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Categorification of geometry. History

Grothendieck (toposes, Grothendieck categories),

Gabriel-Rosenberg (reconstruction of quasi-compact
quasi-separated schemes from their Grothendieck categories of
quasicoherent sheaves),

Balmer, Lurie, Brandenburg-Chirvasitu (reconstruction
theorems from monoidal categories).

Theorem (Brandenburg-Chirvasitu)

For a quasi-compact quasi-separated scheme X and an arbitrary
scheme Y we show that the pullback construction f 7→ f ∗

implements an equivalence between the discrete category of
morphisms X → Y and the category of cocontinuous strong
opmonoidal functors QcohY → QcohX .
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Local model

If A is a commutative associative unital ring then

QcohSpec(A) = ModA.

It is monoidal with respect to the usual tensor product

(M1,M2) 7→ M1 ⊗A M2

of A-modules balanced over A.
The morphism of affine schemes

f : Spec(A)→ Spec(B)

induces the pull-back functor

f ∗ : QcohSpec(B) = ModB → ModA = QcohSpec(A),

N 7→ N ⊗B A.
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One can easily check that it is cocontinuous and strong
opmonoidal, the latter meaning that

f ∗B
∼= // A,

f ∗(N1 ⊗B N2)
∼= // f ∗N1 ⊗A f ∗N2.

Corollary

Knowing the spectrum Spec(A) as a scheme is equivalent to
knowing the monoidal category ModA of modules, and knowing a
morphism of schemes Spec(A)→ Spec(B) is equivalent to knowing
a cocontinuous strong opmonoidal functor ModB → ModA.
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Global sections

The identification
QcohSpec(A) = ModA

uses the global sections functor
Γ(X ,−) = QcohX (OX ,−) : QcohX → Ab, where

A = Γ(Spec(A),OSpec(A))

M = Γ(Spec(A),F ),

for the structural sheaf OSpec(A) and any quasicoherent sheaf F on
the spectrum.
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What if A is not commutative

Modules do not form a monoidal category

Bimodules over a commutative ring do not reconstruct spectra

Symmetric bimodules do not make sense

Bimodule maps from A to any bimodule is the center
construction, not the identity

So, maybe associative algebras are not good generalization of
commutative ones?
Happily, both associative and commutative rings are special cases
of bialgebroids, (A,A) for A commutative, (A,Aop ⊗ A) for A
associative.
In both cases an additional structure is so canonical that it is
invisible.
For bialgebroids all problems as above can be cured or better
posed.
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Cyclic schemes

Definition

A cyclic scheme X is a monoidal abelian category (QcohX ,⊗,OX )
equipped with a cyclic functor ΓX : QcohX → Ab, i.e. an additive
functor equipped with a natural isomorphism

γF0,F1 : ΓX (F0 ⊗F1)→ ΓX (F1 ⊗F0)

satisfying the following identities

γF1,F2⊗F0 ◦ γF0,F1⊗F2 = γF0⊗F1,F2 ,

γOX ,F = γF ,OX
= IdτX (F ),

γF1,F0 = γ−1
F0,F1

.
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Cyclic symmetry

Lemma

γFn,F0⊗···⊗Fn−1 ◦ γFn−1,Fn⊗F0⊗···⊗Fn−2 ◦ · · · ◦ γF0,F1⊗···⊗Fn

= IdτX (F0⊗···⊗Fn).
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Example. Commutative schemes

With every classical commutative scheme (quasi-compact,
quasi-separated) X one can associate an abelian monoidal
category (QcohX ,⊗,OX ) of quasi-coherent sheaves.
It is equipped with a canonical cyclic functor of sections

ΓX := Γ(X ,−) : QcohX → Ab

where the cyclic structure comes from the symmetry of the
monoidal structure.

For an affine scheme X = Spec(A), A being a commutative
ring there is a strong monoidal equivalence

(QcohX ,⊗,OX )
∼→ (ModA,⊗A,A),

and the cyclic functor forgets the A-module structure.
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Example: Cyclic spectra of associative rings

Let R be a unital associative ring. We define a cyclic scheme X so
that is the monoidal abelian category of R-bimodules

(QcohX ,⊗,OX ) := (BimR ,⊗R ,R)

with the tensor product balanced over R.
If F = M is an R-bimodule, we have a canonical cyclic functor

ΓX (F ) = ΓR(M) := M ⊗Ro⊗R R

obtained by tensoring balanced over the enveloping ring Ro ⊗ R.
The natural transformation γ is the flip

(M0 ⊗R M1)⊗Ro⊗R R → (M1 ⊗R M0)⊗Ro⊗R R,

(m0 ⊗m1)⊗ r 7→ (m1 ⊗m0)⊗ r ,

well defined and satisfying axioms of a cyclic functor thanks to
balancing over Ro ⊗ R.
We call this cyclic scheme the cyclic spectrum of an associative
ring R.
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Traces

We want to unravel the natural origin of traces. First, we want to
understand the character

S/[S ,S ]→ R/[R,R]. (1)

of a representation S → EndR(P) of the ring S on a finitely
generated projective right R-module P.
The point is that in general it is not induced by any ring
homomorphism S → R, but merely by some mild correspondence
from S to R.
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Mild correspondences

Basic principles of mild correspondences we derive from classical
algebraic geometry.There a correspondence f from a scheme X to
a scheme Y is a diagram of (quasi-compact and quasi-separated)
schemes

X̃
f̃−→ Y

π ↓
X

and we call it mild if its domain projection π is finite and flat.
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Induced adjunction

Although a correspondence f is not a honest morphism of schemes
f : X → Y , it still defines a monoidal functor of a direct image
f∗ := f̃∗π

∗ : QcohX → QcohY between categories of quasi-coherent
sheaves. It is monoidal because f̃∗ is monoidal and π∗ is strong
opmonoidal, hence monoidal as well.
If in addition f is mild f∗ has a left adjoint (hence canonically
opmonoidal) functor f ∗ a f∗
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Coalgebra

Moreover, there exist an OX -coalgebra D equipped with a
structure of an π∗OX̃

-module s.t.

f ∗ := π∗f̃
∗(−)⊗π∗O

X̃
D : QcohY → QcohX ,

f∗ = f̃∗(HomX (D,−)∼) : QcohX → QcohY

where (−)∼ denotes sheafifying by localisation of a π∗OX̃
-module

to obtain a quasi-coherent sheaf on X̃ = SpecX (π∗OX̃
), the

relative spectrum of a commutative quasi-coherent OX -algebra
π∗OX̃

.
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Mild correspondences of affine schemes

Thus for affine schemes X = Spec(R) and Y = Spec(S) a mild
correspondence f from X to Y can be written as a homomorphism
of commutative rings

S → HomR(D,R), s 7→ (d 7→ s(d))

where the ring on the right hand side is a convolution ring dual to
some cocommutative R-coalgebra D, i.e. its unit is a counit
ε : D → R and multiplication comes from the comultiplication
D → D ⊗R D, d 7→ d(1) ⊗ d(2) (Heyneman-Sweedler notation) via
dualization, i.e.

HomR(D,R)⊗HomR(D,R)→ HomR(D,R),

ρ1 ⊗ ρ2 7→ (d 7→ ρ1(d(1))ρ2(d(2))).
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Adjunction for affine schemes

The corresponding adjunction between monoidal categories of
modules QcohX = ModR and QcohY = ModS is given as follows

f∗M = HomR(D,M),

f ∗N = (N ⊗S HomR(D,R))⊗HomR(D,R) D = N ⊗S D.

A monoidal structure of f∗ (or equivalently, an opmonoidal
structure of f ∗) is related to the coalgebra structure of D as
follows.
The morphism OY → f∗OX is defined as
S → HomR(D,R), s 7→ (d 7→ s(d)), with respect to which the
image of the unit of S is equal to the counit of D, and the natural
transformation f∗F0 ⊗ f∗F1 → f∗(F0 ⊗F1) is defined by means
of the comultiplication of D as

HomR(D,M1)⊗S HomR(D,M2)→ HomR(D,M1 ⊗R M2),

µ1 ⊗ µ2 7→ (d 7→ µ1(d(1))⊗ µ2(d(2))).
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Mild correspondences of noncommutative rings

This can be easily extended to noncommutative rings by noticing
that, for R being commutative, R itself and any coalgebra D over
R are symmetric R-bimodules, hence

HomR(D,R) = HomRo⊗R(D,R)

where on the right hand side we have homomorphisms of
R-bimodules regarded as right modules over the enveloping ring
Ro ⊗ R. This still makes sense if one takes noncommutative rings
R and S , and an arbitrary R-coring D instead of a cocommutative
R-coalgebra over a commutative ring R.
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Mild correspondences of rings. Definition

Then we say that a mild correspondence from a ring S to a ring R
is given if there is given a ring homomorphism

S → HomRo⊗R(D,R), s 7→ (d 7→ s(d))

where the structure of the convolution ring on HomRo⊗R(D,R) is
induced from the R-coring structure of D.
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Adjunction for noncommutative rings

A mild correspondence S → HomRo⊗R(D,R) from a ring S to a
ring R defines an adjunction between monoidal categories of
bimodules QcohX = BimR and QcohY = BimS as follows

f∗M = HomRo⊗R(D,M), f ∗N = N ⊗So⊗S D.

A monoidal structure of f∗ (or equivalently, an opmonoidal
structure of f ∗) generalizes the structure of the convolution ring.
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What mild correspondences have to do with traces?

EndR(P) is a convolution ring HomRo⊗R(D,R) of an R-coring
D = P∗ ⊗ P whose canonical counit ε : D → R is the evaluation of
elements of P∗ = HomR(P,R) on elements of P,

P∗ ⊗ P → R,

p∗ ⊗ p → p∗(p),

its canonical comultiplication D → D ⊗R D, d 7→ d(1) ⊗ d(2) can
be written in terms of any dual basis (pi , p

∗
i )i∈I for P as

P∗ ⊗ P → (P∗ ⊗ P)⊗R (P∗ ⊗ P),

p∗ ⊗ p 7→
∑
i∈I

(p∗ ⊗ pi )⊗ (p∗i ⊗ p),
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What is the corresponding adjunction?

The morphism OY → f∗OX is defined as above and the natural
transformation f∗F1 ⊗ f∗F2 → f∗(F1 ⊗F2) is defined by means
of the comultiplication of D as

HomRo⊗R(D,M1)⊗SHomRo⊗R(D,M2)→ HomRo⊗R(D,M1⊗RM2),

µ1 ⊗ µ2 7→ (d 7→ µ1(d(1))⊗ µ2(d(2))).
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What is the character from this categorical perspective?

It is an R-component of a natural isomorphism of additive functors
BimR → Ab whose M-component is

HomRo⊗R(D,M)⊗So⊗S S → M ⊗Ro⊗R R,

µ⊗ s 7→ (µ⊗ R)(δ(1))

where δ ∈ HomSo⊗S(S ,D ⊗Ro⊗R R) is a canonical element which
can be written in terms of any dual basis as

S → (P∗ ⊗ P)⊗Ro⊗R R,

s 7→
∑
i∈I

(p∗i ⊗ s · pi )⊗ 1.

Tomasz Maszczyk Quantization by categorification. Hopf cyclic cohomology



Character as a natural transformation

Finally, the character of the above representation can be written as
a natural transformation

ΓY f∗ → ΓX

where X and Y are cyclic spectra of rings R and S , respectively.
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The trace property

It is easy to check that the trace property is equivalent to
commutativity of all natural diagrams

ΓY (f∗F0 ⊗ f∗F1)

γf∗F0,f∗F1

��

// ΓY (f∗(F0 ⊗F1)) // ΓX (F0 ⊗F1)

γF0,F1

��
ΓY (f∗F1 ⊗ f∗F0) // ΓY (f∗(F1 ⊗F0)) // ΓX (F1F0),
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Categorical back-bone of cyclic (co)homology

Motivated by this we consider now (large) abelian groups of
natural transformations

cF0,··· ,Fn : ΓY (f∗F0 ⊗ · · · ⊗ f∗Fn) // ΓX (F0 ⊗ · · · ⊗Fn) ,

cG0,··· ,Gn : ΓY (G0 ⊗ · · · ⊗ Gn) // ΓX (f ∗G0 ⊗ · · · ⊗ f ∗Gn) .

All this collection of abelian of natural transformations groups
forms a cocyclic object.

Cofaces come from the composition with natural
transformations f∗F0 ⊗ f∗F1 → f∗(F0 ⊗F1) defining the
monoidal structure of f∗,

codegeneracies come from the structural morphism
OY → f∗OX ,

cyclic operators come from the natural transformations γ of
the cyclic functors.
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Example: Cyclic cohomology of an algebra

For an algebra A over a field k we prepare the following categorical
environment.

QcohX = Vectop, ΓX (V ) = V ∗, QcohY = Vect, ΓY (V ) = V ,

f∗V = Hom(V ,A).

The cocyclic object of natural transformations:

ΓY (f∗F0 ⊗ · · · ⊗ f∗Fn)→ ΓX (F0 ⊗ · · · ⊗Fn)

reads as

Hom(V0,A)⊗ · · · ⊗ Hom(Vn,A)→ Hom(V0 ⊗ · · · ⊗ Vn, k)

whose component corresponding to V0 = · · · = Vn = k is

A⊗ · · · ⊗ A→ k ,

the classical cocyclic object A\ of Connes.
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A cyclic Eilenberg-Moore construction

Let R be a ring in a monoidal category QcohY , and BimR be its
monoidal category of bimodules equipped with an opmonoidal
monad a∗. For any opmonoidal monad a∗ on the monoidal
category BimR of R-bimodules over a ring R in a monoidal
category QcohY , with structural natural transformations

µMa∗ : a∗a∗M → a∗M, ηMa∗ : M → a∗M,

δM0,M1
a∗ : a∗(M0 ⊗R M1)→ a∗M0 ⊗R a∗M1,

and a structural morphism

ε : a∗R → R,

one defines a natural transformation of right fusion

ϕM0,M1
a∗ : a∗(M0 ⊗R a∗M1)→ a∗M0 ⊗R a∗M1

as a composition

a∗(M0 ⊗R a∗M1)
δ
M0,a

∗M1
a∗ // a∗M0 ⊗R a∗a∗M1

a∗M0⊗Rµ
M1
a∗ // a∗M0 ⊗R a∗M1 .
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Monoidal Eilenberg-Moore construction for Hopf monads
on bimodule categories

The Eilenberg-Moore category (BimR)a
∗

of a∗ consists of objects
M equipped with with morphisms

αM : a∗M → M,

satisfying some properties (commutative diagrams). What is
important, they form a monoidal category as follows.

αM0⊗RM1 : a∗(M0 ⊗R M1)→ M0 ⊗R M1

a∗(M0 ⊗R M1)
δ
M0,M1
a∗ // a∗M0 ⊗R a∗M1

αM0
⊗RαM1 // M0 ⊗R M1,

We will denote by A the pair (R, a∗), and by SpecY (A) the
Eileberg-Moore category (BimR)a

∗
.
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Back to commutative algebras

Commutative rings can be regarded as Hopf monads and they have
their cyclic spectra as such. Let R = A where A is a commutative
ring. The category BimR of R-bimodules admits an endofunctor
a∗ of symmetrization

a∗M := M/[M,R] (2)

well defined thanks to the fact that for commutative R the
commutator [M,R] ⊂ M is an R-subbimodule.It is a Hopf monad
making the cyclic functor of BimR a twisted cyclic functor on the
Eilenberg-Moore category (BimR)a

∗
.

Theorem

The cyclic spectrum for the above Hopf monad and the twisted
cyclic functor is equivalent to QcohSpec(A) = ModA.
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Stable anti-Yetter-Drinfeld conditions for twisted cyclic
functors

We say that a functor τR : BimR → Ab is a twisted cyclic functor,
if it is equipped with two natural transformations, the twisted
transposition

τR(M0 ⊗R M1)
t
M0,M1
R // τR(M1 ⊗R a∗M0)

and the right action of the opmonoidal monad a∗

τRa
∗ ατR // τR

satisfying the following conditions.
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SAYD-type conditions. Preparation

First, for the composition τRa
∗ we define an analogical twisted

transposition, a natural transformation

τRa
∗(M0 ⊗R M1)

t
M0,M1
R,a∗ // τRa

∗(M1 ⊗R a∗M0)

being a composition

τRa
∗(M0 ⊗R M1)

τR(δM0,M1 )
��

τR(a∗M1 ⊗R a∗M0)
τR(ϕ

M1,M0
a∗ )−1

// τRa
∗(M1 ⊗R a∗M0)

τR(a∗M0 ⊗R a∗M1)
t
a∗M0,a

∗M1
R // τR(a∗M1 ⊗R a∗a∗M0))

τR(M0⊗µa∗ (M1))

OO

Tomasz Maszczyk Quantization by categorification. Hopf cyclic cohomology



Anti-Yetter-Drinfeld condition

The first condition for τR to be a twisted cyclic functor consists in
commutativity of the following diagram

τRa
∗(M0 ⊗R M1)

t
M0,M1
R,a∗ //

α
M0⊗RM1
τR

��

τRa
∗(M1 ⊗R a∗M0)

α
M0⊗Ra∗M1
τR��

τR(M0 ⊗R M1)
t
M0,M1
R // τR(M1 ⊗R a∗M0).

which means that tM0,M1

R,a∗ lifts tM0,M1

R along the Hopf monad a∗

action ατR on τR .
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Stability condition

The second condition for τR to be a twisted cyclic functor consists
in commutativity of the following diagram

τR(M)
tM,RR // τRa

∗(M)

αM
τR
��

τR(M)

where the horizontal arrow utilizes identifications via tensoring by
the monoidal unit R as follows

τR(M) = τR(M ⊗R R)
tM,RR // τR(R ⊗R a∗M) = τRa

∗(M).

This means that the Hopf monad a∗ action ατR on τR neutralizes
the twisted transposition with the monoidal unit R.
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Cyclic functor on the monoidal Eilenberg-Moore category
from SAYD conditions

The following coequalizer diagram

τRa
∗M

αM
τR //

τR(αM)
// τRM // τAM

defines an additive functor τA : QcohSpecY (A) → Ab.

Theorem

τA makes SpecY (A) a cyclic scheme.
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Example: Hopf-cyclic cohomology of an algebra

For a left H-module algebra A over a Hopf algebra H over a field k
and a right-left stable anti-Yetter-Drinfeld H-module Γ we can
consider the Hopf bialgebroid or B = (k , b∗ = H ⊗ (−)) and

QcohX = Vectop, ΓX (V ) = Hom(V , k),

QcohSpec(B) = H −Mod, ΓSpec(B)(V ) = Γ⊗H V ,

f∗V = Hom(V ,A), f∗M = HHom(M,A).

The cocyclic object of natural transformations:

ΓY (f∗F0 ⊗ · · · ⊗ f∗Fn)→ ΓX (F0 ⊗ · · · ⊗Fn)

reads as

Γ⊗H (Hom(V0,A)⊗ · · · ⊗ Hom(Vn,A))→ Hom(V0 ⊗ · · · ⊗ Vn, k)

whose component corresponding to V0 = · · · = Vn = k is

Γ⊗H (A⊗ · · · ⊗ A)→ k ,

the cocyclic object of Hajac-Khalkhali-Rangipour-Sommerhäuser.
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