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Abstract. Let (Pt) be the transition semigroup of a Lévy process (Lt) taking values

in a Hilbert space H. Let ν and Ñ respectively be the Lévy measure and compensated
Poisson random measure of (Lt). It is shown that for any bounded and measurable
function f ,

AqPtf(x) =
1

t
E
[
f(Lx

t )

∫ t

0

∫
H

q(y)Ñ(ds,dy)

]
for all t > 0, x ∈ H.

where Aq is some non-local operator. As a corollary,∫
H

|Ptf(x+ y)− Ptf(x)|2 ν(dy) ≤ 1

t
Ptf

2(x) for all t > 0, x ∈ H.

As ν can be infinite this formula establishes some smoothening effect of the semigroup
(Pt). In the paper some applications of the formula will be presented as well.
Key words: Bismut–Elworthy–Li formula, Lévy processes, Smoothening effect.

1. Introduction

Let (Xt) be the unique solution to an SDE on a Hilbert space H driven by a non-
degenerate Wiener process W . Let

Ptf(x) = E (f(Xx
t )) , f ∈ Bb(H), t ≥ 0,

be the corresponding transition semigroup defined on the space of bounded measurable
functions Bb(H). Then the following Bismut–Elworthy–Li formula holds (see [7] or [12])

(1.1) ∇vPtf(x) =
1

t
E
(
f(Xx

t )

∫ t

0

K(s; v)dWs

)
,

where K(s, v) is an adapted stochastic processes independent of f . This formula implies
the strong Feller property of (Pt), and therefore is very useful for studying its ergodic
properties. For other applications we refer to e.g. [18, 2, 8].

In this paper, we derive the following, similar to (1.1), derivative formula for a family
of Lévy processes Lxt = x+ Lt, t ≥ 0, x ∈ H, taking values in a Hilbert space H;

(1.2) AqPtf(x) =
1

t
E
[
f(Lxt )

∫ t

0

∫
H

q(y)Ñ(ds, dy)

]
.

Above Aq is a certain non-local operator Aq corresponding to a function q playing a
similar role as v in (1.1). Thus the associated transition semigroup (Pt) transforms
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Bb(H) into the intersection of domains of some non-local operators (see Theorem 3.1 for
more details). Next, see Corollary 3.2 below, we show that

(1.3)

∫
H

|Ptf(x+ y)− Ptf(x)|2 ν(dy) ≤ 1

t
Ptf

2(x) for f ∈ Bb(H), t > 0, x ∈ H.

Note that if the Lévy measure ν of (Lt) is infinite, then for any open ball Bε(0) with the
center at 0 and radius ε > 0 one has ν (Bε(0)) = +∞. Therefore (1.3) means that for
any x ∈ H, Ptf(x+ y), y ∈ Bε(0), is in a certain sense close to Ptf(x).

By choosing a special q in (1.2) we obtain a ’fractional gradient’ estimate for some
symmetric Lévy processes. From this estimate, we further get the ’fractional gradi-
ent’ estimate for the perturbed stable type stochastic systems. By Corollary 3.2 and a
generalized Campanato’s theorem, we calculate modulus of continuity of the transition
semigroups of ’log-stable’ processes.

The paper is organized as follows: the next section includes some preliminary facts on
Lévy processes. The main general results are formulated in Section 3. The last three
sections are devoted to applications. In the appendix we prove the generalized Campanato
theorem of harmonic analysis.

2. Preliminary facts on Lévy processes

Recall some preliminary facts on Lévy processes (for details see e.g. [1, 13, 14]). Let
(Lt)t≥0 be an H-valued Lévy process. It is well known that there is a vector m ∈ H, a
symmetric positive definite trace class operator Q : H 7→ H, and a Borel measure ν on
H satisfying

(2.1) ν({0}) = 0,

∫
H

1 ∧ |y|2Hν(dy) < +∞,

such that

E ei〈x,Lt〉H = e−tψ(x), x ∈ H,
where the so-called Lévy exponent ψ of (Lt) is given by the following Lévy–Khinchin
representation:

ψ(x) = i〈x,m〉H +
1

2
〈Qx, x〉H +

∫
H

[
ei〈x,y〉H − 1− i〈x, y〉H1{|y|H≤1}

]
ν(dy).

We call ν the Lévy measure of L and (m,Q, ν) the generating triplet of L.
The Poisson random measure associated with (Lt) is defined by

N(t,Γ) :=
∑
s∈(0,t]

1Γ(Ls − Ls−), Γ ∈ B(H), t > 0,

and the compensated Poisson random measure is given by

Ñ(t,Γ) = N(t,Γ)− tν(Γ).

By the Lévy–Itô decomposition (cf. [1, p.108, Theorem 2.4.16] or [13, p. 53, Theorem
4.23]), one has

Lt = mt+WQ(t) +

∫
{0<|x|H≤1}

xÑ(dt, dx) +

∫
{|x|H>1}

xN(dt, dx), t ≥ 0,

where WQ is a Wiener process in H with covariance operator Q.
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Let (Ft) be the filtration generated by (Lt), and let us denote by L2
loc the space of all

predictable stochastic process ψ satisfying

E
∫ t

0

∫
H

|ψ(s, y)|2Hν(dy)ds <∞ for t > 0.

Then for any ψ ∈ L2
loc the stochastic integral

∫ t
0

∫
H
ψ(s, y)Ñ(ds, dy) is a well-defined

square integrable and mean zero martingale. Moreover, the following Itô isometry holds
(see e.g. [1, p. 200] or [13, Section 8.7])

(2.2)

E
[∫ t

0

∫
H

ψ(s, y)Ñ(ds, dy)

∫ t

0

∫
H

ϕ(s, y)Ñ(ds, dy)

]
= E

∫ t

0

∫
H

ψ(s, y)ϕ(s, y)ν(dy)ds, ψ, ϕ ∈ L2
loc.

Let L = (Lt) be a Lévy process with a generating triplet (m,Q, ν). Consider the
Markov family

(2.3) Lxt = x+ Lt, t ≥ 0, x ∈ H.

Its transition semigroup (Pt) is given as follows

(2.4) Ptf(x) = E f(Lxt ), t ≥ 0, x ∈ H, f ∈ Bb(H).

Observe that (Pt) is strongly continuous on the space UCb(H) of uniformly continuous
bounded functions on H equipped with the supremum norm ‖ · ‖∞, i.e., P0 is the identity
operator, Pt+s = PtPs for all t, s ≥ 0, and limt↓0 ‖Ptf − f‖∞ = 0 for all f ∈ UCb(H) (see
[13, p. 80] for more details). Moreover, the domain of its generator L contains the space
UC2

b (H), and

Lf(x) = 〈Df(x),m〉H +
1

2
TraceQD2f(x)

+

∫
H

(
f(x+ y)− f(x)− 1{|x|H<1}〈Df(x), y〉H

)
ν(dy), f ∈ UC2

b (H), t ≥ 0, x ∈ H.

3. Main results

Let L be a Lévy process on H with the generating triplet (m,Q, ν). Let (Lxt ), t ≥ 0,
x ∈ H, be the Markov family given by (2.3), and let (Pt) given by (2.4) be the transition
semigroup of (Lxt ).

Given q ∈ L2(H,B(H), ν), define

Dq :=

{
f ∈ Bb(H) : sup

x∈H

∫
H

|f(x+ y)− f(x)| |q(y)|ν(dy) <∞
}
.

Next, let

(3.1) Aqf(x) :=

∫
H

[f(x+ y)− f(x)] q(y)ν(dy) for f ∈ Dq, x ∈ H.
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Taking into account (2.1), we see that C1
b (H) ⊂ Dq, Aq is a bounded linear operator form

C1
b (H) into Bb(H) and

‖Aqf‖∞ := sup
x∈H
|Aqf(x)|

≤ 2‖f‖∞
(∫
|y|H≥1

ν(dy)

) 1
2
(∫
|y|H≥1

q2(y)ν(dy)

) 1
2

+ ‖Df‖∞
(∫
{|y|H<1}

|y|2Hν(dy)

) 1
2
(∫
{|y|H<1}

q2(y)ν(dy)

) 1
2

<∞.

Theorem 3.1. Let q ∈ L2(H,B(H), ν). Then for all t > 0 and f ∈ Bb(H), Ptf ∈ Dq
and

AqPtf(x) =
1

t
E
[
f(Lxt )

∫ t

0

∫
H

q(y)Ñ(ds, dy)

]
.

Moreover,

|AqPtf(x)|2 ≤ 1

t
Ptf

2(x)

∫
H

q2(y)ν(dy) for all x ∈ H.

Proof. We follow the spirit of the proof of Theorem 2.1 in [7]. Assume f ∈ UC2
b (H) and

consider Pt−sf(Lxs) with 0 ≤ s ≤ t. Applying Kolmogorov’s backward equation to Pt−sf
and Itô formula to Lxs (see e.g. [1]), we obtain

f(Lxt )− Ptf(x) = −
∫ t

0

LPt−sf(Lxs)ds+

∫ t

0

LPt−sf(Lxs)ds

+

∫ t

0

∫
H

[Pt−sf(Lxs + y)− Pt−sf(Lxs))] Ñ(dy, ds)

+

∫ t

0

〈DPt−sf(Lxs), dWQ(s)〉H

=

∫ t

0

∫
H

[Pt−sf(Lxs + y)− Pt−sf(Lxs)] Ñ(dy, ds)

+

∫ t

0

〈DPt−sf(Lxs), dWQ(s)〉H .

(3.2)

Multiplying the both sides of (3.2) by∫ t

0

∫
H

q(y)Ñ(dy, ds)

and taking into account (2.2), we further get

E
[
f(Lxt )

∫ t

0

∫
H

q(y)Ñ(dy, ds)

]
= E

∫ t

0

∫
H

[Pt−sf(Lxs + y)− Pt−sf(Lxs)] q(y)ν(dy)ds

=

∫ t

0

∫
H

[PsPt−sf(x+ y)− PsPt−sf(x)] q(y)ν(dy)ds

= t

∫
H

[Ptf(x+ y)− Ptf(x)] q(y)ν(dy) = tAqPtf(x).

This clearly implies the first formula in the theorem.
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From the previous formula, by the Hölder inequality and Itô isometry we obtain

t |AqPtf(x)| ≤
(
E f 2(Lxt )

)1/2
(∫ t

0

∫
H

q2(y)ν(dy)ds

)1/2

≤
(
Ptf

2(x)
)1/2

t1/2
(∫

H

q2(y)ν(dy)

)1/2

.

Thus the desired estimate holds for any f ∈ UC2
b (H). Assume that f ∈ Bb(H). Let

x ∈ H. Then there is a sequence (fn) ⊂ UC2
b (H) such that

lim
n→∞

Ptf
2
n(x) = Ptf

2(x),

and
lim
n→∞

Ptfn(x+ y) = Ptf(x+ y) for ν almost all y.

Consequently, the desired estimate for f follows from the Fatou lemma. �

Corollary 3.2. For arbitrary f ∈ Bb(H) we have∫
H

|Ptf(x+ y)− Ptf(x)|2 ν(dy) ≤ 1

t
Ptf

2(x), x ∈ H, t > 0.

Proof. By (3.1), we have∫
H

|Ptf(x+ y)− Ptf(x)|2 ν(dy)

= sup

{∣∣∣∣∫
H

(Ptf(x+ y)− Ptf(x)) q(y)ν(dy)

∣∣∣∣2 , q :

∫
H

q2(y)ν(du) ≤ 1

}

= sup

{
|AqPtf(x)|2 , q :

∫
H

q2(y)ν(du) ≤ 1

}
,

(3.3)

and the estimate follows from Theorem 3.1. �

Given f ∈ Bb(H) we define the difference operator ∇n
y1,...,yn

f(x), x, y1, . . . , yn ∈ H
putting

∇yf(x) = f(x+ y)− f(x),

∇n+1
y1,...,yn+1

f(x) = ∇yn+1

(
∇n
y1,...,yn

f
)

(x).

Corollary 3.3. For any f ∈ Bb(H) and n ∈ N,

sup
x∈H

∫
H

. . .

∫
H

|∇y1,...,yn (Ptf) (x)|2 ν(dy1) . . . ν(dyn) ≤
(n
t

)n
‖f‖2

∞.

Proof. It is enough to show the estimate for f ∈ UC2
b (H). Let q1, . . . , qn ∈ L2(H,B(H), ν).

We claim that the operators Aq and Ps commute. Indeed, by Fubini theorem and the
fact Lxt + y = Lx+y

t , for all f ∈ UC2
b (Rd) we have

PtAqf(x) = EAqf(Lxt ) = E
∫
H

(f(Lxt + y)− f(Lxt )) q(y)ν(dy)

=

∫
H

[
Ef(Lx+y

t )− Ef(Lxt )
]
q(y)ν(dy)

=

∫
H

[Ptf(x+ y)− Ptf(x)] q(y)ν(dy)

= AqPtf(x).
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Thus, by Theorem 3.1 and commutative property between Aq and Pt,

‖Aq1 . . . AqnPtf‖2
∞ = sup

x∈H
|Aq1 . . . AqnPtf(x)|2

= sup
x∈H

∣∣(Aq1Pt/n) . . . (AqnPt/n)f(x)
∣∣2

≤ n

t
‖(Aq2Pt/n) . . . (AqnPt/n)f‖2

∞‖q1‖2
L2(H,B(H),ν)

≤
(n
t

)n
‖f‖2

∞

n∏
k=1

‖qk‖2
L2(H,B(H),ν).

Since ∫
H

. . .

∫
H

|∇y1,...,yn (Ptf) (x)|2 ν(dy1) . . . ν(dyn)

= sup

{
|Aqn ...Aq1Ptf(x)|2 : qi :

∫
H

q2
i (y)ν(dy) ≤ 1

}(3.4)

the desired inequality holds. �

4. Application 1: Short time behaviour of the semigroup

We investigate the fractional gradient estimate of α-stable and truncated α-stable
processes. In this and next sections H = Rd. The norm on Rd will be denoted by
| · |.

Theorem 4.1. Let the Lévy measure ν be of the form

ν(dx) =
1

|x|d+α
1{|x|<K}dx,

where α ∈ (0, 2] and K ∈ (0,∞]. Then for any β ∈ (α/2, α) we have

(4.1) ‖(−∆)
α−β
2 Ptf‖∞ ≤ C(1 + t−1/2)‖f‖∞, ∀ t > 0, f ∈ Bb(Rd),

where C = Cα,β only depends on α and β.

Proof. Without any loss of generality, we may assume that K = 1. Choose q such that

q(y) = |y|β ∀ |y| ≤ 1,

∫
{|y|>1}

q2(y)ν(dy) <∞.

It is easy to see that

(4.2)

∫
{|y|≤1}

q2(y)ν(dy) =

∫
{|y|≤1}

|y|−d−α+2βdy ≤ Cα,β.

Therefore, q ∈ L2(Rd,B(Rd), ν).
Observe that

Aqf(x) =

∫
{|y|≤1}

f(x+ y)− f(x)

|y|α+d−β dy +

∫
{|y|>1}

[f(x+ y)− f(x)] q(y)ν(dy)

and ∣∣∣(−∆)
α−β
2 f(x)

∣∣∣ =

∣∣∣∣∫
Rd

f(x+ y)− f(x)

|y|α+d−β dy

∣∣∣∣
≤
∣∣∣∣∫
{|y|>1}

f(x+ y)− f(x)

|y|α+d−β dy

∣∣∣∣+

∣∣∣∣∫
{|y|≤1}

f(x+ y)− f(x)

|y|α+d−β dy

∣∣∣∣ .
6



It is easy to see that ∣∣∣∣∫
{|y|>1}

f(x+ y)− f(x)

|y|α+d−β dy

∣∣∣∣ ≤ cα,β‖f‖∞,

and that∣∣∣∣∫
{|y|≤1}

Ptf(x+ y)− Ptf(x)

|y|α+d−β dy

∣∣∣∣ ≤ |AqPtf(x)|+
∣∣∣∣∫
{|y|>1}

[Ptf(x+ y)− Ptf(x)] q(y)ν(dy)

∣∣∣∣
≤ t−1/2‖f‖∞‖q‖L2(Rd,B(Rd),ν) + Cα,d‖f‖∞‖q‖L2(Rd,B(Rd),ν),

where the last inequality follows from Theorem 3.1 and Hölder’s inequality. Collecting
the previous inequalities, we get the desired one. �

5. Application 2: Estimate for a perturbed dynamics

Let Xx
t be the value at t of the solution to the following stochastic differential equation

(5.1) dXt = b(Xt−)dYt + dZt, X0 = x,

where b ∈ C2
b (Rd) and Zt, Yt are both symmetric stable processes with the parameters

α, β ∈ (0, 2). Our result below is also true if b is a bounded measurable function, to avoid
the complicated differentiability issue and stress the idea, we assume b ∈ UC2

b (Rd).
Eq. (5.1) in more general setting has been intensively studied (see e.g. [6, 11, 4, 5] and

the references therein) and has a unique weak solution. Let

Ptf(x) = Ef(Xx
t ), ∀ f ∈ Bb(Rd),

be the corresponding transition semigroup. The semigroup is C0 on the space UCb(Rd).
Let L be the generator of (Pt) considered on UCb(Rd). It is well known that UC2

b (Rd) ⊂
Dom (L), and that for all f ∈ UC2

b (Rd),

Lf = −(−∆)α/2f − |b(x)|β(−∆)β/2f,

and the following backward Kolmogorov equation holds

(5.2) ∂tPtf = LPtf.
We use (4.1) to show some properties of the associated backward Kolmogorov equation.

Theorem 5.1. If β ∈ (0, α/2), then there exists t0 ∈ (0, 1) depending on α, β and ‖b‖∞,
such that for any f ∈ UCb(Rd),

‖(−∆)β/2Ptf‖∞ ≤ C1t
−1/2‖f‖∞, t ≤ t0,

‖(−∆)β/2Ptf‖∞ ≤ C2‖f‖∞, t > t0,
(5.3)

where C1, C2 depend on α, β and t0.

Proof. Since UC2
b (Rd) is dense in UCb(Rd) and (−∆)β/2 is closable, it suffices to show

(5.3) for f ∈ UC2
b (Rd).

For any f ∈ UC2
b (Rd), define P 0

t f(x) = E[f(Zt + x)]. It satisfies

(5.4) ∂tP
0
t f = −(−∆)α/2P 0

t f.

(P 0
t )t≥0 can be extended to a Markov strongly continuous semigroup on UCb(Rd). Due

to (5.2) and (5.4), using the classical Duhamel principle we obtain

(5.5) Ptf(x) = P 0
t f(x)−

∫ t

0

P 0
t−s[|b|β(−∆)β/2Psf ](x)ds.
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Since b ∈ UC2
b (Rd) and f ∈ UC2

b (Rd), Ptf ∈ UC2
b (Rd) and P 0

t f ∈ UC2
b (Rd) both hold.

By (4.1), we have

(5.6) ‖(−∆)β/2P 0
t f‖∞ ≤ C(1 + t−1/2)‖f‖∞ ≤ 2Ct−1/2‖f‖∞, ∀ t < 1,

which, together with (5.5), yields

‖(−∆)β/2Ptf‖∞ ≤ Ct−1/2‖f‖∞ + C

∫ t

0

(t− s)−1/2‖b‖β∞‖(−∆)β/2Psf‖∞ds

≤ Ct−1/2‖f‖∞ + C

∫ t

0

(t− s)−1/2‖b‖β∞‖(−∆)β/2Psf‖∞ds

= Ct−1/2‖f‖∞ + C

∫ t

0

(t− s)−1/2s−1/2‖b‖β∞s1/2‖(−∆)β/2Psf‖∞ds.

Define

LT := sup
0≤t≤T

t1/2‖(−∆)β/2Ptf‖∞

with T > 0 to be chosen later. From the previous inequality we have

LT ≤ C‖f‖∞ + CT
1
2 sup

0≤t≤T

∫ t

0

s−
1
2 (t− s)−

1
2 ds‖b‖β∞LT

≤ C‖f‖∞ + CB(3/2, 3/2)T
1
2‖b‖β∞ LT ,

(5.7)

where B is the beta function. Choosing t0 ∈ (0, 1) (depending on α, β, and ‖b‖β∞) such

that CB(3/2, 3/2)t
1
2
0 ‖b‖β∞ < 1

2
, we obtain

Lt0 ≤ 2C‖f‖∞.

This immediately implies the first estimate in the theorem.
For the second estimate, taking Pt0/2f rather than f as the initial data, by the same

procedure as above we have

‖(−∆)β/2Ptf‖∞ ≤ C1

(
t− t0

2

)− 1
2

‖Pt0/2f‖∞

≤ C1

(
t− t0

2

)− 1
2

‖f‖∞, ∀ t ∈ (t0/2, 3t0/2).

Therefore

‖(−∆)β/2Ptf‖∞ ≤ C1

(
t0
2

)− 1
2

‖f‖∞, ∀ t ∈ (t0, 3t0/2).

Now taking Pt0f as the initial data, we obtain

‖(−∆)β/2Ptf‖∞ ≤ C1

(
t0
2

)− 1
2

‖f‖∞, ∀ t ∈ (3t0/2, 2t0).

Iterating the above argument, we finally get

‖(−∆)β/2Ptf‖∞ ≤ C1

(
t0
2

)− 1
2

‖f‖∞, ∀ t ≥ t0,

which is the desired second estimate. �
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6. Application 3: modulus of continuity of transition semigroup of a
family of Lévy processes

When the Lévy measure ν on Rd satisfies

(6.1)

∫
{|x|<r}

ν(dx) =∞, ∀ r > 0,

the process (Lt)t≥0 has infinitely many small jumps in any time interval [t, t + δ). Then
(see e.g. [14, Theorem 27.4]), the law L(Lt) of Lt is continuous but not necessarily
absolutely continuous with respect to Lebesgue measure. However, if additionally ν is
radially absolutely continuous with some divergence condition, then L(Lt) is absolutely
continuous (see e.g. [14, Theorem 27.10]). Let us also recall, see e.g. [10], that the
law L(Lt) is absolutely continuous if and only if the corresponding semigroup satisfies
Pt : Bb(Rd) 7→ Cb(Rd). Thus the absolute continuity is equivalent to the strong Feller
property.

Below we provide some estimates for the moduli of continuity of the transition semi-
group which is beyond the scope of the α-stable type process. Namely, assume that the
Lévy measure ν is absolutely continuous with respect to Lebesgue measure on the ball
B1(0) = {x : |x| < 1} and

(6.2)
ν(dx)

dx
≥ | log2 |x||2γ

|x|d
, x ∈ B1(0),

where γ ∈ (1,∞) is a constant.

Theorem 6.1. Let (Lt)t≥0 be a Lévy process with Lévy measure ν satisfying (6.2). Then
(Lt)t≥0 is strong Feller. Moreover, there exists an r0 > 0 such that

(6.3) |Ptf(x)− Ptf(y)| ≤ C

| log2 |x− y||γ−1
, |x− y| ≤ r0,

where C depends on γ, d, t and r0.

Let Ω ⊂ Rd be an open set. Given a function f : Ω → R, x ∈ Ω and r > 0 such that
the ball Br(x) ⊂ Ω, define

f̄x,r :=
1

|Br(x)|

∫
Br(x)

f(y)dy.

To prove the theorem, we need to use the following lemma, which is a generalized Cam-
panato theorem. The proof of the lemma is deferred to the appendix.

Lemma 6.2. Let Ω ⊂ Rd be open and bounded, and let f : Ω→ R be a bounded function.
Assume that there are constants C > 0 and γ > 1 such that

(6.4)

∫
Br(x)

|f(y)− f̄x,r|2dy ≤ C
rd

| log2 r|2γ
,

for any ball Br(x) ⊂ Ω. Then f is uniformly continuous and there exists r0 > 0 such that
for any open Ω̃ ⊂ Ω with diam (Ω̃) < r0 and dist (Ω̃, ∂Ω) > r0, we have

(6.5) |f̄x,r − f(x)| ≤ Ĉ

| log2 r|γ−1
, ∀x ∈ Ω̃,

where Ĉ depends on d, γ and C. Moreover,

(6.6) sup
x,y∈Ω̃,x 6=y

|f(x)− f(y)|| log2 |x− y||γ−1 ≤ C̃,

9



where C̃ depends on C, dist (Ω̃, ∂Ω), d, γ and r0.

Remark 6.3. It is interesting to point out that (6.5) is a Poincaré type inequality, which
might be of independent interest.

Proof of Theorem 6.1. Let f ∈ Bb(Rd) and set g(x) = Ptf(x). For any t > 0, we have

∫
Br(x)

|g(y)− ḡx,r|2dy =

∫
{|y−x|≤r}

1

|Br(x)|2

∣∣∣∣∫
{|z−x|≤r}

(g(y)− g(z)) dz

∣∣∣∣2 dy

≤
∫
{|y−x|≤r}

1

|Br(x)|

∫
{|z−x|≤r}

|g(y)− g(z)|2 dzdy

≤
∫
{|y−x|≤r}

1

|Br(x)|

∫
{|y−z|≤2r}

|g(y)− g(z)|2 dzdy,

(6.7)

where the last inequality follows from the inclusion

{|y − x| ≤ r} ∩ {|z − x| ≤ r} ⊂ {|y − x| ≤ r} ∩ {|y − z| ≤ 2r}.

From (6.7) we further get

∫
Br(x)

|g(y)− ḡx,r|2dy

≤
∫
{|y−x|≤r}

1

|Br(x)|

∫
{|y−z|≤2r}

|g(y)− g(z)|2 |z − y|d

| log2 |y − z||2γ
| log2 |z − y||2γ

|z − y|d
dzdy

=

∫
{|y−x|≤r}

1

|Br(x)|

∫
{|z|≤2r}

|g(y + z)− g(y)|2 |z|d

| log2 |z||2γ
| log2 |z||2γ

|z|d
dzdy

≤
∫
{|y−x|≤r}

1

|Br(x)|

∫
{|z|≤2r}

|g(y + z)− g(y)|2 |z|d

| log2 |z||2γ
ν(dz)dy

Since rd

| log2 r|2γ
is decreasing as r < r0/2 for small r0 > 0, the above inequality further

gives

∫
Br(x)

|g(y)− ḡx,r|2dy ≤ C
rd

| log2 r|2γ
1

|Br(x)|

∫
{|y−x|≤r}

∫
{|z|≤2r}

|g(y + z)− g(y)|2 ν(dz)dy

≤ C
rd

| log2 r|2γ
sup

y∈Br(x)

∫
Rd
|g(y + z)− g(y)|2 ν(dz)

≤ C
rd

| log2 r|2γ
t−1‖f‖2

∞,

where the last inequality follows from Corollary 3.2. Combining the estimate above and
Lemma 6.2 we obtain the desired conclusion. �
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7. Proof of Lemma 6.2

We follow [9]. For 0 < r2 < r1 < min{dist (Ω̃, ∂Ω), 1} and any x ∈ Ω̃, we have

|f̄x,r1 − f̄x,r2 | ≤
1

|Br2|

∫
Br2 (x)

|f(y)− f̄x,r2|dy +
1

|Br2 |

∫
Br2 (x)

|f(y)− f̄x,r1|dy

≤
√

1

|Br2 |

∫
Br2 (x)

|f(y)− f̄x,r2|2dy +

√
1

|Br2|

∫
Br2 (x)

|f(y)− f̄x,r1|2dy

≤
√

1

|Br2 |

∫
Br2 (x)

|f(y)− f̄x,r2|2dy +

√
|Br1|
|Br2|

1

|Br1 |

∫
Br1 (x)

|f(y)− f̄x,r1|2dy

≤ C

[
1

| log2 r2|γ
+

(
r1

r2

)d/2
1

| log2 r1|γ

]

≤ C

[
1 +

(
r1

r2

)d/2]
1

| log2 r1|γ
,

(7.1)

where the last inequality is by the assumption of the lemma. For all 0 < rn < rm <
dist (Ω̃, ∂Ω), define

N :=

[
log2

(
rm
rn

)]
,

without loss of generality we assume rm < 1/2. By (7.1) we have

|f̄x,rn − f̄x,rm| ≤
N∑
k=1

|f̄x,2−krm − f̄x,2−k+1rm|+ |f̄x,2−Nrm − f̄x,rn|

≤ Cd

N∑
k=1

1

|k − 1− log2 rm|γ
+ Cd

1

|N − log2 rm|γ

≤ Cd,γ
1

| log2 rm|γ−1
.

(7.2)

Hence, there exists an f̃ such that

lim
r→0

f̄x,r = f̃(x), ∀x ∈ Ω̃,

and there exists an r0 > 0 such that as r < r0,

(7.3) |f̄x,r − f̃(x)| ≤ Cd,γ
1

| log2 r|γ−1
, ∀x ∈ Ω̃.

On the other hand, by the Lebesgue theorem,

lim
r→0

f̄x,r = f(x) for almost allx ∈ Ω̃.

By (7.3), all the points in Ω̃ are Lebesgue points. Hence, f̄x,r → f(x) uniformly for x ∈ Ω̃
as r → 0 with

(7.4) |f̄x,r − f(x)| ≤ Cd,γ
1

| log2 r|γ−1
, ∀x ∈ Ω̃.

Now for x, y ∈ Ω̃, denote r = |x− y|, we have

(7.5) |f̄y,2r − f̄x,2r| ≤ |f̄y,2r − f(z)|+ |f(z)− f̄x,2r|, z ∈ B2r(x) ∩B2r(y).
11



Since B2r(x) ∩B2r(y) contains a ball with radius r, as r < r0/2,

|f̄y,2r − f̄x,2r| ≤
1

|Br|

∫
B2r(x)∩B2r(y)

|f̄y,2r − f(z)|+ |f(z)− f̄x,2r|dz

≤ 1

|Br|

∫
B2r(y)

|f̄y,2r − f(z)|dz +
1

|Br|

∫
B2r(x)

|f(z)− f̄x,2r|dz

≤ C
1

| log2 r|γ
,

(7.6)

where the last inequality is by the assumption of the lemma. Observe that

(7.7) |f(x)− f(y)| ≤ |f(x)− f̄x,2r|+ |f(y)− f̄y,2r|+ |f̄y,2r − f̄x,2r|.

This, together with (7.6) and (7.4), immediately implies the desired inequality.
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