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Abstract. The dilation theorem of Nagy is applied to establish
time regularity of the solutions to a class of stochastic evolutionary
Volterra equations.

1. Introduction

This note is concerned with the path regularity of solutions to the
following stochastic Volterra equation

(1) X(t) = X0 +

∫ t

0

v(t− s)AX(s)ds+ L(t), t ∈ [0, T ],

where (A,D(A)) is a closed, densely defined operator on a real sepa-
rable Hilbert space (H, 〈·, ·〉H), L is a semimartingale with càdlàg (or
continuous) trajectories in H and v is a locally integrable real-valued
function. If the operator A is bounded then the existence of a regular
in time solution to (1) can be obtained in a very simple way. Namely
we have the following result. Actually this result is valid for any mea-
surable H-valued function L. The semimartingale property of L is not
used.

Proposition 1. Assume that v is locally integrable, and that A is a
bounded linear operator on H. Then for any X0 ∈ H there is a unique
strong solution X to (1). Moreover, the solution is càdlàg (res. con-
tinuous) in t.

Proof. Define I0(t) = X0 + L(t), t ≥ 0, and

In+1(t) =

∫ t

0

v(t− s)AIn(s)ds, t ≥ 0, n = 0, 1, . . . .
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Then each In is càdlàg (resp. continuous) in H. Given ω > 0 and
f : [0, T ] 7→ H, let ‖f‖ω := supt∈[0,T ] e

−ωt|f(t)|H . Then for n = 0, 1, . . .,

e−ωt |In+1(t)|H ≤ ‖A‖L(H)

∫ t

0

e−ω(t−s)|v(t− s)|e−ωs |In(s)|H ds,

and consequently, we have

‖In‖ω ≤ ‖A‖L(H) sup
0≤t≤T

∫ t

0

e−ω(t−s)|v(t− s)|e−ωs|In(s)|Hds

≤ ‖A‖L(H)

∫ T

0

e−ωt|v(t)|dt ‖In‖ω

≤
(
‖A‖L(H)

∫ T

0

e−ωt|v(t)|dt
)n
‖x+ L‖ω, n = 0, 1, . . . .

Taking ω big enough we obtain

‖A‖L(H)

∫ T

0

e−ωt|v(t)|dt < 1.

Thus
∑∞

n=0 ‖In‖ω < ∞, and consequently the series
∑∞

n=0 In(t) con-
verges inH uniformly in t ∈ [0, T ], to the unique solution having càdlàg
(resp. continuous) trajectories. �

If the operator A is unbounded we should work rather with weak
solutions.
Definition 1. ProcessX is a weak solution to (1) if for any a∗ ∈ D(A∗),

〈X(t), a∗〉 = 〈X0+L(t), a∗〉+
∫ t

0

v(t−s)〈X(s), A∗a∗〉Hds, t ∈ [0, T ].

Note that in the special case when A is the infinitesimal generator
of a strongly continuous semigroup S, and v ≡ 1, then (1) becomes

dX(t) = AX(t)dt+ dL(t), t ∈ [0, T ],

and the weak solution X is given by the stochastic convolution:

(2) X(t) = S(t)X0 +

∫ t

0

S(t− s)dL(s), ∈ [0, T ].

If S is a semigroup of generalized contractions (see Definition 3), then
one can prove the existence of a càdlàg (resp. continuous) modification
of X, given by (2), using either the Kotelenez submartingale inequality
[12] or, following Hausenblas and Seidler, the so-called dilation theorem
of Nagy. The case of general strongly continuous semigroup is open
with the exception of the case when L is a Wiener process when the
so-called factorization method works (see the original paper [3] or [4, 5,
15]). Path regularity of solutions to linear evolution equations driven
by Lévy process is studied in [1, 13, 15, 16].
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The study of the regularity of solutions to the stochastic Volterra
equation was initiated by Clément and Da Prato [2] and continued by
Karczewska and Zabczyk [11] and Karczewska [8, 9, 10], mostly for
Wiener perturbation.

In the note we prove the existence of a càdlàg version of X for several
classes of functions v and self-adjoint operators A using the dilation
theorem. Our aim is to prove the following result valid for an arbitrary
semimartingale L.
Theorem 1. Let X0 ∈ H. Assume that A is a self-adjoint negative
semi-definite operator on a Hilbert space H and that a locally integrable
function v of at most exponential growth at infinity satisfies one of the
following conditions

(a) v : (0,+∞)→ R is nonincreasing and positive,
(b) v : [0,+∞)→ R is a function of locally bounded variation v(0) ≥

0 and the generated measure dv is positive definite.
If L is càdlàg (or continuous) semimartingale in H, then the weak
solution to (1) exists, is unique, and has a càdlàg (resp. continuous)
modification.
Example 1. Take v ≡ 1, then X is given by (2) and we recover a well
known result for stochastic convolutions.
Example 2. Let v(t) = t−α for some α ∈ (0, 1). Then v is locally
integrable, strictly decreasing, and positive. Therefore it is of the type
(a) from Theorem 1.
Example 3. Let v(t) = t, t ≥ 0. Then v′ ≡ 1 is positive definite, and
thus v is of type (b). In this case the solution is given in the following
explicit form

X(t) = cos(
√
−At)X0 +

∫ t

0

cos(
√
−A(t− s))dL(s), t ≥ 0,

see Example 6 and Proposition 5 for more details.
Example 4. Assume that v ∈ C1([0,+∞)), v′ is non-negative, non-
increasing and concave. Then, by the Bochner theorem, t 7→ v′(|t|)
is positive definite as required. In particular, if v(0) ≥ 0, v′(t) ≥ 0,
v′′(t) ≤ 0 and v′′′(t) ≥ 0, then v is of type (b).
Example 5. Let a, b > 0, and let

v′(t) =

{
a− a

b
t, t ∈ [0, b],

0, t ≥ b.

Then v′ is non-negative, non-increasing and concave. Note that

v(t) =

{
v(0) + at− a

2b
t2, t ∈ [0, b],

v(0) + ab
2
, t ≥ b,

is of type (b) provided that v(0) ≥ 0.
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The proof of the theorem is given in Section 3. It is based on the
following three ingredients: a representation formula similar to (2) in
which the semigroup S is replaced by the so-called resolvent family
R of (1); see Definition 2, the dilation theorem (see Theorem 2) for
positive definite families of operators, both presented in Preliminaries.
The third ingredient and the most essential part of the proof, is a
result stating sufficient conditions under which the resolvent is positive
definite.

2. Preliminaries

2.1. Resolvents. In this subsection A is a possibly unbounded densely
defined closed operator on H.

Definition 2. A family R(t), t ≥ 0, of bounded linear operators on H
is called resolvent to the equation

(3) y(t) = f(t) +

∫ t

0

v(t− s)Ay(s)ds, t ≥ 0,

if the following conditions are satisfied
(i) R is strongly continuous on R+ = [0,+∞) and R(0) equals the

identity operator I,
(ii) R(t)D(A) ⊂ D(A) and AR(t)x = R(t)Ax for all t ≥ 0 and

x ∈ D(A),
(iii) for all x ∈ D(A),

(4) R(t)x = x+

∫ t

0

v(t− s)AR(s)xds, t ≥ 0.

The following elementary result is crucial for our proofs.

Proposition 2. Assume that the resolvent to (3) exists and is denoted
by R. If L is a semimartingale with càdlàg trajectories in H, then the
weak solution to (1) exists and is given by the formula:

(5) X(t) = R(t)X0 +

∫ t

0

R(t− s)dL(s), t ∈ [0, T ].

A proof of Proposition 2 is similar to that of Theorem 9.15 of [15].

2.2. Dilation theorem and regularity.

Definition 3. We say that a family R(t), t ∈ R, of bounded linear
operators on a Hilbert space (H, 〈·, ·〉H) is positive definite if for any
finite sequences (tj) in R, and (ψj) in H,∑

j,k

〈R(tj − tk)ψj, ψk〉H ≥ 0.
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We say that the family R is strongly continuous if for any ψ ∈ H and
t ∈ R,

lim
s→t
|R(s)ψ −R(t)ψ|H = 0.

Theorem 2. (Nagy dilation theorem) Assume that R is a strongly
continuous positive definite family of bounded operators on a Hilbert
space H, such that R(0) equals the identity operator I. Then there exist:
a Hilbert space H containing isometrically H and a strongly continuous
unitary group U(t), t ∈ R, on H, such that

R(t)ψ = ΠU(t)ψ, t ≥ 0, ψ ∈ H,
where Π is the orthogonal projection of H onto H.

For the proof we refer to [14]. The dilation theorem is related to the
regularity problem through the following proposition.

Proposition 3. Assume that for some ω the family e−ω|t|R(|t|), t ∈ R
is positive definite, t→ R(|t|) is strongly continuous, and R(0) = I. If
L is càdlàg (or continuous) semimartingale than the process X,

X(t) = R(t)X0 +

∫ t

0

R(t− s)dL(s), t ≥ 0,

is càdlàg (or continuous) as well.

Proof. We use the Hausenblas and Seidler arguments from [7]. Namely,
by the Nagy dilation theorem (Theorem 2),

X(t) = R(t)X0 + eωt
∫ t

0

e−ωse−ω(t−s)R(t− s)dL(s)

= R(t)X0 + eωt
∫ t

0

e−ωsΠU(t− s)dL(s)

= R(t)X0 + eωtΠU(t)

∫ t

0

e−ωsU(−s)dL(s),

where U is a C0-unitary group in a Hilbert space H ←↩ H and Π is a
continuous projection of H into H. Therefore the result follows from
the regularity of stochastic integrals. �

3. Proof of Theorem 1

It is enough to show that the resolvent R exists and the operator
valued mapping R 3 t 7→ e−ω|t|R(|t|) ∈ L(H) is positive definite. The
properties that R(0) = I and R is strongly continuous are included in
the definition of the resolvent, see Definition 2. For doing this we will
analyze first a close relation between the properties of Eq. (1) and the
following family of scalar Volterra equations

(6) s(t) + µ

∫ t

0

v(t− τ)s(τ)dτ = 1, t ≥ 0,
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parametrized by elements µ of the spectrum σ(−A) of the operator
−A.
3.1. Scalar Volterra equation. Assume that s(t;µ), t ≥ 0, solves (6)
and note that if µ is an eigenvalue of −A corresponding to the eigen-
vector x, then R(t)x = s(t;µ)x, t ≥ 0, solves the resolvent equation
(4). Therefore heuristically R(t) = s(t;−A), t ≥ 0.

Let us observe that taking in Proposition 1, H = R, B = −µ, l ≡ 0
and X0 = 1 we obtain the following.
Proposition 4. Assume that v is locally integrable. Then for any
µ ∈ R there is a unique solution s(t;µ), t ≥ 0, to (6). Moreover,
s(t;µ) is a continuous function of t.

A proof of the following result can be found in Corollary 1.2 and
Theorem 1.1 of [17], see also Theorem 1 from [6].
Proposition 5. Assume that A is self-adjoint negative semi-definite
with the associated spectral measure E(τ), τ ∈ σ(A). Then the follow-
ing assertions are valid.
(a) Let v : [0,+∞) → R be a function of bounded variation such that
dv is a positive definite measure. Then for any µ ≥ 0 and t ≥ 0,
|s(t;µ)| ≤ 1. Moreover, the resolvent R(t), t ≥ 0, to (3) exists, and is
given by the formula

(7) R(t) = s(t;−A) =

∫
σ(A)

s(t;−µ)E(dµ).

Finally, R is differentiable and

‖R(t)‖L(H) ≤ 1,

∣∣∣∣ ddtR(t)x

∣∣∣∣ ≤ Var a |t0 |Ax|H , t ≥ 0, a ∈ D(A).

(b) Let v be locally integrable, non-negative and non-increasing. Then
for any µ ≥ 0 and t ≥ 0, 0 ≤ s(t;µ) ≤ 1. Moreover, the resolvent
R(t), t ≥ 0, to (3) exists, it is given by (7), it is self-adjoint and
satisfies 0 ≤ 〈R(t)x, x〉H ≤ |x|2H , x ∈ H.

In some cases the solution s(| · |;µ) can be found explicitly.

Example 6. If v ≡ 1 then s(t;µ) = e−µt, t ≥ 0. If v(t) = e−t, then

s(t;µ) = (1 + µ)−1[1 + µe−(1+µ)t], t ≥ 0.

Let v(t) = t, t ≥ 0, be as in Example 3. Then for µ ≥ 0, s(t;µ) =
cos(
√
µt).

Proposition 6. Assume that the resolvent is given by (7) and that
there is an ω ≥ 0 such that for each µ ∈ σ(−A), R 3 t 7→ e−ω|t|s(|t|;µ)
is positive definite. Then

e−ω|t|R(|t|) = e−ω|t|s(|t|;−A), t ∈ R,
is positive definite.
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Proof. For a fixed h ∈ H consider the projection Uψ = 〈ψ, h〉Hh. Let
s̃(t) = e−λ|t|s(|t|;µ). Then the operator valued mapping V (t) = s̃(t)U ,
t ∈ R, is positive definite. In fact∑

i,j

〈V (ti − tj)ψi, ψj〉H =
∑
i,j

〈Uψi, ψj〉H s̃(ti − tj)

=
∑
i,j

〈ψi, h〉H〈ψj, h〉H s̃(ti − tj) ≥ 0.

This can be easily generalized to finite dimensional orthogonal projec-
tions and then to arbitrary projections. The spectral decomposition
formula (7) valid also for R̃ completes the proof. �

3.2. Positive definiteness of e−ω|·|s(|·|;µ). Assume that f : [0,+∞) 7→
R is measurable and such that [0,+∞) 3 t 7→ e−ωt |f(t)| ∈ R is inte-
grable. Write

I(f ;ω + iβ) :=

∫ +∞

0

e−ωt (ω cos βt+ β sin βt) f(t)dt.

Given µ ∈ R, let s(t;µ), t ≥ 0, be the solution to the scalar Volterra
equation (6). The following lemmas constitute the most essential part
of the proof of the main theorem.
Lemma 1. Let µ ∈ R. Assume that the functions [0,+∞) 3 t 7→
s(t;µ) ∈ R and [0,+∞) 3 t 7→ v(t) ∈ R have at most exponential
growth. Let ω > 0 be such that e−tωs(t;µ) and e−tωv(t) decay exponen-
tially at +∞. If
(8) ω + µI(v;ω + iβ) > 0, ∀ β ≥ 0,

then the function R 3 t 7→ e−ω|t|s(|t|;µ) is positive definite.

Proof. Define s̃(t) = e−ω|t|s(|t|;µ), t ∈ R. By the Bochner theorem s̃ is
positive definite if and only if its Fourier transform̂̃s(β) :=

∫
R

e−iβts̃(t)dt, β ∈ R,

is a non-negative function. Let

ŝ+(β) :=

∫ +∞

0

e−iβt−ωts(t;µ)dt, β ∈ R.

Clearly

(9) ̂̃s(β) = ŝ+(β) + ŝ+(−β) = ŝ+(β) + ŝ+(β) = 2Re ŝ+(β).

Let λ = ω + iβ, and let v+(t) equals v(t) if t ≥ 0 and 0 if t < 0.
From the convolution equation

ŝ+(β) + µv̂+(λ)ŝ+(β) =
1

λ
,
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where v̂+(λ) is the Fourier transform of v+ calculated at λ.
Assume that

(10) 1 + µv̂+(λ) 6= 0.

Note that as ω > 0, then λ = ω + iβ 6= 0. Therefore

ŝ+(β) =
1

λ (1 + µv̂+(λ))
,

and hence, by (9) we have

̂̃s(β) =
1

λ (1 + µv̂+(λ))
+

1

λ
(

1 + µv̂+(λ)
) = 2Re

1

λ (1 + µv̂+(λ))

=
2

|λ (1 + µv̂+(λ))|2
Reλ

(
1 + µv̂+(λ)

)
.

Clearly

Re
(
λ (1 + µv̂+(λ))

)
= Re ((ω − iβ) (1 + µv̂+(ω − iβ)))

= ω + µRe (ω − iβ)v̂(ω − iβ).

Next, as v+(t) = 0 for t < 0, we have

(ω − iβ) v̂ (ω − iβ) =

∫ +∞

0

(ω − iβ) e−(ω−iβ)tv(t)dt

=

∫ +∞

0

e−ωt [(ω cos βt+ β sin βt) + i (ω sin βt− β cos βt)] v(t)dt.

Thus
Re
(
λ (1 + µv̂+(λ))

)
= ω + µI(v;ω + iβ).

To finish the prove note that (8) implies that

ω + µI(v;ω + iβ) > 0, ∀ β ∈ R,
and hence in particular it guarantees (10). �

Lemma 2. If f is differentiable and [0,+∞) 3 t 7→ e−ωt |f ′(t)| ∈ R is
integrable, then

I(f ;ω + iβ) = f(0) +

∫ +∞

0

f ′(t)e−ωt cos βtdt.

Proof. Then since∫ t

0

e−ωs cos βsds =
β sin βt− ω cos βt

ω2 + β2
e−ωt =: g1(t),∫ t

0

e−ωs sin βsds =
−ω sin βt− β cos βt

ω2 + β2
e−ωt =: g2(t),
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we have

I(f ;ω + iβ) =

∫ +∞

0

(αg′1(t) + βg′2(t)) f(t)dt

= − (αg1(0)− βg2(0)) f(0)−
∫ +∞

0

f ′(t) [αg1(t) + βg2(t)] dt

= f(0) +

∫ +∞

0

f ′(t)e−αt cos βtdt.

�

Lemma 3. If f : [0,+∞) 7→ [0,+∞) is non-increasing then I(f ;ω +
iβ) ≥ 0 for all ω > 0 and β ≥ 0.

Proof. Clearly [0,+∞) 3 t 7→ e−ωt |f(t)| ∈ R is integrable. Since f
can be represented as a limit of increasing sequence of differentiable
functions with compact supports we can assume that f itself is differ-
entiable and satisfies the assumptions of Lemma 2. Then f ′(t) ≤ 0 and
ω ≥ 0, by Lemma 2, we have

I(f ;ω + iβ) = f(0) +

∫ +∞

0

f ′(t)e−ωt cos βtdt

≥ f(0) +

∫ +∞

0

f ′(t)dt = f(0)− f(0) + lim
T→+∞

f(T ) ≥ 0.

�

Lemma 4. Assume that f is differentiable, f(0) ≥ 0, and the function
t 7→ f ′(|t|) is positive definite and bounded from below. Then I(f ;ω +
iβ) ≥ 0 for all β.

Proof. Since t 7→ f ′(|t|) is positive definite it has maximum at 0. Thus
t 7→ f ′(|t|) is bounded. Thus in particular [0,+∞) 3 t 7→ e−ωt (|f(t)|+
|f ′(t)|) ∈ R is integrable. By Lemma 2,

I(f ;ω + iβ) = f(0) +

∫ +∞

0

cos βte−ωtf ′(t)dt

= f(0) +
1

2

∫ +∞

−∞
eiβte−ω|t|f ′(|t|)dt.

Since
∫ +∞
−∞ eiβte−ω|t|f ′(|t|)dt ≥ 0 as the Fourier transform of the convo-

lution of two positive measures: up to a constant α stable and whose
Fourier transform is t 7→ v′(|t|), the desired conclusion follows. �

3.3. End of the proof. Taking into account Propositions 2, 5 and 6,
it is enough to show that there is an ω > 0 such that for any µ ≥ 0, the
function R 3 t 7→ s̃(t) = s(|t|;µ) ∈ R is positive definite. Assume that
v is non-negative and decreasing. Then the desired property follows
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from Lemmas 1 and 3. If v is of type (b), then s̃ is positive definite, by
Lemmas 1 and 4.
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