
∂O |x− y|

p−pd|ρ(y)|pν(dy) if d > 1,[
1 + log+ dist(x, ∂O)

]p
if d = 1,

x ∈ O.

For more details see [29].

7.2. The case of the heat equation. Let us now examine the case of the heat problem.
Without any loss of generality we may assume that u0 = 0 and ξ(0) = 0. Then, see
Theorem 5,

u(t, x) = uξ,0(t, x) =

∫ t

0

∆xvξ(s)(t− s, x)ds =

∫ t

0

(
ξ(s),∆x

∂G

∂ny
(t− s, x, ·)

)
ds.

Assume that

ξ(t) =
∑
k

WH
k (t)ekν
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satisfies the assumptions of Example 2. Then

(7.1) u(t, x) =

∫ t

0

(
dξ(s),

∂G

∂ny
(t− s, x, ·)

)
=
∑
k

∫ t

0

(
ekν,

∂G

∂ny
(t− s, x, ·)

)
dWH

k (s),

where the integral is defined in the sense of Paley-Wiener integral. This is clearly permitted
because the integrands are deterministic. Therefore, for every x ∈ O,

E |u(t, x)|2 =
∑
k

E
∣∣∣∣∫ t

0

(∫
∂O

∂G

∂ny
(t− s, x, y)ek(y)ν(dy)

)
dWH

k (s)

∣∣∣∣2 .
Now if H = 1/2, then the Paley-Wiener integral coincides with the Itô integral and thus

E |u(t, x)|2 =

∫ t

0

∫
∂O

(
∂G

∂ny
(s, x, y)

)2

ν(dy)ds.

Using now Theorem 4, we obtain

E |u(t, x)|2 ≤ K1

∫ t

0

s−d−1e
− |x−y|

2

2K2s ν(dy)ds.

Since

(7.2)

∫ t

0

s−d−1e
− |x−y|

2

2K2s ds ≤ C|x− y|−2d,

we have the following result.

Proposition 8. Assume that ξ =
∑

kWkekν is as in Example 2 with H = 1/2. Then

E |u(t, x)|2 ≤ C

∫
∂O
|x− y|−2dν(dy).

Assume now that ξ =
∑

kW
H
k νk is as in Example 3. Then

E |u(t, x)|2 =
∑
k

E
∣∣∣∣∫ t

0

(∫
∂O

∂G

∂ny
(t− s, x, y)νk(dy)

)
dWH

k (s)

∣∣∣∣2 .
Now if H = 1/2, then

E |u(t, x)|2 =
∑
k

∫ t

0

(∫
∂O

∂G

∂ny
(s, x, y)νk(dy)

)2

ds

≤
∫ t

0

sup
y∈∂O

∣∣∣∣ ∂G∂ny
(s, x, y)

∣∣∣∣2∑
k

‖νk‖2Var.

Therefore the following result holds.

Proposition 9. Assume that ξ =
∑

kWkνk is as in Example 3 with H = 1/2. Then

E |u(t, x)|2 ≤ Cdist (x, ∂O)−2d.
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Assume now that O = (0,+∞)×Rm and that ξ =W is a spatially homogeneous Wiener
process on Rm with the spectral measure ν. Then ξ =

∑
kWkF(ekν). Hence, see Example

9,

E |u(t, x)|2 =
∑
k

∫ t

0

(∫
Rm

∂G

∂ny
(s, x, 0, y)F(ekν)(y)dy

)2

ds

=

∫ t

0

∫
Rm

∣∣∣∣Fy ∂G∂ny
(s, x, 0, y)

∣∣∣∣2 ν(dy)ds

=

∫ t

0

x20
4πs3

e−
x20
2s

∫
Rm

e−(2s)
m|y|2ν(dy)ds.

Therefore, using inequality (5.4) we obtain:

Proposition 10. Assume that ξ is a spatially homogeneous Wiener process as in Example
4 with the spectral measure ν. Then

E |u(t, x)|2 ≤ Cet
∫
Rm

(
x−20 χ{|y|≤1} + x−40 |y|−1/mχ{|y|>1}

)
ν(dx).

Assume that ξ is as in Example 5. Then

u(t, x) =

∫ t

0

∫
∂O

∂G

∂ny
(t− s, x, y)ρ(y)Π(ds, dy).

Thus

Eu2(t, x)

≤ 2

(∫ t

0

∫
∂O

∣∣∣∣ ∂G∂ny
(s, x, y)

∣∣∣∣2 |ρ(y)|2dsν(dy) +

(∫ t

0

∫
∂O

∣∣∣∣ ∂G∂ny
(s, x, y)

∣∣∣∣ |ρ(y)|dsν(dy)

)2
)

≤ C

(∫
∂O

∫ t

0

s−d−1e−
|x−y|2
2Ks ds|ρ(y)|2ν(dy) +

(∫
∂O

∫ t

0

s−
d+1
2 e−

|x−y|2
Ks ds|ρ(y)|ν(dy)

)2
)
.

Taking into account (7.2) we obtain the following.

Proposition 11. Assume that ξ is as in Example 5. Let d > 1. Then

Eu2(t, x) ≤ C

(∫
∂O
|x− y|−2d|ρ(y)|2ν(dy) +

(∫
∂O
|x− y|−d−1|ρ(y)|ν(dy)

)2
)
.

7.3. The case of H 6= 1/2. We restrict our attention to the case of H > 1/2 and boundary
noise ξ =

∑
kW

H
k νk is as in Example 3. The cases of H < 1/2 or and ξ =

∑
kW

H
k ekν

require much longer calculations.

Proposition 12. Let H > 1/2. Assume that ξ =
∑

kW
H
k νk is as in Example 3. Then for

any H > 1/2, T > 0, and for any x ∈ O there exists a constant C = CT such that

(7.3) sup
t≤T

E|u(t, x)|2 ≤ C (dist (x, ∂O))−2(d+1) .
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Proof. Fix x ∈ O and t ∈ (0, T ]. By Example 3,

(7.4)

u(t, x) =
∞∑
k=1

∫ t

0

(∫
∂O

∂G

∂ny
(t− s, x, y)νk(dy)

)
dWH

k (s)

=
∞∑
k=1

∫ t

0

fk(t− s)dWH
k (s),

with

fk(s) = fk(s, x) =

∫
∂O

∂G

∂ny
(t− s, x, y)νk(dy).

In order to establish the theorem we will use the approach of [25]. To this end, we first note

that putting gk(s) = WH
k (ω) we can interpret each integral

∫ t
0
fk(t− s)dWH

k (s) as the so-

called generalized Stieltjes integral
∫ t
0
fk(t− s)dgk(s) and we recall that the Paley-Wiener

integral considered in equality (7.1) is a particular case of the generalised Stieltjes integral.
Fix α ∈

(
1−H, 1

2

)
. Then following [25] we introduce the space W 1−α,∞

T of measurable
functions g : [0, T ]→ R such that

‖g‖1−α,∞,T := sup
0<s<t<T

(
|g(t)− g(s)|
(t− s)1−α

+

∫ t

s

|g(r)− g(s)|
(r − s)2−α

dr

)
<∞.

By a minor modification of the estimate (4.11) in Proposition 4.1 from [25] we obtain for
every fixed t ∈ (0, T ],

(7.5)

∣∣∣∣∫ t

0

fk(t− s)dgk(s)
∣∣∣∣

≤ cα ‖gk‖1−α,∞,T
(∫ t

0

|fk(t− r)|
rα

dr + α

∫ t

0

∫ r

0

|fk(t− r)− fk(t− s)|
(r − s)1+α

dsdr

)
= cα ‖gk‖1−α,∞,T (Ik(t, x) + αJk(t, x)) ,

where cα is an absolute constant. Now, by the Cauchy–Schwarz inequality and Theorem
4,

(7.6)

I2k(t, x) =

(∫ t

0

1

rα

∣∣∣∣∫
∂O

∂G

∂ny
(t− r, x, y)νk(dy)

∣∣∣∣ dr)2

≤ CT

∫ t

0

∣∣∣∣∫
∂O

∂G

∂ny
(r, x, y)νk(dy)

∣∣∣∣2 dr

≤ CT

∫ t

0

(∫
∂O

1

r(1+d)/2
e
− |x−y|

2

K2r |νk| (dy)

)2

dr

≤ CT

∫ ∞
0

1

r1+d
e
−2dist2(x,∂O)

K2r

(∫
∂O
|νk| (dy)

)2

≤ CT
(dist(x, ∂O))2d

‖νk‖2var .
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It remains to estimate Jk(t, x). To this end, we note that

fk(t− s, x)− fk(t− r, x) =

∫ 1

0

∂fk
∂t

(t− r + ξ(r − s), x)(r − s)dξ, 0 ≤ s < r ≤ t.

Invoking Theorem 4 we obtain

|fk(t− s, x)− fk(t− r, x)| ≤ r − s
(t− r)(d+3)/2

e
−dist2(x,∂O)

K2(t−r)

∫
∂O
|νk| (dy),

hence using the same arguments as in (7.6) we obtain

(7.7)

J2
k (t, x) ≤ ‖νk‖2var

(∫ t

0

∫ r

0

1

(r − s)α
1

(t− r)(d+3)/2
e
−dist2(x,∂O)

K2(t−r) dsdr

)2

≤ CT ‖νk‖2var
(∫ t

0

1

r(d+3)/2
e
−dist2(x,∂O)

K2r dr

)2

≤ CT

dist2(d+1)(x, ∂O)
‖νk‖2var .

By (7.4) we have

E|u(t, x)|2 =
∞∑
k=1

E
∣∣∣∣∫ t

0

fk(t− s, x)dWH
k (s)

∣∣∣∣2
≤ CT

dist2d+2(x, ∂O)

∞∑
k=1

‖νk‖2var E
∥∥WH

k (t)
∥∥2
1−α,∞,T .

Since every WH
k ∈ C1−α+ε, for some suitable ε > 0 a.s., we find that WH

k ∈ W
1−α,∞
T a.s.

Since WH
k are copies of a Gaussian process, the proposition follows. �
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24 Z. BRZEŹNIAK, B. GOLDYS, S. PESZAT, AND F. RUSSO

[7] A. Bensoussan, G. Da Prato, M.C. Delfour, and S.K. Mitter, Representation and Control of Infinite
Dimensional Systems (Systems & Control: Foundations & Applications), Birkhuser, Boston, 2006.

[8] I. Chueshov and B. Schmalfuss, Parabolic stochastic partial differential equations with dynamical
boundary conditions, Differential Integral Equations 17 (2004), 751–780.

[9] I. Chueshov and B. Schmalfuss, Qualitative behavior of a class of stochastic parabolic PDEs with
dynamical boundary conditions, Discrete Contin. Dyn. Syst. 18 (2007), 315–338.
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bridge Univ. Press, Cambridge, 2007.
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E-mail address: Francesco.Russo@ensta-paristech.fr


