Quantization by categorification. Hopf cyclic cohomology

Tomasz Maszczyk



UNB, June 27, 2014

Tomasz Maszczyk Quantization by categorification. Hopf cyclic cohomology

## Categorification of geometry. History

- Grothendieck (toposes, Grothendieck categories),
- Gabriel-Rosenberg (reconstruction of quasi-compact quasi-separated schemes from their Grothendieck categories of quasicoherent sheaves),
- Balmer, Lurie, Brandenburg-Chirvasitu (reconstruction theorems from monoidal categories).

#### Theorem (Brandenburg-Chirvasitu)

For a quasi-compact quasi-separated scheme X and an arbitrary scheme Y we show that the pullback construction  $f \mapsto f^*$  implements an equivalence between the discrete category of morphisms  $X \to Y$  and the category of cocontinuous strong opmonoidal functors  $\operatorname{Qcoh}_Y \to \operatorname{Qcoh}_X$ .

If A is a commutative associative unital ring then

$$\operatorname{Qcoh}_{\operatorname{Spec}(A)} = \operatorname{Mod}_A.$$

It is monoidal with respect to the usual tensor product

$$(M_1, M_2) \mapsto M_1 \otimes_A M_2$$

of *A*-modules balanced over *A*. The morphism of affine schemes

$$f:\operatorname{Spec}(A)\to\operatorname{Spec}(B)$$

induces the pull-back functor

$$f^*: \operatorname{Qcoh}_{\operatorname{Spec}(B)} = \operatorname{Mod}_B \to \operatorname{Mod}_A = \operatorname{Qcoh}_{\operatorname{Spec}(A)},$$

 $N \mapsto N \otimes_B A.$ 

One can easily check that it is cocontinuous and strong opmonoidal, the latter meaning that

$$f^*B \xrightarrow{\cong} A$$

$$f^*(N_1 \otimes_B N_2) \xrightarrow{\cong} f^*N_1 \otimes_A f^*N_2.$$

#### Corollary

Knowing the spectrum  $\operatorname{Spec}(A)$  as a scheme is equivalent to knowing the monoidal category  $\operatorname{Mod}_A$  of modules, and knowing a morphism of schemes  $\operatorname{Spec}(A) \to \operatorname{Spec}(B)$  is equivalent to knowing a cocontinuous strong opmonoidal functor  $\operatorname{Mod}_B \to \operatorname{Mod}_A$ . The identification

$$\operatorname{Qcoh}_{\operatorname{Spec}(A)} = \operatorname{Mod}_A$$

uses the global sections functor  $\Gamma(X, -) = \operatorname{Qcoh}_X(\mathscr{O}_X, -) : \operatorname{Qcoh}_X \to \operatorname{Ab}$ , where

$$A = \Gamma(\operatorname{Spec}(A), \mathscr{O}_{\operatorname{Spec}(A)})$$
$$M = \Gamma(\operatorname{Spec}(A), \mathscr{F}),$$

for the structural sheaf  $\mathscr{O}_{\operatorname{Spec}(A)}$  and any quasicoherent sheaf  $\mathscr{F}$  on the spectrum.

- Modules do not form a monoidal category
- Bimodules over a commutative ring do not reconstruct spectra
- Symmetric bimodules do not make sense
- Bimodule maps from A to any bimodule is the center construction, not the identity

## So, maybe associative algebras are not good generalization of commutative ones?

Happily, both associative and commutative rings are special cases of bialgebroids, (A, A) for A commutative,  $(A, A^{op} \otimes A)$  for A associative.

In both cases an additional structure is so canonical that it is invisible.

For bialgebroids all problems as above can be cured or better posed.

#### Definition

A cyclic scheme X is a monoidal abelian category  $(\operatorname{Qcoh}_X, \otimes, \mathscr{O}_X)$  equipped with a cyclic functor  $\Gamma_X : \operatorname{Qcoh}_X \to \operatorname{Ab}$ , *i.e.* an additive functor equipped with a natural isomorphism

$$\gamma_{\mathscr{F}_0,\mathscr{F}_1}: \Gamma_X(\mathscr{F}_0\otimes\mathscr{F}_1) \to \Gamma_X(\mathscr{F}_1\otimes\mathscr{F}_0)$$

satisfying the following identities

$$\begin{split} \gamma \mathscr{F}_{1}, \mathscr{F}_{2} \otimes \mathscr{F}_{0} & \circ \gamma \mathscr{F}_{0}, \mathscr{F}_{1} \otimes \mathscr{F}_{2} = \gamma \mathscr{F}_{0} \otimes \mathscr{F}_{1}, \mathscr{F}_{2} \\ \gamma_{\mathscr{O}_{X}}, \mathscr{F} &= \gamma_{\mathscr{F}}, \mathscr{O}_{X} = \mathrm{Id}_{\tau_{X}}(\mathscr{F}), \\ \gamma_{\mathscr{F}_{1}}, \mathscr{F}_{0} &= \gamma_{\mathscr{F}_{0}}^{-1}, \mathscr{F}_{1} \end{split}$$

#### Lemma

# $$\begin{split} \gamma_{\mathscr{F}_n,\mathscr{F}_0\otimes\cdots\otimes\mathscr{F}_{n-1}}\circ\gamma_{\mathscr{F}_{n-1},\mathscr{F}_n\otimes\mathscr{F}_0\otimes\cdots\otimes\mathscr{F}_{n-2}}\circ\cdots\circ\gamma_{\mathscr{F}_0,\mathscr{F}_1\otimes\cdots\otimes\mathscr{F}_n}\\ &=\mathrm{Id}_{\tau_X(\mathscr{F}_0\otimes\cdots\otimes\mathscr{F}_n)}. \end{split}$$

#### Example. Commutative schemes

With every classical commutative scheme (quasi-compact, quasi-separated) X one can associate an abelian monoidal category (Qcoh<sub>X</sub>, ⊗, 𝒫<sub>X</sub>) of quasi-coherent sheaves. It is equipped with a canonical cyclic functor of sections

$$\Gamma_X := \Gamma(X, -) : \operatorname{Qcoh}_X \to \operatorname{Ab}$$

where the cyclic structure comes from the symmetry of the monoidal structure.

• For an affine scheme X = Spec(A), A being a commutative ring there is a strong monoidal equivalence

$$(\operatorname{Qcoh}_X, \otimes, \mathscr{O}_X) \xrightarrow{\sim} (\operatorname{Mod}_A, \otimes_A, A),$$

and the cyclic functor forgets the A-module structure.

### Example: Cyclic spectra of associative rings

Let R be a unital associative ring. We define a cyclic scheme X so that is the monoidal abelian category of R-bimodules

 $(\operatorname{Qcoh}_X, \otimes, \mathscr{O}_X) := (\operatorname{Bim}_R, \otimes_R, R)$ 

with the tensor product balanced over R.

If  $\mathscr{F} = M$  is an *R*-bimodule, we have a canonical cyclic functor

$$\Gamma_X(\mathscr{F}) = \Gamma_R(M) := M \otimes_{R^o \otimes R} R$$

obtained by tensoring balanced over the enveloping ring  $R^o\otimes R$ . The natural transformation  $\gamma$  is the flip

$$(M_0 \otimes_R M_1) \otimes_{R^o \otimes R} R \to (M_1 \otimes_R M_0) \otimes_{R^o \otimes R} R,$$
  
 $(m_0 \otimes m_1) \otimes r \mapsto (m_1 \otimes m_0) \otimes r,$ 

well defined and satisfying axioms of a cyclic functor thanks to balancing over  $R^{o} \otimes R$ . We call this cyclic scheme the cyclic spectrum of an associative ring R. We want to unravel the natural origin of traces. First, we want to understand the *character* 

$$S/[S,S] \to R/[R,R].$$
 (1)

of a representation  $S \to \operatorname{End}_R(P)$  of the ring S on a finitely generated projective right R-module P.

The point is that in general it *is not* induced by any ring homomorphism  $S \rightarrow R$ , but merely by some *mild correspondence* from S to R.

Basic principles of *mild correspondences* we derive from classical algebraic geometry. There a correspondence f from a scheme X to a scheme Y is a diagram of (quasi-compact and quasi-separated) schemes

$$\begin{array}{ccc} \widetilde{X} & \stackrel{\widetilde{f}}{\longrightarrow} & Y \\ \pi \downarrow & & \\ X & & \end{array}$$

and we call it *mild* if its domain projection  $\pi$  is finite and flat.

Although a correspondence f is not a honest morphism of schemes  $f: X \to Y$ , it still defines a monoidal functor of a direct image  $f_* := \tilde{f}_* \pi^* : \operatorname{Qcoh}_X \to \operatorname{Qcoh}_Y$  between categories of quasi-coherent sheaves. It is monoidal because  $\tilde{f}_*$  is monoidal and  $\pi^*$  is strong opmonoidal, hence monoidal as well. If in addition f is mild  $f_*$  has a left adjoint (hence canonically opmonoidal) functor  $f^* \dashv f_*$  Moreover, there exist an  $\mathscr{O}_X$ -coalgebra D equipped with a structure of an  $\pi_*\mathscr{O}_{\widetilde{X}}$ -module s.t.

$$f^* := \pi_* \widetilde{f}^*(-) \otimes_{\pi_* \mathscr{O}_{\widetilde{X}}} D : \operatorname{Qcoh}_Y \to \operatorname{Qcoh}_X,$$

$$f_* = \widetilde{f_*}(\mathscr{H}om_X(D,-)^{\sim}) : \operatorname{Qcoh}_X \to \operatorname{Qcoh}_Y$$

where  $(-)^{\sim}$  denotes sheafifying by localisation of a  $\pi_* \mathscr{O}_{\widetilde{X}}$ -module to obtain a quasi-coherent sheaf on  $\widetilde{X} = \operatorname{Spec}_X(\pi_* \mathscr{O}_{\widetilde{X}})$ , the relative spectrum of a commutative quasi-coherent  $\mathscr{O}_X$ -algebra  $\pi_* \mathscr{O}_{\widetilde{X}}$ .

#### Mild correspondences of affine schemes

Thus for affine schemes X = Spec(R) and Y = Spec(S) a mild correspondence f from X to Y can be written as a homomorphism of commutative rings

$$S \to \operatorname{Hom}_R(D, R), \ s \mapsto (d \mapsto s(d))$$

where the ring on the right hand side is a convolution ring dual to some cocommutative *R*-coalgebra *D*, *i.e.* its unit is a counit  $\varepsilon: D \to R$  and multiplication comes from the comultiplication  $D \to D \otimes_R D$ ,  $d \mapsto d_{(1)} \otimes d_{(2)}$  (Heyneman-Sweedler notation) via dualization, *i.e.* 

$$\operatorname{Hom}_{R}(D, R) \otimes \operatorname{Hom}_{R}(D, R) \to \operatorname{Hom}_{R}(D, R),$$

$$\rho_1 \otimes \rho_2 \mapsto (d \mapsto \rho_1(d_{(1)})\rho_2(d_{(2)})).$$

### Adjunction for affine schemes

The corresponding adjunction between monoidal categories of modules  $\operatorname{Qcoh}_X = \operatorname{Mod}_R$  and  $\operatorname{Qcoh}_Y = \operatorname{Mod}_S$  is given as follows

 $f_*M = \operatorname{Hom}_R(D, M),$ 

 $f^*N = (N \otimes_S \operatorname{Hom}_R(D,R)) \otimes_{\operatorname{Hom}_R(D,R)} D = N \otimes_S D.$ 

A monoidal structure of  $f_*$  (or equivalently, an opmonoidal structure of  $f^*$ ) is related to the coalgebra structure of D as follows.

The morphism  $\mathscr{O}_Y \to f_*\mathscr{O}_X$  is defined as

 $S \to \operatorname{Hom}_R(D, R)$ ,  $s \mapsto (d \mapsto s(d))$ , with respect to which the image of the unit of S is equal to the counit of D, and the natural transformation  $f_*\mathscr{F}_0 \otimes f_*\mathscr{F}_1 \to f_*(\mathscr{F}_0 \otimes \mathscr{F}_1)$  is defined by means of the comultiplication of D as

 $\operatorname{Hom}_{R}(D, M_{1}) \otimes_{S} \operatorname{Hom}_{R}(D, M_{2}) \to \operatorname{Hom}_{R}(D, M_{1} \otimes_{R} M_{2}),$ 

$$\mu_1\otimes\mu_2\mapsto (d\mapsto\mu_1(d_{(1)})\otimes\mu_2(d_{(2)})).$$

This can be easily extended to noncommutative rings by noticing that, for R being commutative, R itself and any coalgebra D over R are symmetric R-bimodules, hence

 $\operatorname{Hom}_{R}(D,R) = \operatorname{Hom}_{R^{\circ} \otimes R}(D,R)$ 

where on the right hand side we have homomorphisms of R-bimodules regarded as right modules over the enveloping ring  $R^o \otimes R$ . This still makes sense if one takes noncommutative rings R and S, and an arbitrary R-coring D instead of a cocommutative R-coalgebra over a commutative ring R.

Then we say that a *mild correspondence from a ring* S *to a ring* R is given if there is given a ring homomorphism

$$S \to \operatorname{Hom}_{R^o \otimes R}(D, R), \ s \mapsto (d \mapsto s(d))$$

where the structure of the convolution ring on  $\operatorname{Hom}_{R^{o}\otimes R}(D, R)$  is induced from the *R*-coring structure of *D*.

A mild correspondence  $S \to \operatorname{Hom}_{R^{\circ} \otimes R}(D, R)$  from a ring S to a ring R defines an adjunction between monoidal categories of bimodules  $\operatorname{Qcoh}_{X} = \operatorname{Bim}_{R}$  and  $\operatorname{Qcoh}_{Y} = \operatorname{Bim}_{S}$  as follows

$$f_*M = \operatorname{Hom}_{R^o \otimes R}(D, M), \ f^*N = N \otimes_{S^o \otimes S} D.$$

A monoidal structure of  $f_*$  (or equivalently, an opmonoidal structure of  $f^*$ ) generalizes the structure of the convolution ring.

 $\operatorname{End}_{R}(P)$  is a convolution ring  $\operatorname{Hom}_{R^{o}\otimes R}(D, R)$  of an *R*-coring  $D = P^{*} \otimes P$  whose canonical counit  $\varepsilon : D \to R$  is the evaluation of elements of  $P^{*} = \operatorname{Hom}_{R}(P, R)$  on elements of *P*,

$$P^* \otimes P \to R$$
,

$$p^* \otimes p \rightarrow p^*(p),$$

its canonical comultiplication  $D \to D \otimes_R D$ ,  $d \mapsto d_{(1)} \otimes d_{(2)}$  can be written in terms of any dual basis  $(p_i, p_i^*)_{i \in I}$  for P as

$$P^* \otimes P \to (P^* \otimes P) \otimes_R (P^* \otimes P),$$
  
 $p^* \otimes p \mapsto \sum_{i \in I} (p^* \otimes p_i) \otimes (p_i^* \otimes p),$ 

The morphism  $\mathscr{O}_Y \to f_*\mathscr{O}_X$  is defined as above and the natural transformation  $f_*\mathscr{F}_1 \otimes f_*\mathscr{F}_2 \to f_*(\mathscr{F}_1 \otimes \mathscr{F}_2)$  is defined by means of the comultiplication of D as

 $\operatorname{Hom}_{R^{o}\otimes R}(D, M_{1})\otimes_{\mathcal{S}}\operatorname{Hom}_{R^{o}\otimes R}(D, M_{2}) \to \operatorname{Hom}_{R^{o}\otimes R}(D, M_{1}\otimes_{R}M_{2}),$ 

$$\mu_1\otimes\mu_2\mapsto (d\mapsto\mu_1(d_{(1)})\otimes\mu_2(d_{(2)})).$$

It is an *R*-component of a natural isomorphism of additive functors  $\operatorname{Bim}_R \to \operatorname{Ab}$  whose *M*-component is

$$\operatorname{Hom}_{R^o\otimes R}(D,M)\otimes_{S^o\otimes S}S o M\otimes_{R^o\otimes R}R,$$
  
 $\mu\otimes s\mapsto (\mu\otimes R)(\delta(1))$ 

where  $\delta \in \operatorname{Hom}_{S^{\circ} \otimes S}(S, D \otimes_{R^{\circ} \otimes R} R)$  is a canonical element which can be written in terms of any dual basis as

$$S o (P^* \otimes P) \otimes_{R^o \otimes R} R,$$
  
 $s \mapsto \sum_{i \in I} (p_i^* \otimes s \cdot p_i) \otimes 1.$ 

Finally, the character of the above representation can be written as a natural transformation

 $\Gamma_Y f_* \to \Gamma_X$ 

where X and Y are cyclic spectra of rings R and S, respectively.

It is easy to check that the trace property is equivalent to commutativity of all natural diagrams

## Categorical back-bone of cyclic (co)homology

Motivated by this we consider now (large) abelian groups of natural transformations

$$c^{\mathscr{F}_0,\cdots,\mathscr{F}_n}: \ \Gamma_Y(f_*\mathscr{F}_0\otimes\cdots\otimes f_*\mathscr{F}_n) \longrightarrow \Gamma_X(\mathscr{F}_0\otimes\cdots\otimes \mathscr{F}_n),$$

$$c_{\mathscr{G}_0,\cdots,\mathscr{G}_n}: \ \Gamma_Y(\mathscr{G}_0\otimes\cdots\otimes\mathscr{G}_n) \longrightarrow \Gamma_X(f^*\mathscr{G}_0\otimes\cdots\otimes f^*\mathscr{G}_n).$$

All this collection of abelian of natural transformations groups forms a cocyclic object.

- Cofaces come from the composition with natural transformations f<sub>\*</sub>𝔅<sub>0</sub> ⊗ f<sub>\*</sub>𝔅<sub>1</sub> → f<sub>\*</sub>(𝔅<sub>0</sub> ⊗ 𝔅<sub>1</sub>) defining the monoidal structure of f<sub>\*</sub>,
- codegeneracies come from the structural morphism  $\mathscr{O}_Y \to f_*\mathscr{O}_X,$
- $\bullet\,$  cyclic operators come from the natural transformations  $\gamma$  of the cyclic functors.

#### Example: Cyclic cohomology of an algebra

For an algebra A over a field k we prepare the following categorical environment.

$$\operatorname{Qcoh}_X = \operatorname{Vect}^{op}, \Gamma_X(V) = V^*, \ \operatorname{Qcoh}_Y = \operatorname{Vect}, \Gamma_Y(V) = V,$$

$$f_*V = Hom(V, A).$$

The cocyclic object of natural transformations:

$$\Gamma_Y(f_*\mathscr{F}_0\otimes\cdots\otimes f_*\mathscr{F}_n)\to \Gamma_X(\mathscr{F}_0\otimes\cdots\otimes \mathscr{F}_n)$$

reads as

$$Hom(V_0, A) \otimes \cdots \otimes Hom(V_n, A) \rightarrow Hom(V_0 \otimes \cdots \otimes V_n, k)$$

whose component corresponding to  $V_0 = \cdots = V_n = k$  is

$$A\otimes\cdots\otimes A\to k$$
,

the classical cocyclic object  $A^{\natural}$  of Connes.

#### A cyclic Eilenberg-Moore construction

Let R be a ring in a monoidal category  $\operatorname{Qcoh}_Y$ , and  $\operatorname{Bim}_R$  be its monoidal category of bimodules equipped with an opmonoidal monad  $a^*$ . For any opmonoidal monad  $a^*$  on the monoidal category  $\operatorname{Bim}_R$  of R-bimodules over a ring R in a monoidal category  $\operatorname{Qcoh}_Y$ , with structural natural transformations

$$\mu_{a^*}^M : a^*a^*M \to a^*M, \ \eta_{a^*}^M : M \to a^*M,$$
  
$$\delta_{a^*}^{M_0,M_1} : a^*(M_0 \otimes_R M_1) \to a^*M_0 \otimes_R a^*M_1,$$

and a structural morphism

$$\varepsilon: a^*R \to R,$$

one defines a natural transformation of right fusion

$$arphi_{a^*}^{M_0,M_1}:a^*(M_0\otimes_Ra^*M_1) o a^*M_0\otimes_Ra^*M_1$$

as a composition

$$a^*(M_0\otimes_Ra^*M_1)\xrightarrow{\delta_{a^*}^{M_0,a^*M_1}}a^*M_0\otimes_Ra^*a^*M_1\xrightarrow{a^*M_0\otimes_R\mu_{a^*}^{M_1}}a^*M_0\otimes_Ra^*M_1.$$

## Monoidal Eilenberg-Moore construction for Hopf monads on bimodule categories

The Eilenberg-Moore category  $(\operatorname{Bim}_R)^{a^*}$  of  $a^*$  consists of objects M equipped with with morphisms

$$\alpha_M : a^*M \to M,$$

satisfying some properties (commutative diagrams). What is important, they form a monoidal category as follows.

$$\alpha_{M_0\otimes_R M_1}: a^*(M_0\otimes_R M_1) \to M_0\otimes_R M_1$$

$$a^*(M_0 \otimes_R M_1) \xrightarrow{\delta_{a^*}^{M_0, M_1}} a^*M_0 \otimes_R a^*M_1 \xrightarrow{\alpha_{M_0} \otimes_R \alpha_{M_1}} M_0 \otimes_R M_1,$$

We will denote by A the pair  $(R, a^*)$ , and by  $\operatorname{Spec}_Y(A)$  the Eileberg-Moore category  $(\operatorname{Bim}_R)^{a^*}$ .

Commutative rings can be regarded as Hopf monads and they have their cyclic spectra as such. Let R = A where A is a commutative ring. The category  $\operatorname{Bim}_R$  of R-bimodules admits an endofunctor  $a^*$  of symmetrization

$$a^*M := M/[M,R] \tag{2}$$

well defined thanks to the fact that for commutative R the commutator  $[M, R] \subset M$  is an R-subbimodule. It is a Hopf monad making the cyclic functor of  $\operatorname{Bim}_R$  a twisted cyclic functor on the Eilenberg-Moore category  $(\operatorname{Bim}_R)^{a^*}$ .

#### Theorem

The cyclic spectrum for the above Hopf monad and the twisted cyclic functor is equivalent to  $\operatorname{Qcoh}_{\operatorname{Spec}(A)} = \operatorname{Mod}_A$ .

We say that a functor  $\tau_R : \operatorname{Bim}_R \to \operatorname{Ab}$  is a *twisted cyclic functor*, if it is equipped with two natural transformations, the *twisted transposition* 

$$\tau_R(M_0 \otimes_R M_1) \xrightarrow{t_R^{M_0,M_1}} \tau_R(M_1 \otimes_R a^*M_0)$$

and the *right action* of the opmonoidal monad  $a^*$ 

$$\tau_R a^* \xrightarrow{\alpha_{\tau_R}} \tau_R$$

satisfying the following conditions.

First, for the composition  $\tau_R a^*$  we define an analogical twisted transposition, a natural transformation

$$\tau_R a^* (M_0 \otimes_R M_1) \xrightarrow{t_{R,a^*}^{M_0,M_1}} \tau_R a^* (M_1 \otimes_R a^* M_0)$$

being a composition

$$\tau_{R}a^{*}(M_{0}\otimes_{R}M_{1}) \qquad \tau_{R}(a^{*}M_{1}\otimes_{R}a^{*}M_{0}^{T_{R}}) \xrightarrow{\tau_{R}(\varphi_{a^{*}}^{M_{1},M_{0}})^{-1}} \tau_{R}a^{*}(M_{1}\otimes_{R}a^{*}M_{0})$$

$$\tau_{R}(\delta^{M_{0},M_{1}}) \downarrow \qquad \uparrow \tau_{R}(M_{0}\otimes_{\mu_{a^{*}}}(M_{1})) \qquad \uparrow \tau_{R}(a^{*}M_{0}\otimes_{R}a^{*}M_{1}) \xrightarrow{\tau_{R}(a^{*}M_{1}\otimes_{R}a^{*}a^{*}M_{0})} \tau_{R}(a^{*}M_{1}\otimes_{R}a^{*}a^{*}M_{0}))$$

The first condition for  $\tau_R$  to be a twisted cyclic functor consists in commutativity of the following diagram

which means that  $t_{R,a^*}^{M_0,M_1}$  lifts  $t_R^{M_0,M_1}$  along the Hopf monad  $a^*$  action  $\alpha_{\tau_R}$  on  $\tau_R$ .

## Stability condition

The second condition for  $\tau_R$  to be a twisted cyclic functor consists in commutativity of the following diagram



where the horizontal arrow utilizes identifications via tensoring by the monoidal unit R as follows

$$\tau_R(M) = \tau_R(M \otimes_R R) \xrightarrow{t_R^{M,R}} \tau_R(R \otimes_R a^*M) = \tau_R a^*(M).$$

This means that the Hopf monad  $a^*$  action  $\alpha_{\tau_R}$  on  $\tau_R$  neutralizes the twisted transposition with the monoidal unit R.

## Cyclic functor on the monoidal Eilenberg-Moore category from SAYD conditions

The following coequalizer diagram

$$\tau_R a^* M \xrightarrow[\tau_R(\alpha_M)]{\alpha_{\tau_R}^M} \tau_R M \longrightarrow \tau_A M$$

defines an additive functor  $\tau_A : \operatorname{Qcoh}_{\operatorname{Spec}_V(A)} \to \operatorname{Ab}$ .

#### Theorem

 $\tau_A$  makes  $\operatorname{Spec}_Y(A)$  a cyclic scheme.

### Example: Hopf-cyclic cohomology of an algebra

For a left *H*-module algebra *A* over a Hopf algebra *H* over a field *k* and a right-left stable anti-Yetter-Drinfeld *H*-module  $\Gamma$  we can consider the Hopf bialgebroid or  $B = (k, b^* = H \otimes (-))$  and

$$\begin{aligned} & \operatorname{Qcoh}_X = \operatorname{Vect}^{op}, \Gamma_X(V) = \operatorname{Hom}(V, k), \\ & \operatorname{Qcoh}_{\operatorname{Spec}(B)} = H - \operatorname{Mod}, \Gamma_{\operatorname{Spec}(B)}(V) = \Gamma \otimes_H V, \\ & f_*V = \operatorname{Hom}(V, A), \ f_*M = \ _H \operatorname{Hom}(M, A). \end{aligned}$$

The cocyclic object of natural transformations:

$$\Gamma_Y(f_*\mathscr{F}_0\otimes\cdots\otimes f_*\mathscr{F}_n)\to \Gamma_X(\mathscr{F}_0\otimes\cdots\otimes \mathscr{F}_n)$$

reads as

 $\Gamma \otimes_H (Hom(V_0, A) \otimes \cdots \otimes Hom(V_n, A)) \to Hom(V_0 \otimes \cdots \otimes V_n, k)$ whose component corresponding to  $V_0 = \cdots = V_n = k$  is

$$\Gamma \otimes_H (A \otimes \cdots \otimes A) \to k,$$

the cocyclic object of Hajac-Khalkhali-Rangipour-Sommerhäuser.