# Two Dimensional YD-modules over $U_q(sl_2)$ are trivial

### Emine Yildirim

University of New Brunswick

June 27th, 2014

Emine Yildirim (University of New Brunswick)

### Introduction

- Assume q is not a root of unity, X. W. Chen and P. Zhang embed  $U_q(sl_2)$  into the path coalgebra of the Gabriel quiver D of the coalgebra of  $U_q(sl_2)$ .
- They also describe the category of  $U_q(sl_2)$ -comodules in terms of representations of the quiver D.
- I will present examples of comodules over  $U_q(sl_2)$ , and show that all YD-modules over  $U_q(sl_2)$  are trivial.

Throughout this presentation, *k* denotes a field of characteristic zero.

The Algebra  $U_q(sl_2)$ 

We define  $U_q(sl_2)$  as the algebra generated by the four variables  $E, F, K, K^{-1}$  with the relations;

 $KK^{-1} = K^{-1}K = 1$ 

$$KEK^{-1} = q^2E, KFK^{-1} = q^{-2}F$$
, and  $[E,F] = rac{K-K^{-1}}{q-q^{-1}}$ 

Note that the algebra  $U_q$  is Noetherian and has no zero divisors. The set  $\{E^i F^j K^l\}_{i,j\in N; l\in \mathbb{Z}}$  is a basis of  $U_q$ .

# The Hopf Algebra Structure on $U_q(sl_2)$

 $U_q(sl_2)$  has a Hopf structure with

$$\Delta(E) = 1 \otimes E + E \otimes K, \qquad \Delta(K) = K \otimes K$$
  
$$\Delta(F) = K^{-1} \otimes F + F \otimes 1, \qquad \Delta(K^{-1}) = K^{-1} \otimes K^{-1}$$

$$\varepsilon(E) = \varepsilon(F) = 0,$$
  $\varepsilon(K) = \varepsilon(K^{-1}) = 1$ 

$$S(E) = -EK^{-1}, \quad S(F) = -KF, \quad S(K) = K^{-1}, \quad S(K^{-1}) = K.$$

### The Path Coalgebra $kQ^c$

A quiver  $Q = (Q_0, Q_1, s, t)$  is a datum, where Q is an oriented graph with  $Q_0$  the set of vertices and  $Q_1$  the set of arrows, s and t are two maps from  $Q_1$  to  $Q_0$ , such that s(a) and t(a) are respectively the starting vertex and terminating vertex of  $a \in Q_1$ .

A path p of length l in Q is a sequence  $p = a_1...a_2a_1$  of arrows  $a_i$ ,  $1 \le i \le l$ .

A vertex is regarded as a path of length 0.

Given a quiver Q, one defines the path coalgebra  $kQ^c$  as follows:

- the underlying space has as basis the set of all paths in Q,
- the coalgebra structure is given by

$$\begin{split} \Delta(p) &= \sum_{\beta \alpha = p} \beta \otimes \alpha, \\ \epsilon(p) &= 0 \text{ if } l \geq 1, \\ \epsilon(p) &= 1 \text{ if } l = 0 \text{ for each path } p \text{ of length } l \end{split}$$

.

By a graded coalgebra one means a coalgebra *C* with decomposition  $C = \bigoplus_{n \ge 0} C(n)$  of *k*-space such that

$$\Delta(C(n)) \subseteq \sum_{i+j=n} C(i) \otimes C(j)$$

$$\varepsilon(C(n))=0$$

for all  $n \ge 1$ . Note that a path coalgebra  $kQ^c$  is graded with length grading, and it is coradically graded, and

$$kQ^c \simeq Cot_{kQ_0}(kQ_1)$$

### **Proposition :**

- Let  $C = \bigoplus_{n \ge 0} C(n)$  be a graded coalgebra. Then
  - (i) There is a unique graded coalgebra map  $\theta: C \to Cot_{C(0)}C(1)$  such that  $\theta|_{C(i)} = id$  for i = 0, 1.
  - (ii)  $\theta(x) = \pi^{\otimes n+1} \circ \Delta^n(x)$  for all  $x \in C(n+1)$  and  $n \ge 1$ , where  $\pi : C \to C(1)$  is the projection, and  $\Delta^n = (Id \otimes \Delta^{n-1}) \circ \Delta$  for all  $n \ge 1$ , with  $\Delta^0 = id$ .

### $U_q(sl_2)$ as a Subcoalgebra of a Path Coalgebra

$$U_q(sl_2) = \bigoplus_{n \geq 0} C(n)$$
 is a graded coalgebra with

$$C(0) = \bigoplus_{l \in \mathbb{Z}} kK^l$$

and C(1) has a basis

 $\{K^l E, K^l F | l \in \mathbb{Z}\}$ 

One has in C(1) $\Delta(K^{l-1}E) = K^{l-1} \otimes K^{l-1}E + K^{l-1}E \otimes K^{l}$   $\Delta(K^{l}F) = K^{l-1} \otimes K^{l}F + K^{l}F \otimes K^{l}$ 



Vertices are labelled by integers, i.e.,  $D_0 = \{e_l | l \in \mathbb{Z}\}$ . Write *v* as  $v = (v_1, ..., v_n)$ , where  $v_j = 1$  or -1 for each *j*. Define

$$P_l^{(v)} = a_{|v|} \dots a_2 a_1$$

to be the concatenated path in *D* starting at  $e_l$  of lenght |v|.

#### For instance,



One can write the set of all paths in D as follows:

$$\{P_{l}^{(v)} = P_{l-|v|+1}^{(v_{|v|})} ... P_{l-1}^{(v_{2})} P_{l}^{(v_{1})} | l \in \mathbb{Z}, v \in I\}$$

#### Lemma :

There is a unique graded coalgebra map  $\theta$  :  $U_q(sl_2) \rightarrow kD^c$  such that

$$\theta(K^{l}) = e_{l}$$
$$\theta(K^{l-1}E) = P_{l}^{(1)}$$
$$\theta(K^{l}F) = P_{l}^{(-1)}$$

for each integer l.

#### Theorem :

Assume that q is not a root of unity. Then as a coalgebra  $U_q(sl_2)$  is isomorphic to the subcoalgebra of  $kD^c$  with the basis

$$\{b(l,n,i)|0\leq i\leq n,n\in\mathbb{N}_0,l\in\mathbb{Z}\}$$

$$b(l,n,i) := \sum_{v \in \{\pm 1\}^n, |T_v|=i} \chi(v) P_l^{(v)} \in kD^c$$

where  $T_v := \{t | 1 \le t \le n, v_t = 1\}$ , and

 $\chi(v) := q^{2\sum_{t \in T_v} t}$ , if  $n \ge 1$ ,  $T_v \neq \emptyset$ ;  $\chi(v) := 1$ , otherwise.

For instance,

$$\begin{split} b(l,0,0) &= e_l & b(l,1,0) = P_l^{(-1)} \\ b(l,1,1) &= q^2 P_l^{(1)} & b(l,2,0) = P_l^{(-1,-1)} \\ b(l,2,2) &= q^6 P_l^{(1,1)} & b(l,2,1) = q^2 P_l^{(1,-1)} + q^4 P_l^{(-1,1)} \end{split}$$

## Comodules of $U_q(sl_2)$

### **Representations of Quivers**

A *k*-representation of Q is a datum  $V = (V_e, f_a; e \in Q_0, a \in Q_1)$ ,

•  $V_e$  is a *k*-space for each vertex  $e \in Q_0$ ,

•  $f_a: V_{s(a)} \rightarrow V_{t(a)}$  is a *k*-linear map for each arrow  $a \in Q_1$ .

Set  $f_p := f_{a_l} \circ \cdots \circ f_{a_1}$  for each path  $p = a_l \dots a_1$ , where each  $a_i$  is an arrow,  $1 \le i \le l$ , and  $f_e := id$  for  $e \in Q_0$ 

#### The standard comodule structure on a quiver representation

Let  $V = (V_e, f_a; e \in Q_0, a \in Q_1)$  be a representation of a quiver Q, one defines a  $kQ^c$ -comodule structure  $\rho: V \to V \otimes kQ^c$  as follows;

$$ho(m) = \sum_{s(p)=e} f_p(m) \otimes p \quad ext{ for every } m \in V_e$$

#### Theorem :

Assume that q is not a root of unity. Then there is an equivalence between the category of the right  $U_q(sl_2)$ -comodules and the full subcategory of representation of D with the standard comodule structures that satisfy the following conditions:

(i) 
$$f_{l-1}^{(1)} \circ f_l^{(-1)} = q^2 f_{l-1}^{(-1)} \circ f_l^{(1)}$$

(ii) For any  $m \in V_l$ ,  $f_l^{(m)} = 0$  for all but finitely many paths.

### Example

Let *l* be an integer and *n* a non-negative integer. For each  $\lambda \in k$ , one can define a representation *V* of quiver *D* as follows:

$$\begin{split} V_j &:= k, \\ V_j &:= 0, \\ f_j^{(1)} &:= 1, \\ f_j^{(1)} &:= 0, \\ f_j^{(-1)} &:= \lambda q^{-2(l+n-j)}, \\ f_j^{(-1)} &:= 0, \end{split}$$

 $\begin{array}{ll} \text{if} \quad l\leqslant j\leqslant l+n\\ otherwise;\\\\ \text{if} \quad l+1\leqslant j\leqslant l+n\\ otherwise;\\\\ \text{if} \quad l+1\leqslant j\leqslant l+n\\ otherwise.\\ \end{array}$ 

And V has an induced right  $U_q(sl_2)$  comodule structure

$$\rho(m) = \sum_{s(p)=e} f_p(m) \otimes p$$

which is denoted by  $M_{(l,n,\lambda)}$ . Let's write these explicitly for n = 1;

$$K^{l+1} \underbrace{\frown}_{V_{l+1}} \underbrace{\overbrace{K^{l+1}F}^{K^{l}E}}_{K^{l+1}F} \bullet_{V_{l}} \underbrace{\frown}_{K^{l}} K^{l}$$

$$\rho(v_l) = v_l \otimes K^l$$
$$\rho(v_{l+1}) = v_{l+1} \otimes K^{l+1} + v_l \otimes K^l E + \lambda v_l \otimes K^{l+1} F$$

#### Theorem :

The comodules  $M_{(l,n,\lambda)}$  give a complete list of all non-isomorphic, indecomposable Schurian right  $U_q(sl_2)$  comodules, where  $l \in \mathbb{Z}$ ,  $n \in \mathbb{N}_0$ ,  $\lambda \in (k \cup \{\infty\})$ .

A finite-dimensional right  $U_q(sl_2)$  comodule  $(M,\rho)$  is said to be Schurian, if  $dim_k M_j = 1$  or 0 for each integer *j*, where  $M_j := \{m \in M | (Id \otimes \pi_0)\rho(m) = m \otimes e_j\}$  and  $\pi_0$  is the projection from  $kD^c$  to  $kD_0$ .

# An Example of Two Dimensional YD module over $U_q(sl_2)$

Let  $V := M_{(l,1,\lambda)}$  be a two dimensional comodule over  $U_q(sl_2)$  and also take a two dimensional module V is generated by  $w_1$  and  $w_{-1}$  with the following structure:

$$\begin{aligned} K^{\pm 1}w_1 &= q^{\pm 1}w_1, & K^{\pm 1}w_{-1} &= q^{\mp 1}w_{-1} \\ Ew_1 &= 0, & Ew_{-1} &= w_1 \\ Fw_1 &= w_{-1}, & Fw_{-1} &= 0 \end{aligned}$$

Now let us try to match the module and comodule structures...

### Conjecture

 $U_q(sl_2)$  has no irreducible module-comodules of dimension 2 or greater.

### Idea of a proof

One knows that representations of  $sl_2$  and  $U_q(sl_2)$  are in one-to-one correspondence [Kassel, 1995]. Moreover, irreducible representations come from a specific quiver [Mazorchuk, 2010];



One also knows that the irreducible comodules of  $U_q(sl_2)$  come from the following quiver;



I suspect that one cannot make these structures compatible on the same vector space.

Emine Yildirim (University of New Brunswick)



### THANK YOU FOR LISTENING :)

Emine Yildirim (University of New Brunswick)