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Abstract

The existence of strong and weak càdlàg versions of a solution to a linear
equation in a Hilbert space H, driven by a Lévy process taking values in
a Hilbert space U ←↩ H is established. The so-called cylindrical càdlàg
property is investigated as well. A special emphasis is put on infinite systems
of linear equations driven by independent Lévy processes.
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1. Introduction

This paper is concerned with the time regularity of a solution to the
following linear evolution equation

dX = AXdt+ dZ, X(0) = 0, (1)

where A generates a C0-semigroup S on a Hilbert space H and Z is a Lévy
process taking values in a Hilbert space U .
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Note that (1) includes linear parabolic and hyperbolic equations per-
turbed by an infinite dimensional stochastic process. To work with the solu-
tion having Markov property one has to assume (see [19], Chapter 1) that Z
is a Lévy process. A good theory for linear equations is necessary to study
the nonlinear problems of the type

dX = (AX + F (X)) dt+ dZ, X(0) = x ∈ H.

These problems are even more important from the application point of view.

It is not difficult to formulate necessary and sufficient conditions under
which the solution to (1) exists in H and/or is mean square continuous; see
Proposition 2.6. However for a deeper study of the solution it is necessary to
find out how regular are its trajectories and this is the main purpose of the
present study.

Since the case of Z being a Wiener process is rather well understood (see
[7, 8, 11, 3]) we assume that Z is without the Gaussian part. Moreover if
the process Z takes values in the space U ↪→ H, then, under rather mild
assumptions on the semigroup S, the solution has a càdlàg modification due
to the classical Kotelenez results (see [14, 15], and [10]). This is obviously the
best possible time regularity result for an equation driven by a jump noise.
It is however important to consider the case when Z lives in a bigger space
U ←↩ H; see e.g. [1]. For instance to establish the strong Feller property of
the corresponding transition semigroup the inclusion U ←↩ H is often very
helpful. We will limit our considerations to this case only. Obviously to have
the solution taking values in H we will have to assume that the semigroup S
exhibits some regularising property. Namely we assume that for each t > 0,
S(t) has a (unique) extension to a bounded linear operator, denoted also by
S(t), from the space in which Z lives to H. We assume that the solution X
takes values in H and is given in the so-called mild form:

X(t) =

∫ t

0

S(t− s)dZ(s), t ≥ 0.

Path properties of X depend heavily on the jump measure ν of Z. Namely
if ν(U\H) > 0, then regardless the generator A, even if X is square integrable
in H, there is a non empty set of vectors z ∈ H such that for any T > 0,
with non zero, or even in many cases with probability 1, the trajectories of
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the real-valued process 〈X(t), z〉H , t ∈ [0, T ], are unbounded; see [4] and [19],
Proposition 9.25. Therefore we will assume that the Lévy measure ν of Z
satisfies

ν(U \H) = 0. (2)

One obtains an interesting class of equations, including the perturbed
heat equation, assuming that A is a negative definite operator with eigen-
vectors (en), forming an orthonormal and complete basis in H, and with the
corresponding, positive eigenvalues (γn). If in addition

Z =
∞∑
n=1

Znen, (3)

where (Zn) are independent real-valued Lévy processes each with a Lévy
measure µn, then equations of this form will be called of the diagonal type.
In fact then

X(t) =
∞∑
n=1

Xn(t)en,

where
dXn = −γnXndt+ dZn, Xn(0) = 0.

One can thus identify X with the sequence of processes (Xn) and the space
H with l2. Due to the independence of the processes Zn, the Lévy measure
ν of Z is always supported on the set sum

⋃
nRen and obviously hypothesis

(2) is satisfied.
Condition (2) imposed on the Lévy measure of the noise, does not guar-

antee that X has càdlàg trajectories in H. In fact it was shown recently, for
a large class of equations satisfying (2), including a subclass of diagonal ones,
that their solutions live in H but do not allow a càdlàg modification; see [2],
and also Theorem 2.3, Propositions 4.1, 4.3, and Corollary 4.2 of the present
paper. Moreover, it was shown by Liu and Zhai [17], see also Remark 3.5,
for the diagonal systems with Zn being independent α-stable processes that
if X is càdlàg in H then necessarily the process Z takes values in H.

These results are in sharp contrast with what one could expect from the
results on the equations with Gaussian noise. The càdlàg property for the
equations with Lévy perturbations is much less frequent than the continuity
of the trajectories in the Gaussian case; see [7, 8, 11, 3]. This is one of the
reasons that in the jump case more sophisticated concepts of regularity might
be useful. In fact we will deal with the following properties.
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Definition 1.1. i) We say that a processX has a càdlàg modification if there
is a modification X̃ of X with càdlàg trajectories; that is right continuous
and having left limit at any point.
ii) We say that an H-valued process X has a weakly càdlàg modification if
there is a modification X̃ of X such that for any z ∈ H, the real-valued
process 〈X̃(·), z〉H has càdlàg trajectories.
iii) An H-valued process X is cylindrical càdlàg if for any z ∈ H, the real-
valued process 〈X(·), z〉 has a càdlàg modification.
iv) Let V ↪→ H. An V -valued process X is V -cylindrical càdlàg if for all
v∗ ∈ V ∗ the real-valued process v∗X(·) has a càdlàg modification.

We have the following obvious implications

i) =⇒ ii) =⇒ iii)⇐= iv)

The càdlàg property is fundamental for establishing the strong Markov
property of the solution and for various localisation procedures. It allows
to formulate and study the exit time τD from a given set D. The existence
of a weakly càdlàg modification ensures at least the local boundedness of
trajectories; see Theorem 2.3(ii). For solutions which are cylindrically càdlàg
or V -cylindrically càdlàg, the exit times are meaningful for a large class of
cylindrical sets of the form D = {x ∈ H: Πx ∈ G} or D = {x ∈ V : Πx ∈ G}
where Π is a finite projection in H or in V , respectively.

We will describe now the main results of the paper. Results on the càdlàg
property are formulated and discussed in Section 3. Our main result is Theo-
rem 3.1. We restrict our attention to the case when the operator A generates
an analytic semigroup and thus to parabolic type of equations. The case of
hyperbolic equations leads to the group, rather than to semigroup S, and
therefore requires the noise taking values in the state space. We show that
the class of equations having càdlàg solutions in H but with the noise pro-
cess evolving outside H is non empty and of some interest; see e.g. Example
3.4. Thus, the phenomenon encountered in the case of α-stable perturba-
tions by Liu and Zhai [17], and described above, is not valid in general. Our
results rely on the classical Chentsov work [5] or [9] and on formulae for mo-
ments of integrals with respect to Poissonian random measures gathered in
the preliminaries. As a byproduct we obtain also the estimates of the type

E sup
0≤t≤T

|X(t)|pH <∞.
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We note that the classical result of Kinney see [13] or [19], Theorem 3.23, on
càdlàg version of a Markov process would require that

lim
t↓0

sup
x∈H

P
(∣∣∣∣S(t)x+

∫ t

0

S(t− s)dZ(s)− x
∣∣∣∣
H

> r

)
= 0, ∀ r > 0. (4)

Obviously (4) is satisfied if and only if A = 0. Assume (4). Then putting
x = 0 we obtain

lim
t↓0

P
(∣∣∣∣∫ t

0

S(t− s)dZ(s)

∣∣∣∣
H

> r

)
= 0, ∀ r > 0.

Therefore |S(t)x− x|H has to converge to 0 uniformly in x from the whole
space H. It is impossible as supx∈H |S(t)x− x|H = ∞ if S(t) is not the
identity.

We do not treat in this paper an interesting question under which condi-
tions the solution X has a càdlàg or weakly càdlàg modification in a bigger
space H̃ ←↩ H. For some answers to these questions we refer the reader to
[16].

Results on the three remaining càdlàg properties are contained in Sections
4–6 and are established only for the diagonal systems. They are rather
technical and involve long formulae. Extensions to the general case however
would be possible if needed.

The main result on weak càdlàg property is formulated as Proposition 4.1
and is of negative character. It states sufficient conditions for non-existence
of weakly càdlàg solutions in terms of the tails of the measures µn. Its proof
is based on the general if and only if conditions for weak càdlàg property,
formulated in terms of the orthogonal expansions and established in the
preliminaries as Theorem 2.3. It turns out that also weak càdlàg property
implies severe restrictions on the parameters of the equations. In particular
the case of independent and identically distributed coordinates of the noise
process (cylindrical noise) is excluded. At this moment we do not have any
example of linear system (1) whose solution has no càdlàg but only a weakly
càdlàg modification.

Fortunately the cylindrical càdlàg property takes place under much weaker
assumptions and in particular the coordinates of the noise can be identically
distributed. Sufficient conditions for this property are formulated in The-
orems 5.1 and 5.2. It is worth noting that to show the cylindrical càdlàg
property of X one cannot apply directly the Chentsov result (see Remark
8.1) but one needs a new way of circumventing that obstacle.
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Results on V -cylindrical càdlàg property are presented in Section 6. The
main result, Theorem 5.2, provides sufficient conditions for that property.
As a consequence of Theorem 5.2 and Proposition 4.3 we see that even if
the embedding V ↪→ H is compact, then V -cylindrical càdlàg property does
not ensure the existence of a weakly càdlàg modification. Therefore the
implication

ii)⇐= iv)

does not hold in general.

We complete this introduction with some open questions.

Question 1 We have conditions for the existence of càdlàg modifications
and conditions which exclude the existence of a weakly càdlàg modification.
Find applicable conditions leading to weak but not strong càdlàg property. In
particular find example of a linear equation whose solution admits a weakly
càdlàg but not càdlàg modification.

Question 2 In our investigation we rely on the Chentsov criteria with the
exponent p = 2; see Corollary 2.2. Find extensions of our results for p 6= 2
or more generally using the function g appearing in Theorem 2.1 not of the
power type.

Question 3 Find conditions for cylindrical càdlàg properties in the non-
diagonal case.

Question 4 Find conditions for the càdlàg or cylindrical càdlàg property
in case of the noise with tails (see Corollaries 3.2 and 5.3). In particular in
diagonal case assume that Zn = σnLn where Ln are independent symmetric
α-stable processes and

∞∑
n=1

σαn
γn

<∞.

Is it true that the process X is cylindrical càdlàg?

2. Preliminary results

2.1. Càdlàg criteria in metric spaces

We first recall some basic facts on path regularity of stochastic processes in
metric spaces. They can be attributed to N.N. Chentsov, but the exposition
is based on the book of Gihman and Skorohod [9].
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Let ξ = (ξ(t), t ∈ [0, T ]) be a separable process taking values in a metric
space (U, ρ). We extent ξ on R putting ξ(t) = ξ(0) for t < 0 and ξ(t) = ξ(T )
for t ≥ T . The following result holds (see [9], Lemma 3 and Theorem 1 of
Chapter 3).

Theorem 2.1. Assume that there are an increasing function g: (0,∞) 7→
(0,∞) and a function q: (0,∞)× (0,∞) 7→ (0,∞) such that for all C, h > 0,

P {[ρ(ξ(t), ξ(t− h)) > Cg(h)] ∩ [ρ(ξ(t), ξ(t+ h)) > Cg(h)]} ≤ q(C, h),

and

G :=
∞∑
n=1

g(T2−n) <∞, Q(C) :=
∞∑
n=1

2nq(C, T2−n) <∞.

Then with probability 1, ξ has no discontinuities of the second kind, and for
any N > 0,

P

{
sup

t,s∈[0,T ]
ρ(ξ(t), ξ(s)) > N

}
≤ P

{
ρ(ξ(0), ξ(T )) >

N

2G

}
+Q

(
N

2G

)
.

Corollary 2.2. Assume that there are p, r,K > 0 such that for all t ∈ [0, T ]
and h > 0,

E [ρ (ξ(t), ξ(t− h)) ρ (ξ(t), ξ(t+ h))]p ≤ Kh1+r. (5)

Then with probability 1, ξ has no discontinuities of the second kind. More-
over, for any 1 ≤ q < 2p,

E sup
t,s∈[0,T ]

(ρ(ξ(t), ξ(s)))q ≤ (2G)qE (ρ(ξ(T ), ξ(0)))q +R, (6)

where 0 < r′ < r,

G =
∞∑
n=1

(T2−n)r
′/(2p) <∞, (7)

and R := 1 + q
2p−q

K(2G)2pT 1+r−r′

1−2r′−r .
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Proof Let 0 < r′ < r. Then the assumptions of Theorem 2.1 hold with

g(h) := hr
′/(2p) and q(C, h) :=

K

C2p
h1+r−r

′
.

By Chebyshev’s inequality

P {[ρ(ξ(t), ξ(t− h)) > Cg(h)] ∩ [ρ(ξ(t), ξ(t+ h)) > Cg(h)]}
≤ P

{
ρ(ξ(t), ξ(t− h))ρ(ξ(t), ξ(t+ h)) > C2g2(h)

}
≤ Kh1+r

C2pg2p(h)
=
Kh1+r−r

′

C2p
.

Note that in this case G is given by (7), and

Q

(
N

2G

)
=

∞∑
n=1

2n
K(2G)2p

N2p
(T2−n)1+r−r

′
=
K(2G)2p

N2p
T 1+r−r′

∞∑
n=1

2−n(r−r
′)

=
K(2G)2pT 1+r−r′

1− 2r′−r
N−2p.

To show (6) take q ≥ 1. Since

E sup
t,s∈[0,T ]

(ρ(ξ(t), ξ(s)))q = q

∫ ∞
0

P

{
sup

t,s∈[0,T ]
ρ(ξ(t), ξ(s)) ≥ N

}
N q−1dN,

Theorem 2.1 yields

E sup
t,s∈[0,T ]

(ρ(ξ(t), ξ(s)))q ≤ (2G)qE (ρ(ξ(T ), ξ(0)))q+1+q

∫ ∞
1

Q

(
N

2G

)
N q−1dN,

and consequently (6). �

2.2. Criteria for càdlàg properties in Hilbert spaces

Let now (Xn) be a sequence of real-valued càdlàg processes defined on a
finite time interval [0, T ], and let (en) be an orthonormal basis of a Hilbert
space H. Assume that for each t ∈ [0, T ],

X(t) =
∞∑
n=1

Xn(t)en,

where the series converges in probability or equivalently P-a.s. The first part
of the theorem below is taken from the paper by Liu and Zhai [17]. It will
not be used in the paper but it is included for a more complete picture. In
the proofs we follow suggestions by A. Jakubowski [12].
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Theorem 2.3. (i) Process X has a càdlàg modification if and only if

P

(
lim
N→∞

sup
t∈[0,T ]

∞∑
n=N

X2
n(t) = 0

)
= 1. (8)

(ii) Process X has a weakly càdlàg modification if and only if

P

(
sup
t∈[0,T ]

∞∑
n=1

X2
n(t) <∞

)
= 1. (9)

Proof Since each Xn is càdlàg, (8) implies that X has a càdlàg modification.
Therefore we need to show that (8) follows from the existence of a càdlàg
modification X̃ of X. To see this note that on a dense set Q ⊂ [0, T ], X = X̃,
P-a.s. Consequently, since each Xn is càdlàg,

〈X̃(t), en〉H = Xn(t) = 〈X(t), en〉H , ∀ t ∈ [0, T ], P− a.s.

Therefore there is an Ω0 ⊂ Ω such that P(Ω0) = 1 and for any ω ∈ Ω0,

[0, T ] 3 t 7→ X̃(t;ω) ∈ H

is càdlàg and 〈X̃(t;ω), en〉H = Xn(t;ω). By càdlàg property, for any ω ∈ Ω0,
the set {X(t;ω): t ∈ [0, T ]} is compact in H. Therefore the desired conclusion
follows from the following criterion for a relative compactness of a bounded
set K in H;

lim
N→∞

sup
x∈K

∞∑
n=N

〈x, en〉H = 0.

To see that (9) implies the weakly càdlàg property of X take a z ∈ H.
One has to show that

[0, T ] 3 t 7→ 〈X(t), z〉H ∈ R

is càdlàg P-a.s. Let Ω̃ be the set of all ω ∈ Ω such that

sup
t∈[0,T ]

∞∑
n=1

X2
n(t;ω) <∞.

Then

X(t;ω) =
∞∑
n=1

Xn(t;ω)en
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is a bounded H-valued mapping of t ∈ [0, T ]. Moreover,

〈X(t;ω), ek〉H = Xk(t;ω), t ∈ [0, T ],

are càdlàg functions. Let t ∈ [0, T ) and let tm ↓ t. Then H 3 z 7→
〈X(tm;ω), z〉H , m = 1, 2, . . ., is a sequence of linear functionals, converging
on a dense set. Since their norms are bounded 〈X(tm;ω), z〉H , m = 1, 2, . . .,
converges for any z ∈ H. Since

lim
m→∞

〈X(tm;ω), z〉H = 〈X(t;ω), z〉H

holds on a dense set of z ∈ H it holds for any z ∈ H. Therefore X(·;ω) is
weakly right continuous.

Now let t ∈ (0, T ] and let tm ↑ t. Then

lim
m→∞

〈X(tm;ω), ek〉H = Xk(t−;ω), k ∈ N.

Boundedness of X(tm;ω), m ∈ N, implies that the weak limit of X(tm;ω)
exists. Since it holds for any sequence tm ↑ t, the weak left limit X(t−;ω)
exists.

Assume now that X̃ is a weakly càdlàg modification of X. We will show
(9). To do this observe that

X̃n(t;ω) = 〈X̃(t;ω), en〉H , t ∈ [0, T ], n = 1, 2, . . . ,

are càdlàg functions. Moreover, for any t ∈ [0, T ],

P
(
ω ∈ Ω: X̃n(t;ω) = Xn(t;ω)

)
= 1.

Since both processes X̃n and Xn are càdlàg, therefore there is a set Ω̃ ⊂ Ω
such that P(Ω̃) = 1 and

X̃n(t;ω) = Xn(t;ω), ∀ t ∈ [0, T ], ∀n, ∀ω ∈ Ω̃.

Since

sup
t∈[0,T ]

∞∑
n=1

X̃2
n(t;ω) <∞, P− a.s.,

(9) holds. �
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2.3. Moments of stochastic integral

In the proposition below π̂ is a compensated Poisson random measure on
a measurable space E with the intensity measure ν.

Proposition 2.4. Assume that deterministic real-valued measurable func-
tions f1, . . . , f4 have finite forth moments with respect to ν. Then we have

E
∫
E

f1(x)π̂(dx)

∫
E

f2(x)π̂(dx)

∫
E

f3(x)π̂(dx)

∫
E

f4(x)π̂(dx)

=

∫
E

f1(x)f2(x)ν(dx)

∫
E

f3(x)f4(x)ν(dx)

+

∫
E

f1(x)f3(x)ν(dx)

∫
E

f2(x)f4(x)ν(dx)

+

∫
E

f1(x)f4(x)ν(dx)

∫
E

f2(x)f3(x)ν(dx)

+

∫
E

f1(x)f2(x)f3(x)f4(x)ν(dx).

A simple proof of the proposition above can be obtained by consecutive
differentiation of the characteristic function

F (x1, x2, x3, x4) = E exp

{
i

4∑
j=1

xj

∫
E

fj(x)π̂(dx)

}

= exp

{∫
E

(
ei

∑4
j=1 xjfj(x) − i

4∑
j=1

xjfj(x)− 1

)
ν(dx)

}
.

In the paper we will also need the following special case of Proposition
2.4. Namely, let L be a real-valued purely jump Lévy process with a Lévy
measure µ. We assume that µ has finite moments up to order 4. Write

mj :=

∫
R
|y|jµ(dy), j = 1, . . . , 4.

Then L(t), t ≥ 0, can be written as the sum of a drift term mt and a pure
jump Lévy martingale with the Lévy exponent

Ψ(z) =

∫
R

(
1 + izy − eizy

)
µ(dy). (10)

For our purposes we can assume that the drift term vanishes and consequently
that the Lévy exponent of L is given by (10).
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Proposition 2.5. For any T < ∞ and continuous deterministic functions
f1, f2,

E
(∫ T

0

f1(s)dL(s)

)2(∫ T

0

f2(s)dL(s)

)2

= 2m2
2

(∫ T

0

f1(s)f2(s)ds

)2

+m2
2

∫ T

0

f 2
1 (s)ds

∫ T

0

f 2
2 (s)ds

+m4

∫ T

0

f 2
1 (s)f 2

2 (s)ds.

2.4. Criteria for evolution of OU processes in H

In the proposition below we are concerned with X given by (1). Let π be
the random jump measure of Z, and let

π̂(ds, dz) := π(ds, dz)− ν(dz)ds

be the compensated random measure. By the Lévy–Khinchin representation
formula (see e.g. [19], Theorem 6.8) the process Z can be written as follows

Z(t) = mt+

∫ t

0

∫
{|z|U>1}

zπ(ds, dz)+

∫ t

0

∫
{|z|U≤1}

zπ̂(ds, dz), t ≥ 0. (11)

Proposition 2.6. Assume that Z is a Lévy process in a Hilbert space U ←↩
H with representation (11). Assume that the Lévy measure ν of Z satisfies
ν(U \H) = 0 and that the drift term m = 0. Then we have the following.
(i) Process Z takes values in H if and only if∫

H

|z|2H ∧ 1ν(dz) <∞, t ≥ 0.

(ii) Process X takes values in H if and only if for any t > 0,∫ t

0

∫
H

|S(s)z|2H ∧ 1dsν(dz) <∞,

∫ t

0

∫
U

[χB(v)− χB(S(s)v)]S(s)vν(dv)ds ∈ H,

where B := {x ∈ U : |x|U ≤ 1}.
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(iii) Assume that
∫
{|z|U>1} |z|Uν(dz) < ∞ and that

∫ t
0
S(s)a ds ∈ H, t > 0,

where

a =

∫
{|z|U>1}

zν(dz).

Then X has finite second moment in H if and only if∫ t

0

∫
H

|S(s)z|2H dsν(dz) <∞, t ≥ 0. (12)

Moreover, if (12) holds then X is mean square continuous in H.

Proof The first part follows directly from the Lévy–Khinchin theorem (see
e.g. [19], Theorems 4.23 and 6.8). In order to show the second part note that
the random variable X(t) is infinitely divisible with the Lévy measure

νt :=

∫ t

0

S(s)ds ◦ ν

and the drift

mt =

∫ t

0

∫
U

[χB(v)− χB(S(s)v)]S(s)vν(dv)ds,

for more details see [6]. We have to check only that mt ∈ H, and that∫
H

|z|2H ∧ 1νt(dz) <∞.

Since ∫
H

|z|2H ∧ 1νt(dz) =

∫ t

0

∫
H

|S(s)z|2H ∧ 1ν(dz),

the desired conclusion holds.
Let

Z0(t) =

∫ t

0

∫
U

zπ̂(dz, ds), t ≥ 0.

Clearly (12) is an if and only if condition under which the process∫ t

0

S(t− s)dZ0(s), t ≥ 0,
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is square integrable in H. On the other hand Z(t) = Z0(t) +at, where a ∈ U
and

∫ t
0
S(t − s)ads ∈ H. Therefore the desired equivalence holds. To see

the continuity in probability assume that t > s ≥ 0. Without any loss of
generality we can assume that

Z(t) =

∫ t

0

∫
U

zπ̂(ds, dz), t ≥ 0.

Then

I(t, s) := E |X(t)−X(s)|2H

= E
∣∣∣∣∫ t

0

S(t− r)dZ(r)−
∫ s

0

S(s− r)dZ(r)

∣∣∣∣2
H

+ E
∣∣∣∣∫ t

s

S(t− r)dZ(r)

∣∣∣∣2
H

=

∫ s

0

∫
H

|(S(t− r)− S(s− r)) z|2H drν(dz) +

∫ t

s

∫
H

|S(t− r)z|2H drν(dz)

=

∫ s

0

∫
H

|(S(t− s)− I)S(r)z|2H drν(dz) +

∫ t−s

0

∫
H

|S(r)z|2H drν(dz).

By (12) and the Lebesgue dominated convergence theorem I(t, s) → 0 pro-
vided t− s→ 0 and s is in a bounded interval. �

3. Càdlàg property

This section is concerned with the existence of a càdlàg modification of
the solution X to (1). For some technical reason we will need to assume that
the semigroup S is analytic on H. Without any loss of generality we may
assume that S is exponentially stable. Then 0 belongs to the resolvent set of
the generator A.

Let Hρ, ρ > 0, be the domain of (−A)ρ equipped with the norm |z|ρ :=
|(−A)ρz|H . If ρ < 0, then Hρ is the dual space to H−ρ where the duality
is given by the identification H = H∗. The proof of the theorem below is
postponed to Section 6.

Theorem 3.1. Let X be the solution to (1), where A is the generator of
an exponentially stable analytic semigroup S on a Hilbert space H. Let Z
be a Lévy process taking values in a Hilbert space U = H−ρ for a certain
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ρ < 1/2 and having representation (11). Assume that the Lévy measure ν of
Z satisfies ν(H−ρ \H) = 0 and that∫

H

(
|z|2−ρ + |z|4ε

)
ν(dz) <∞

for a certain ε > 0.
Then X has a càdlàg modification in H and

E sup
0≤t≤T

|X(t)|qH <∞, ∀T <∞, ∀ q ∈ [1, 4). (13)

Using the standard localisation procedure we obtain the following.

Corollary 3.2. Assume that there are ρ < 1/2 and ε > 0 such that Z takes
values in H−ρ, the Lévy measure ν of Z satisfies ν(H−ρ \H) = 0, and∫

{|z|−ρ≤R}
|z|4εν(dz) <∞, ∀R > 0.

Then X has a càdlàg modification in H.

3.1. Diagonal case

Let us now consider the diagonal case of (1). Clearly we can assume that
H = l2, ν =

∑∞
n=1 µn where each µn is a Lévy measure of a one dimensional

Lévy process Znen, (en) is the canonical basis of l2, Aen = −γnen, and γn > 0,
n ∈ N. We assume that each Zn has Lévy–Khinchin representation

Zn(t) =

∫ t

0

∫
{|z|>1}

zπn(ds, dz) +

∫ t

0

∫
{|z|≤1}

zπ̂n(ds, dz), (14)

where πn is a Poisson random measure with intensity measure µn satisfying∫
R |z|

2 ∧ 1µn(dz) <∞.

Corollary 3.3. In the diagonal case assume that there are ρ < 1/2 and
ε > 0 such that

∞∑
n=1

∫
R

(
z2nγ

−2ρ
n + z4nγ

4ε
n

)
µn(dzn) <∞.
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Then X has a càdlàg modification in H = l2 and (13) holds. If

∞∑
n=1

∫
R

(
z2nγ

−2ρ
n

)
∧ 1µn(dzn) <∞

and
∞∑
n=1

∫
{|zn|≤γρnR}

z4nγ
4ε
n µn(dzn) <∞, ∀R > 0, (15)

then X has a càdlàg modification in l2.

In the following example we show that solution of the linear equation can
be càdlàg in H although the noise process does not live in H.

Example 3.4. Let Zn = σnLn, n ∈ N, where Ln are independent and iden-
tically distributed Lévy processes of type (14), and (σn) is a sequence of
strictly positive numbers. Assume that the Lévy measure µ of Ln has finite
moments up to order 4. Then the Lévy measure µn of Zn = σLn equals
µ(·/σn). Consequently, if there is an ε > 0 such that

∞∑
n=1

[
γε−1n σ2

n + γεnσ
4
n

]
<∞,

then by Corollary 3.3, X has a càdlàg modification in l2. In particular, if
γn � nα, σn � n−κ, then X has a càdlàg modification in l2 provided that
α > 1−2κ and κ > 1/4. Assume now that each Ln is a Poisson process with
intensity 1. Then µ = δ1 and σnLn has a Lévy measure µn = δσn . Therefore
Z = (σnLn) lives in l2 if and only if

∞∑
n=1

∫
R
x2n ∧ 1µk(dxn) =

∞∑
n=1

σ2
n ∧ 1 <∞.

Hence, if σn � n−κ, then Z takes values in l2 if and only if κ > 1/2. Summing
up, if 1/4 < κ < 1/2 and α > 1 − 2κ then Z does not take values in l2 but
the solution X has a càdlàg modification in l2.

Remark 3.5. It turns out that our result is not applicable to the case of
α-stable noise considered by Liu and Zhai [17]; see discussion in Section 1.
Namely, still in the diagonal case, assume that Z = (Zn) where Zn = σnLn,
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σn > 0 and Ln are independent real-valued symmetric α-stable processes
for a fixed α ∈ (0, 2). Note that the Lévy measure µn of σnLn is given by
µn(·) = µ(σ−1n ·), where µ is the Lévy measure of the symmetric α-stable
process. Hence µn has the density Cσαn/|x|1+α. Therefore the condition (15)
has the form

∞∑
n=1

σαn

∫ γρnR

0

z4nγ
4ε
n

z1+αn

dzn =
R4−α

4− α

∞∑
n=1

σαnγ
4ε+(4−α)ρ
n <∞, ∀R > 0.

Therefore (15) and the fact that γn → +∞ imply that
∑

n σ
α
n <∞. The last

inequality is however if and only if condition under which Z takes values in
l2; see [21, 20].

4. Weakly càdlàg property in diagonal case

In the present section we are concerned with the weakly càdlàg property
dealing only with the diagonal case. Results here are mainly of negative type.

Assume that A is negative definite self-adjoint with a compact resolvent,
(en) is the orthonormal basis of eigenvectors of A, (−γn) is the corresponding
sequence of eigenvalues, and

Z =
∞∑
n=1

Znen,

where (Zn) are independent real-valued Lévy processes with the Lévy–Khinchin
representation (14). Then

X(t) =
∞∑
n=1

Xn(t)en,

where
dXn = −γnXndt+ dZn, Xn(0) = 0.

Note that each process Xn is càdlàg. Taking into account Theorem 2.3 the
following result provides, in particular, a necessary condition for the existence
of the weakly càdlàg modification of X. The proof is in the spirit of [17].

Proposition 4.1. If for each r > 0,

∞∑
n=1

∫
{r≤|y|}

µn(dy) =∞,
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then for every T > 0,

P

(
sup
t∈[0,T ]

∞∑
n=1

X2
n(t) <∞

)
= 0.

In particular the process X does not have a weakly càdlàg modification.

Proof Note that for each n,

sup
t∈[0,T ]

X2
n(t−) ≤ sup

t∈[0,T ]
X2
n(t).

Hence
sup
t∈[0,T ]

(∆Zn(t))2 = sup
t∈[0,T ]

(∆Xn(t))2 ≤ 4 sup
t∈[0,T ]

X2
n(t),

where ∆Zn(t) := Zn(t)− Zn(t−). Taking into account the obvious estimate

4 sup
t∈[0,T ]

∞∑
n=1

X2
n(t) ≥ 4 sup

n
sup
t∈[0,T ]

X2
n(t) ≥ sup

n
sup
t∈[0,T ]

(∆Zn(t))2 ,

we obtain

sup
n
ζn ≤ 4 sup

t∈[0,T ]

∞∑
n=1

X2
n(t),

where
ζn := sup

t∈[0,T ]
(∆Zn(t))2 , n ∈ N.

Since ζn are independent,

P

(
sup
t∈[0,T ]

∞∑
n=1

X2
n(t) <∞

)
≤ P

(
sup
n
ζn <∞

)
= lim

r↑∞

∞∏
n=1

P
(
ζn ≤ r2

)
.

Let πn be the Poisson random measure corresponding to Zn. Then

P
(
ζn ≤ r2

)
= P (πn([0, T ]× {y: |y| > r}) = 0) = exp {−Tµn{y: r < |y|}} .

Therefore the desired conclusion follows from the estimate

P

(
sup
t∈[0,T ]

∞∑
n=1

X2
n(t) <∞

)
≤ lim

r↑∞
exp

{
−T

∞∑
n=1

µn{y: r < |y|}

}
. (16)

�
As a direct consequence of (16) we obtain the following result.
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Corollary 4.2. Let Zn(t) = σnLn(bnt), t ≥ 0, where Ln are independent
identically distributed Lévy processes of type (14), and σn, bn > 0. If the
Lévy measure µ of Ln has an unbounded support, and there is a T > 0 such
that

P

(
sup
t∈[0,T ]

∞∑
n=1

X2
n(t) <∞

)
> 0,

then σn → 0 or bn → 0.

The following result shows that the assumption σn → 0 is in general not
sufficient for the existence of a weakly càdlàg modification of X.

Proposition 4.3. Let Ln be independent identically distributed Lévy pro-
cesses, of type (14), each with the Lévy measure µ. Assume that µ has an
unbounded support. Then there is a sequence σn ↓ 0 such that

P

(
sup
t∈[0,T ]

∞∑
n=1

X2
n(t) <∞

)
= 0, ∀T > 0,

regardless the sequence (γn).

Proof Taking into account (16) it is enough to find a sequence σn ↓ 0 such
that

∞∑
n=1

µ{y:σ−1n r < |y|} =∞, ∀ r > 0.

Let ψ(x) = µ{y: |y| > x}, x > 0. By the assumption ψ is a decreasing
function from (0,+∞) to (0,+∞). Thus the result follows from the lemma
below. �

Lemma 4.4. Assume that ψ: (0,+∞) 7→ (0,+∞) is a decreasing function.
Then there is a sequence (an) such that an ↑ ∞ and

∞∑
n=1

ψ(ran) =∞, ∀ r > 0.

Proof Let Nk ↑ ∞ be a sequence such that

Nk+1−1∑
n=Nk

ψ(k2) ≥ 1.

19



Let an = k for n ∈ [Nk, Nk+1 − 1]. Then for any m ∈ N,

∞∑
n=1

ψ(man) =
∞∑
k=1

Nk+1−1∑
n=Nk

ψ(mk) ≥
∞∑
k=m

Nk+1−1∑
n=Nk

ψ

≥
∞∑
k=m

Nk+1−1∑
n=Nk

ψ(k2) =∞. �

5. Cylindrical càdlàg property in diagonal case

This section deals with diagonal case. As in the previous section we
assume that H = l2 and X = (Xn) where

dXn = −γnXndt+ dZn, Xn(0) = 0, n = 1, 2, . . . , (17)

γn, n ∈ N, are strictly positive real numbers, and Zn, n ∈ N, are independent
real-valued Lévy processes with the Lévy–Khinchin decomposition (14).

Given a sequence (βn) of strictly positive numbers, set

l2β :=

{
(xn): |(xn)|2l2β :=

∞∑
n=1

x2nβ
2
n <∞

}
.

Since (Zn) are independent, it is known, see [19], that Z is a Lévy process in
l2β if and only if

∞∑
n=1

∫
R
|βnxn|2 ∧ 1µn(dxn)

=
∞∑
n=1

[
β2
n

∫
(−β−1

n ,β−1
n )

x2nµn(dxn) + µn
(
R \ (−β−1n , β−1n )

)]
<∞.

Therefore, the assumption that each µn has a finite second moment ensures
that Z is a Lévy process in a suitably chosen weighted l2-space.

We assume that for any n, the Lévy measure µn of Zn has finite moments
up to order 4. Write

mj(n) :=

∫
R
|x|jµn(dx), j = 1, . . . , 4. (18)
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Note that since the Lévy measures µn have finite first moments, the processes
Zn have trajectories with bounded variation. Subtracting the drifts we may
assume that

Zn(t) =

∫ t

0

∫
R
xπ̂n(ds, dx), (19)

where πn is the Poisson jump measure of Zn and π̂n is the compensated
measure. In this way each Zn is a square integrable martingale. Obviously,

Xn(t) =

∫ t

0

e−γn(t−s)dZn(s), (20)

and

EX2
n(t) = m2(n)

∫ t

0

e−2γn(t−s)ds ≤ m2(n)

2γn
.

In this section we assume that

∞∑
n=1

(
m2(n)

γn
+
m1(n)

γn

)
<∞, (21)

which is more that is needed to guarantee that the process X := (Xn) re-
stricted to any finite time interval [0, T ], is a square integrable random ele-
ment in l2 satisfying

sup
0≤t≤T

E |X(t)|2l2 <∞.

Taking modifications we can also assume that the real-valued processes Xn

are càdlàg.
Note that X solves the linear equation (1) with a diagonal linear operator

A(xn) = (−γnxn), and with Z = (Zn).

The main results of the present section are the theorems below. Their
proofs are however postponed to Sections 8 and 9, respectively. The first
result covers the case where (Zn) are identically distributed with the Lévy
measure having finite moments up to order 4. This particular case requires
γn → +∞. By [2] the solution X has no càdlàg modification unless µ = 0,
Moreover, if µ has an unbounded support, then by Proposition 4.3, X does
not have even a weakly càdlàg modification.
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Theorem 5.1. Assume the estimate (21), and that there is an ε ∈ (0, 1)
such that:

sup
n

(
m1(n) +m2(n) +m4(n) + γ(ε−1)/2n m2(n) + γε−1n m4(n)

)
<∞. (22)

Then X is cylindrical càdlàg. Moreover,

∀T <∞, ∀ q ∈ [1, 4), sup
z∈l2:|z|l2≤1

E sup
t∈[0,T ]

|〈X(t), z〉l2|q <∞. (23)

In addition for any z ∈ l2, the series

∞∑
n=1

Xn(t)zn = 〈X(t), z〉l2

converges in Lq uniformly in t on each compact interval.

The proofs of the difficult first parts of the theorem are postponed to the
following sections. Here we sketch the proof of the final one.

Let (Prn,mz)k = zk if m ≥ k ≥ n and 0 otherwise. For any z ∈ l2 and for
any δ > 0 there is an nδ ∈ N such that

|Prn,mz|l2 ≤ δ|z|l2 , ∀m > n ≥ nδ.

Moreover, if Prn,mz 6= 0, then

E sup
t∈[0,T ]

∣∣∣∣∣
m∑
k=n

Xk(t)zk

∣∣∣∣∣
q

= E sup
t∈[0,T ]

∣∣∣∣〈X(t),
Prn,mz

|Prn,mz|

〉∣∣∣∣q |Prn,mz|q

≤ |Prn,mz|q sup
v∈l2:|v|l2≤1

E sup
t∈[0,T ]

|〈X(t), v〉l2|q .

Consequently, the estimate in (23) guarantees that for any z ∈ l2, for all
T > 0 and ε > 0 there is an nε,T such that for all nε,T ≤ n ≤ m,

E sup
t∈[0,T ]

∣∣∣∣∣
m∑
k=n

Xk(t)zk

∣∣∣∣∣
q

≤ ε.
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5.1. l2β-cylindrical càdlàg property

Recall that l2β is a weighted l2-space. Then (l2β)∗ ≡ l21/β, where 1/β =

(1/βn). Our next result is concerned with l2β-cylindrical càdlàg property and
in particular it covers the case where Zn = σnLn, n ∈ N, where Ln are
identically distributed with the Lévy measure having finite moments up to
order 4, and σn → 0.

Theorem 5.2. Assume that

lim
n→∞

(
m1(n) + . . .+m4(n) + γ−1n

)
= 0. (24)

Let moreover (βn) be a sequence of positive numbers tending to +∞ such that

∞∑
n=1

(
β2
nm2(n)

γn
+
βnm1(n)

γn

)
<∞,

and for a certain ε > 0,

∞∑
n=1

βnm1(n)2γ−2n <∞, sup
n
βn(m1(n))

2ε
2+ε <∞,

sup
n
βn

[
(m2(n))

ε
1+ε + (γ−1n )

1−ε
2

]
<∞,

sup
n
βn

[
(m4(n))

1
2 ((γ−1n )1−ε + (γ−1n )1/2) + (m4(n))1/2(1−

1
1+2ε

]
<∞.

Then for any z ∈ (l2β)∗ = l21/β, the process 〈X(t), z〉l2, t ≥ 0, is well-defined
and has a càdlàg modification. Moreover,

∀T <∞, ∀ q ∈ [1, 4), sup
z∈l2

1/β
:|z|

l2
1/β
≤1

E sup
t∈[0,T ]

|〈X(t), z〉l2 |q <∞.

5.2. Comments on localisation

It is of interest to extend the results to the case when the Lévy measures
do not have finite moments, like for α-stable processes. However the locali-
sation idea employed in Section 3 in the study of the càdlàg property does
not lead to any interesting applications. In fact: assume that Z lives in the
weighted space l2β, where βn tends to 0. Let Bβ(0, R) be the ball in l2β of ra-
dius R, and let νR be the restriction of the Lévy measure ν of Z to Bβ(0, R).
Then νR =

∑
n µn,R, where µn,R is the restriction of µn to [−R/βn, R/βn] en.

Let mj,R(n) be the moment of order j of µn,R. Then from Theorem 5.1 we
have the following.

23



Corollary 5.3. If for each R > 0,

∞∑
n=1

(
m2,R(n)

γn
+
m1,R(n)

γn

)
<∞,

and there is an ε ∈ (0, 1) such that:

sup
n

(
m1,R(n) +m2,R(n) +m4,R(n) + γ(ε−1)/2n m2,R(n) + γε−1n m4,R(n)

)
<∞.

Then X is cylindrical càdlàg.

Unfortunately, if Zn = σnLn and Ln are independent α-stable, then the
supremum appearing in the formulation of the corollary above is finite if
and only if

∑∞
n=1 σ

α
n < ∞, which holds if and only if Z takes values in

l2; see Remark 3.5. Therefore the last question formulated at the end the
introduction is open.

6. Proof of Theorem 3.1

Since
∫
U
|z|2−ρν(dz) <∞ and Z is given (11), we see that Z(t) = Z0(t) +

(a+m)t, where

Z0(t) =

∫ t

0

∫
H−ρ

zν(dz)ds, a :=

∫
{|z|−ρ>1}

zν(dz)ds ∈ H−ρ.

Since

[0,+∞) 3 t 7→
∫ t

0

S(t− s)(a+m)ds ∈ H

is continuous, we may assume that a+m = 0. Thus

X(t) =

∫ t

0

S(t− s)dZ(s) =

∫ t

0

∫
U

S(t− s)zπ̂(ds, dz).

We will use the following fact

∀ −∞ < ρ1 < ρ < +∞, Cρ1,ρ2 := sup
0<t

tρ2−ρ1‖S(t)‖L(Hρ1 ,Hρ2 ) <∞. (25)

Since

|(S(h)− I) z|H ≤
∫ h

0

|AS(s)z|H ds ≤
∫ h

0

‖(−A)1−ρS(s)‖L(H,H)ds|z|ρ,
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as a consequence of (25) we have

|(S(h)− I) z|H ≤ C0,ρh
ρ|z|ρ, ρ > 0, 0 ≤ h <∞, z ∈ Hρ. (26)

For 0 ≤ t− h < t < t+ h ≤ T we have

E |X(t+ h)−X(t)|2H |X(t)−X(t− h)|2H = E |ξ1 + ξ2 + ξ3|2H |η1 + η2|2H ,

where

ξ1 :=

∫ t−h

0

(S(t+ h− s)− S(t− s)) dZ(s),

ξ2 :=

∫ t

t−h
(S(t+ h− s)− S(t− s)) dZ(s),

ξ3 :=

∫ t+h

t

S(t+ h− s)dZ(s),

η1 :=

∫ t−h

0

(S(t− s)− S(t− h− s)) dZ(s),

η2 :=

∫ t

t−h
S(t− s)dZ(s).

Therefore, taking into account the inequality

|〈ξ1, ξ2〉H〈η1, η2〉H | ≤
1

2

(
|ξ1|2H |η1|

2
H + |ξ2|2H |η2|

2
H

)
we obtain

E |X(t+ h)−X(t)|2H |X(t)−X(t− h)|2H
≤ 3E

[
|ξ1|2H |η1|2H + |ξ2|2H |η2|2H

]
+ E|ξ1|2HE|η2|2H

+E|ξ2|2HE|η1|2H + E|ξ3|2HE|η1|2H + E|ξ3|2HE|η2|2H .

Assume that κ > 0 is such that κ+ ρ < 1/2. By (25) and (26), we have

E |ξ1|2H =

∫ t−h

0

∫
H

|(S(t+ h− s)− S(t− s)) z|2H ν(dz)ds

=

∫ t−h

0

∫
H

|(S(h)− I)S(t− s)z|2H ν(dz)ds

=

∫ t−h

0

∫
H

|(S(h)− I)S(t− s)z|2H ν(dz)ds
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≤ C2
0,κh

2κC2
−κ,ρ

∫ t−h

0

(t− s)−2(κ+ρ)ds
∫
H

|z|2−ρ ν(dz)

≤
C2

0,κC−ρ,κ

1− 2(κ+ ρ)
T 1−2(κ+ρ)

|h|2κ
∫
H

|z|2−ρν(dz) =: C(κ)h2κ
∫
H

|z|2−ρν(dz).

Similarly

E |ξ2|2H ≤ C(κ)h2κ
∫
H

|z|2−ρν(dz)

and

E |η1|2H = E
∣∣∣∣∫ t−h

0

(S(t− h− s+ h)− S(t− h− s)) dZ(s)

∣∣∣∣2
H

≤ C(κ)h2κ
∫
H

|z|2−ρν(dz).

Next

E |ξ3|2H =

∫ t+h

t

∫
H

|S(t+ h− s)z|2H ν(dz)ds =

∫ h

0

∫
H

|S(s)z|2H ν(dz)ds

≤
∫
H

|z|2−ρν(dz)

∫ h

0

‖S(s)‖2L(H−ρ,H)ds

≤
C2
−ρ,0

1− 2ρ
h1−2ρ

∫
H

|z|2−ρν(dz) =: B(ρ)h1−2ρ
∫
H

|z|2−ρν(dz),

and using the same arguments we obtain

E |η2|2H ≤ B(ρ)h1−2ρ
∫
H

|z|2−ρν(dz).

Summing up, for any κ > 0 such that 2(κ + ρ) < 1 there is a constant C
independent of h such that

E

(
3∑
i=1

|ξi|2H +
2∑
i=1

|ηi|2H

)
≤ C

(
h1−2ρ + h2κ

) ∫
H

|z|2−ρν(dz). (27)

We proceed to the calculation of the terms E|ξ1|2H |η1|2H and E|ξ2|2H |η2|2H .
To do this let (ek) be an orthonormal basis of H. By Proposition 2.4,

E |ξ1|2H |η1|
2
H =

∑
k,l

E〈ξ1, ek〉2H〈η1, el〉2H = J1 + J2 + J3,
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where

J1 =
∑
j,k

∫
H

∫ t−h

0

〈(S(t+ h− s)− S(t− s)) z, ej〉2H dsν(dz)

×
∫
H

∫ t−h

0

〈(S(t− s)− S(t− h− s)) z, ek〉2H dsν(dz)

=

∫ t−h

0

∫
H

|(S(t+ h− s)− S(t− s)) z|2H dsν(dz)

×
∫
H

∫ t−h

0

|(S(t− s)− S(t− h− s)) z|2H dsν(dz)

=

∫ t−h

0

∫
H

|(S(h)− I)S(t− s)z|2H dsν(dz)

×
∫
H

∫ t−h

0

|(S(h)− I)S(t− h− s)z|2H dsν(dz)

≤ h4κC2
−ρ,κ

(∫
H

|z|2H ν( dz)

)2

×
∫ t−h

0

(t− s)−2(ρ+κ)ds
∫ t−h

0

(t− h− s)−2(ρ+κ)ds

≤ C(1)h4κ
(∫

H

|z|2H ν( dz)

)2

.

In the estimate above, κ > 0 is such that κ + ρ < 1/2 and C(1) depends on
T , κ and ρ. Note that J2 equals

2

[∫
H

∫ t−h

0

〈(S(t+ h− s)− S(t− s)) z, (S(t− s)− S(t− h− s)) z〉H dsν(dz)

]2
is less than or equal to

2

[∫
H

∫ t−h

0

|(S(h)− I)S(t− s)z|H |(S(h)− I)S(t− h− s)z|H dsν(dz)

]2
≤ C(2)h4κ

(∫
H

|z|2H ν( dz)

)2

.

Finally J3 equals∫ t−h

0

∫
H

|(S(t+ h− s)− S(t− s)) z|2H |(S(t− s)− S(t− h− s)) z|2H dsν(dz)
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is less than or equal to

h4ζ
∫
H

|z|4ε ν(dz)C2
ε,ζ

∫ t−h

0

(t− s)−2(ζ−ε)(t− h− s)−2(ζ−ε)ds

≤ C(3)h4ζ
∫
H

|z|4ε ν(dz),

where ζ > 0 is such that ζ − ε < 1/4.
To estimate E |ξ2|2H |η2|

2
H we use similar calculations. Namely

E |ξ2|2H |η2|
2
H = I1 + I2 + I3,

where

I1 =

∫ t

t−h

∫
H

|(S(t+ h− s)− S(t− s)) z|2H dsν(dz)

×
∫
H

∫ t

t−h
|S(t− s)z|2H dsν(dz)

≤
(∫

H

|z|2−ρ ν(dz)

)2

C2
−ρ,κC

2
−ρ,0h

2κ+1−2ρ 1

1− 2ρ

∫ t

t−h
(t− s)−2(ρ+κ)ds

≤
(∫

H

|z|2−ρ ν(dz)

)2

C2
−ρ,κC

2
−ρ,0h

2κ+1−2ρ+1−2(ρ+κ) 1

1− 2ρ

1

1− 2(ρ+ κ)

≤ C(4)

(∫
H

|z|2−ρ ν(dz)

)2

h2−4ρ

and

I2 = 2

[∫
H

∫ t

t−h
〈(S(t+ h− s)− S(t− s)) z, S(t− s)z〉H dsν(dz)

]2
≤

(∫
H

|z|2−ρ ν(dz)

)2

C2
−ρ,κC

2
−ρ,0

(∫ t

t−h
(t− s)−(ρ+κ)(t− s)−ρds

)2

h2κ

≤
(∫

H

|z|2−ρ ν(dz)

)2

C2
−ρ,κC

2
−ρ,0

1

(1− 2ρ− κ)2
h2κ+2(1−2ρ−κ)

≤ C(5)

(∫
H

|z|2−ρ ν(dz)

)2

h2−4ρ

and

I3 =

∫ t

t−h

∫
H

|(S(t+ h− s)− S(t− s)) z|2H |S(t− s)z|2H dsν(dz)
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≤
∫
H

|z|4ε ν(dz) sup
s≤T
‖S(s)‖2L(Hε,H)C

2
ε,δ

∫ t

t−h
(t− s)−2(δ−ε)dsh2δ

≤
∫
H

|z|4ε ν(dz) sup
s≤T
‖S(s)‖2L(Hε,H)C

2
ε,δ

1

1− 2(δ − ε)
h2δ+1−2(δ−ε)

≤ C(6)

∫
H

|z|4ε ν(dz)h1+2ε.

Summing up there are constants B and ε̃ > 0 such that

E
2∑
i=1

|ξi|2H |ηi|2H ≤ Bh1+ε̃

[∫
H

|z|4ε ν(dz) +

(∫
H

|z|2−ρ ν(dz)

)2
]
.

Using the estimate above and (27) we can find constants δ̃ > and R such
that

E |X(t+ h)−X(t)|2H |X(t)−X(t− h)|2H ≤ Rh1+δ̃,

and the desired conclusion follows form Corollary 2.2, and the Bichteler–
Jacod type estimates from [18].

7. Auxiliary result for the proofs of Theorems 5.1 and 5.2

In this section

Ln(t) :=

∫ t

0

∫
R
|x|πn(ds, dx), n = 1, 2, . . . ,

and (λn) is a sequence of strictly positive real numbers. Later λn = γn ∧
(z2n)

−1/ε
, where (zn) is a fixed sequence and ε > 0.

Obviously Ln are independent Lévy processes, and

mj(n) =

∫
R
|x|jνn(dn), n ∈ N, j = 1, 2, 3, 4,

where νn is the Lévy measure of Ln.
Consider a sequence (zn) of real numbers. If

∞∑
n=1

z2nm2(n)λ−1n <∞, (28)
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then the real-valued process

Y (t) :=
∞∑
n=1

∫ t

0

e−λn(t−s)dL̂n(s)zn, (29)

is well defined, as the series on the right hand side converges in L2(Ω,F ,P),
and

sup
t≤T

E (Y (t))2 <∞, ∀T <∞.

The following lemma will play a crucial role in the proof of Theorems 5.1
and 5.2.

Lemma 7.1. Let ε ∈ (0, 1). Assume that (28) holds and that the quantity
A(z, λ, ε) equals( ∞∑

n=1

z2nm2(n)λ(ε−1)/2n

)2

+
∞∑
n=1

z4n
(
m2(n)2λε−1n +m4(n)(λε−1n + λεn)

)
is finite. Then for all 0 ≤ t− h ≤ t ≤ t+ h <∞.

E (Y (t+ h)− Y (t))2 (Y (t)− Y (t− h))2 ≤ 6A(z, λ, ε)h1+ε.

Proof Set

a(t, h) := E (Y (t+ h)− Y (t))2 (Y (t)− Y (t− h))2 .

Then
a(t, h) = E (I1 + I2 + I3)

2 (I4 + I5)
2 ,

where

I1 :=
∞∑
n=1

∫ t+h

t

e−λn(t+h−s)dL̂n(s) zn,

I2 :=
∞∑
n=1

∫ t

t−h

(
e−λk(t+h−s) − e−λn(t−s)

)
dL̂n(s) zn,

I3 :=
∞∑
n=1

∫ t−h

0

(
e−λn(t+h−s) − e−λn(t−s)

)
dL̂n(s) zn,

I4 :=
∞∑
n=1

∫ t

t−h
e−λn(t−s)dL̂n(s) zn,

I5 :=
∞∑
n=1

∫ t−h

0

(
e−λn(t−s) − e−λn(t−h−s)

)
dL̂n(s) zn.
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We have

E I21 (I4 + I5)
2 = E I21 E (I4 + I5)

2 = E I21
(
E I24 + E I25

)
,

E 2I1(I2 + I3)(I4 + I5)
2 = 0,

and

E (I2 + I3)
2 (I4 + I5)

2 = E I22I24 +E I22 E I25 +4E I2I4 E I3I5+E I23E I24 +E I23I25 .

Thus

a(t, h) = E I21
(
E I24 + E I25

)
+ E I22I24 + E I22 E I25

+4E I2I4 E I3I5 + E I23E I24 + E I23I25 .

Given δ ∈ (0, 1] define

C(δ, z) :=
∞∑
n=1

z2nm2(n)λδ−1n , D(δ, z) :=
∞∑
n=1

z4n
(
m4(n) +m2(n)2

)
λ2δ−2n . (30)

Below the last inequality in each estimate follows from the following elemen-
tary inequalities

∀x > 0, ∀ δ ∈ (0, 1], 1− e−x ≤ xδ, (31)

and
∞∑
n=1

un
λn

(
1− e−λnx

)
≤ xδ

∞∑
n=1

unλ
δ−1
n , (32)

for all un ≥ 0, λn > 0, x > 0, and δ ∈ (0, 1]. We have

E I21 =
∞∑
n=1

z2nm2(n)

∫ t+h

t

e−2λn(t+h−s)ds

=
∞∑
n=1

z2nm2(n)

2λn

(
1− e−2λnh

)
≤ C(δ, z)hδ,

E I24 =
∞∑
n=1

z2nm2(n)

∫ t

t−h
e−2λk(t−s)ds =

∞∑
n=1

z2nm2(n)

2λn

(
1− e−2λnh

)
≤ C(δ, z)hδ,
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and

E I22 =
∞∑
n=1

z2nm2(n)

∫ t

t−h

(
e−λn(t+h−s) − e−λn(t−s)

)2
ds

=
∞∑
n=1

z2nm2(n)

2λn

(
1− e−2λnh

) (
1− e−λnh

)2
≤ C(δ, z)hδ,

E I23 =
∞∑
n=1

z2nm2(n)

∫ t−h

0

(
e−λn(t+h−s) − e−λn(t−s)

)2
ds

=
∞∑
n=1

z2nm2(n)

2λn

(
e−2λnh − e−2λnt

) (
1− e−λnh

)2
≤

∞∑
n=1

z2nm2(n)

2λn

(
1− e−λnh

)
≤ 1

2
C(δ, z)hδ,

E I25 =
∞∑
n=1

z2nm2(n)

∫ t−h

0

(
e−λn(t−s) − e−λn(t−h−s)

)2
ds

=
∞∑
n=1

z2nm2(n)

2λn

(
1− e−2λn(t−h)

) (
1− e−λnh

)2
≤

∞∑
n=1

z2nm2(n)

2λk

(
1− e−λnh

)
≤ 1

2
C(δ, z)hδ.

Clearly

E I2I4 =
∑∞

n=1 z
2
nm2(n)

∫ t
t−h e−λn(t−s)

(
e−λn(t+h−s) − e−λn(t−s)

)
ds ≤ 0,

and E I3I5 ≥ 0.What is left is to find good estimates for the terms E I22I24
and E I23I25 . We have E I22I24 equals

E

(
∞∑
k=1

zk

∫ t

t−h

(
e−λk(t+h−s) − e−λk(t−s)

)
dL̂k(s)

)2( ∞∑
j=1

zj

∫ t

t−h
e−λj(t−s)dL̂j(s)

)2

=
∑

k,k′,j,j′

E
∫ t

t−h

(
e−λk(t+h−s) − e−λk(t−s)

)
dL̂k(s)
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×
∫ t

t−h

(
e−λk′ (t+h−s) − e−λk′ (t−s)

)
dL̂k′(s)

×
∫ t

t−h
e−λj(t−s)dL̂j(s)

∫ t

t−h
e−λj′ (t−s)dL̂j′(s)zkzk′zjzj′

= J1 + J2 + J3,

where

J1 :=
∑
k 6=j

z2kz
2
j E
(∫ t

t−h

(
e−λk(t+h−s) − e−λk(t−s)

)
dL̂k(s)

)2(∫ t

t−h
e−λj(t−s)dL̂j(s)

)2

=
∑
k 6=j

z2kz
2
j E
(∫ t

t−h

(
e−λk(t+h−s) − e−λk(t−s)

)
dL̂k(s)

)2

E

×
(∫ t

t−h
e−λj(t−s)dL̂j(s)

)2

,

J2 := 2
∑
k 6=j

z2kz
2
j E

∫ t

t−h

(
e−λk(t+h−s) − e−λk(t−s)

)
dL̂k(s)

∫ t

t−h
e−λk(t−s)dL̂k(s)

×
∫ t

t−h

(
e−λj(t+h−s) − e−λj(t−s)

)
L̂j(ds)

∫ t

t−h
e−λj(t−s)dL̂j(s)

= 2
∑
k 6=j

z2kz
2
j E

∫ t

t−h

(
e−λk(t+h−s) − e−λk(t−s)

)
dL̂k(s)

∫ t

t−h
e−λk(t−s)dL̂k(s)

×E
∫ t

t−h

(
e−λj(t+h−s) − e−λj(t−s)

)
dL̂j(s)

∫ t

t−h
e−λj(t−s)dL̂j(s),

and

J3 :=
∞∑
n=1

z4n E
(∫ t

t−h

(
e−λn(t+h−s) − e−λn(t−s)

)
dL̂n(s)

)2(∫ t

t−h
e−λn(t−s)dL̂n(s)

)2

.

We have

J1 =
∑
k 6=j

z2kz
2
jm2(k)m2(j)

∫ t

t−h

(
e−λk(t+h−s) − e−λk(t−s)

)2
ds

∫ t

t−h
e−2λj(t−s)ds

=
∑
k 6=j

z2kz
2
jm2(k)m2(j)

4λkλj

(
1− e−λkh

)2 (
1− e−2λkh

) (
1− e−2λjh

)
≤ 1

2
C(δ, z)2h2δ,
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and

J2 = 2
∑
k 6=j

z2kz
2
jm2(k)m2(j)

∫ t

t−h

(
e−λk(t+h−s) − e−λk(t−s)

)
e−λk(t−s)ds

×
∫ t

t−h

(
e−λj(t+h−s) − e−λj(t−s)

)
e−λj(t−s)ds

= 2
∑
k 6=j

z2kz
2
jm2(k)m2(j)

4λkλj

(
1− e−λkh

) (
1− e−λjh

) (
1− e−2λkh

) (
1− e−2λjh

)
≤ C(δ, z)2h2δ.

Finally, by Proposition 2.5, J3 = J3,1 + J3,2 + J3,3, where

J3,1 = 2
∞∑
n=1

z4nm2(n)2
(∫ t

t−h

(
e−λn(t+h−s) − e−λn(t−s)

)
e−λn(t−s)ds

)2

= 2
∞∑
n=1

z4nm2(n)2

4λ2n

(
1− e−λnh

)2 (
1− e−2λnh

)2
≤ D(δ, z)h2δ,

J3,2 =
∞∑
n=1

z4nm4(n)

∫ t

t−h

(
e−λn(t+h−s) − e−λn(t−s)

)2
e−2λn(t−s)ds

=
∞∑
n=1

z4nm4(n)

4λn

(
1− e−λnh

)2 (
1− e−λnh

)
,

and

J3,3 =
∞∑
n=1

z4nm2(n)2
∫ t

t−h

(
e−λn(t+h−s) − e−λn(t−s)

)2
ds

∫ t

t−h
e−2λn(t−s)ds

=
∞∑
n=1

z4nm2(n)2

4λ2n

(
1− e−λnh

)2 (
1− e−2λnh

)2
≤ 1

2
D(δ, z)h2δ.

Term J3,2 will be estimated later. It is the most difficult term to evaluate as
in the denominator we have λn in the first power.
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We proceed to the estimation of E I23I25 . We have

E I23I25 = E

(
∞∑
k=1

zk

∫ t−h

0

(
e−λk(t+h−s) − e−λk(t−s)

)
dL̂k(s)

)2

×

(
∞∑
j=1

zj

∫ t−h

0

(
e−λj(t−s) − e−λj(t−h−s)

)
dL̂j(s)

)2

= U1 + U2 + U3,

where

U1 :=
∑
k 6=j

z2kz
2
j E
(∫ t−h

0

(
e−λk(t+h−s) − e−λk(t−s)

)
dL̂k(s)

)2

×E
(∫ t−h

0

(
e−λj(t−s) − e−λj(t−h−s)

)
dL̂j(s)

)2

,

U2 := 2
∑
k 6=j

z2kz
2
j E

∫ t−h

0

(
e−λk(t+h−s) − e−λk(t−s)

)
dL̂k(s)

×
∫ t−h

0

(
e−λk(t−s) − e−λk(t−h−s)

)
dL̂k(s)E

∫ t−h

0

(
e−λj(t+h−s) − e−λj(t−s)

)
dL̂j(s)

×
∫ t−h

0

(
e−λj(t−s) − e−λj(t−h−s)

)
dL̂j(s),

and

U3 :=
∞∑
k=1

z4k E
(∫ t−h

0

(
e−λk(t+h−s) − e−λk(t−s)

)
dL̂k(s)

)2

×
(∫ t−h

0

(
e−λk(t−s) − e−λk(t−h−s)

)
dL̂k(s)

)2

.

We have

U1 =
∑
k 6=j

z2kz
2
jm2(k)m2(j)

4λkλj

(
e−λk(t+h) − e−λkt

)2 (
e2λk(t−h) − 1

)
×
(
e−λjt − e−λj(t−h)

)2 (
e2λj(t−h) − 1

)
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≤
∑
k 6=j

z2kz
2
jm2(k)m2(j)

4λkλj

(
1− e−λkh

)2 (
1− e−λjh

)2
≤ 1

4
C(δ, z)2h2δ,

U2 = 2
∑
k 6=j

z2kz
2
jm2(k)m2(j)

4λkλj

(
e−λk(t+h) − e−λkt

) (
e−λkt − e−λk(t−h)

)
×
(
e−λj(t+h) − e−λjt

) (
e−λjt − e−λj(t−h)

) (
e2λk(t−h) − 1

) (
e2λj(t−h) − 1

)
≤ 2

∑
k 6=j

z2kz
2
jm2(k)m2(j)

4λkλj

(
1− e−λkh

) (
1− e−λkh

) (
1− e−λjh

) (
1− e−λjh

)
≤ 1

2
C(δ, z)2h2δ.

Finally, by Proposition 2.5, U3 = U3,1 + U3,2 + U3,3, where U3,1 equals

2
∞∑
k=1

z4km2(k)2
(∫ t−h

0

(
e−λk(t+h−s) − e−λk(t−s)

) (
e−λk(t−s) − e−λk(t−h−s)

)
ds

)2

= 2
∞∑
k=1

z4km2(k)2

4λ2k

(
e−λk(t+h) − e−λkt

)2 (
e−λkt − e−λk(t−h)

)2 (
e2λk(t−h) − 1

)2
≤ 1

2
D(δ, z)h2δ,

U3,2 =
∞∑
k=1

z4km4(k)

∫ t−h

0

(
e−λk(t+h−s) − e−λk(t−s)

)2 (
e−λk(t−s) − e−λk(t−h−s)

)2
ds

=
∞∑
k=1

z4km4(k)

4λk

(
e−λk(t+h) − e−λkt

)2 (
e−λkt − e−λk(t−h)

)2 (
e4λk(t−h) − 1

)
≤

∞∑
k=1

z4km4(k)

4λk

(
1− e−λkh

)2 (
1− e−λkh

)2
,

and U3,3 equals

∞∑
k=1

z4km2(k)2
∫ t−h

0

(
e−λk(t+h−s) − e−λk(t−s)

)2
ds
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×
∫ t−h

0

(
e−λk(t−s) − e−λk(t−h−s)

)2
ds

=
∞∑
k=1

z4km2(k)2

4λ2k

(
e−λk(t+h) − e−λkt

)2 (
e−λkt − e−λk(t−h)

)2 (
e2λk(t−h) − 1

)2
≤ 1

4
D(δ, z)h2δ.

So far we have not estimated the terms U3,2 and J3,2. However we note that

R :=
∞∑
n=1

z4nm4(n)

2λn

(
1− e−λnh

) (
1− e−4λnh

)
,

dominates U3,2 + J3,2 . Summing up, we obtain the following estimate

∀ δ ∈ (0, 1] and ∀ 0 ≤ t− h ≤ t ≤ t+ h ≤ T,

E (Y (t+ h)− Y (t))2 (Y (t)− Y (t− h))2

≤ 6

( ∞∑
n=1

z2nm2(n)λδ−1n

)2

+
∞∑
n=1

z4n
(
m4(n) +m2(n)2

)
λ2δ−2n

h2δ +R.

Put δ = (ε+ 1)/2. In order to estimate R note that

R =
∞∑
n=1

z4nm4(n)λ2δn
2λn

(1− e−λnh)

λδn

(1− e−4λnh)

λδn

≤ 1

2

(
∞∑
n=1

z4nm4(n)λεn

)
sup
λ>0

(1− e−λh)

λδ
(1− e−4λh)

λδ
.

Since for all x, y > 0 and λ > 0,

λ−1−ε
(
1− e−λx

) (
1− e−4λy

)
≤ 4(1+ε)/2λ−1−ελ2(1+ε)/2(xy)(1+ε)/2

= 21+ε(xy)(1+ε)/2

≤ 2(1+ε)/2|x+ y|1+ε,

we have

R ≤
∞∑
n=1

z4nm4(n)λεnh
1+ε,

which gives the desired estimate. �
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8. Proof of Theorem 5.1

Remark 8.1. In the proof we cannot apply directly Lemma 7.1 putting
λ = γ. Indeed the quantity A(z, γ, ε) appearing in the formulation of Lemma
7.1 dominates

∞∑
n=1

z4nm4(n)γεn.

To apply the Chentsov criterion we need to find an ε > 0 such that

sup
|z|l2≤1

A(z, γ, ε) <∞.

Thus in particular we would need

sup
|z|l2≤1

∞∑
n=1

z4nm4(n)γεn <∞.

This condition is never satisfied if the sequences {m4(n)} and {m2(n)} are
constant and by consequence limn→∞ γn =∞, which corresponds to the case
where (Zn) are identically distributed.

Recall that the processes Lk were defined at the beginning of the previous
section. Let z ∈ l2. Set

λn := γn ∧ |zn|−2/ε, n ∈ N. (33)

Then
∞∑
n=1

|zn|
∣∣∣∣∫ t

0

e−γn(t−s)dZn(s)

∣∣∣∣ ≤ ∞∑
n=1

|zn|
∫ t

0

e−λn(t−s)dLn(s) = Y (z)(t)+r(z)(t),

where

Y (z)(t) :=
∞∑
n=1

|zn|
∫ t

0

e−λn(t−s)dL̂n(s),

r(z)(t) :=
∞∑
n=1

|zn|
∫ t

0

e−λn(t−s)m1(n)ds ≤
∞∑
n=1

|zn|m1(n)λ−1n

≤
∞∑
n=1

(
|zn|1+2/εm1(n) + |zn|m1(n)γ−1n

)
≤ |z|1+2/ε

l2 sup
n
m1(n) + |z|l2

(
∞∑
n=1

m1(n)2γ−2n

)1/2

.
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Therefore, thanks to (21) and (22),

sup
z∈l2:|z|l2≤R

sup
t∈[0,T ]

r(z)(t) <∞, ∀R <∞. (34)

Obviously (28) holds. Let us denote by M the supremum appearing in (22).
Then the quantity A(z, λ, ε) appearing in Lemma 7.1, is dominated by(

|z|2l2M +M

∞∑
n=1

z2n|zn|(1−ε)/ε
)2

+(M +M2)
∞∑
n=1

(
z4n + z4n|zn|−2 + 2z4n|zn|

2(1−ε)
ε

)
.

Therefore
sup

z∈l2:|z|l2≤R
A(z, λ, ε) <∞, ∀R <∞.

By Lemma 7.1, and Corollary 2.2, for any q ∈ [1, 4), and R > 0,

sup
z∈l2:|z|l2≤R

E sup
t,s∈[0,T ]

|Y (z)(t)− Y (z)(s)|q ≤ C1E|Y (z)(T )|q + C2, (35)

where C1 and C2 are constant. By the Bichteler–Jacod inequality for Poisson
integrals in infinite dimensions (see [18]) it follows that there is a constant C
depending only on T , such that

E|Y (z)(T )|4 ≤ C
∞∑
n=1

m4(n)z4nλ
−1
n + C

(
∞∑
n=1

m2(n)z2nλ
−1
n

)2

. (36)

Therefore,
sup

z∈l2:|z|l2≤R
E|Y (z)(T )|4 <∞. (37)

Combining (34)–(37) we obtain (23). The càdlàg property follows from the
càdlàg property of all processes Xk as the series converges uniformly in t ∈
[0, T ]; see the arguments below the formulation of the theorem. �

9. Proof of Theorem 5.2

As in the previous section, (λn) is given by (33). Using the arguments
from the previous section we see that the proof will be complete as soon as
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we show that there is a sequence of strictly positive numbers (βn), increasing
to +∞, such that for any R > 0,

sup
z∈l2

1/β
:|z|

l2
1/β
≤R

A(z, λ, ε) +
∞∑
n=1

m4(n)z4nλ
−1
n +

(
∞∑
n=1

m2(n)z2nλ
−1
n

)2
 <∞

and

sup
z∈l2

1/β
:|z|

l2
1/β
≤R

{
∞∑
n=1

(
|zn|1+2/εm1(n) + |zn|m1(n)γ−1n + z2nm2(n)λ−1n

)}
<∞.

Let us denote by M(R, β) the second supremum above. For any sequence
(βn), we have

M(R, β) ≤ R1+ 2
ε sup

n
β

1
2
+ 1
ε

n m1(n)

+R

(
∞∑
n=1

βnm1(n)2γ−2n

)1/2

+R2 sup
n
βnm2(n)γn +R2+2ε sup

n
β1+ε
n m2(n).

Next

A(z, λ, ε) ≤ R4 sup
n
β2
nm2(n)2γε−1n +R4+2 1−ε

ε sup
n
β
2− ε−1

ε
n m2(n)2

+R4 sup
n

(
β2
nm4(n)γε−1n + β2

nm2(n)2γε−1n

)
+R2 sup

n
βnm2(n)2

+R4+2 1−ε
ε sup

n
β
2− ε−1

2
n

(
m2(n)2 +m4(n)

)
,

and finally

∞∑
n=1

m4(n)z4nλ
−1
n +

(
∞∑
n=1

m2(n)z2nλ
−1
n

)2

≤ R4 sup
n
β2
nm4(n)γ−1n +R4 sup

n
β2
nm2(n)2γ−2n

+R4+ 2
ε sup

n
β

1
ε
+2

n m4(n) +R4+ 4
ε sup

n
β
2+ 2

ε
n m2(n)2.

By direct calculations and assumption (24) we arrive at the statement of the
theorem. �
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cesses driven by a Lévy white noise, Potential Anal. 32 (2010), 153–188.

[5] Chentsov, N. N., La convergence faible des processus stochastiques à
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