A decomposition theorem for quantum groups

Biswarup Das

Instytut Mathematyczny PAN Warszawa, Poland

(joint work with Matthew Daws)

From Poisson Brackest to Universal Quantum Symmetry IMPAN, Warszawa

18th August 2014

G: a locally compact group

Obj (*C*):

- A pair (X, ϕ) where
 - X is a compact group
 - **2** $\phi: G \longrightarrow X$ is a continuous group homomorphism
 - **(** $\phi(G)$ is dense in X

Morphisms from (X_1, ϕ_1) to (X_2, ϕ_2) :

Continuous group homomorphism $\pi:X_1 o X_2$ such that

Initial object: $(Bohr(G), \phi_u)$ is Bohr compactification of G

G: a locally compact group

\mathcal{C} : a category

Obj (*C*):

A pair (X, ϕ) where

- X is a compact semi-topological semigroup
- **2** $\phi: G \longrightarrow X$ is a continuous semigroup homomorphism
- **3** $\phi(G)$ is dense in X

Morphisms from (X_1, ϕ_1) to (X_2, ϕ_2) :

Continuous semigroup homomorphism $\pi:X_1 \to X_2$ such that

Initial object: (G^{ω}, ϕ_u) is W.A.P. compactification of G

G: a locally compact group

\mathcal{C} : a category

Obj (*C*):

A pair (X, ϕ) where

- X is a compact semi-topological (CH)-semigroup
- **2** $\phi: G \longrightarrow X$ is a continuous semigroup homomorphism
- **3** $\phi(G)$ is dense in X

Morphisms from (X_1, ϕ_1) to (X_2, ϕ_2) :

Continuous semigroup homomorphism $\pi:X_1\to X_2$ such that

Initial object: $(E(G), \phi_u)$ is Eberlein compactification of G

G: a locally compact quantum group

Obj (\mathcal{C}) :

A pair (X, ϕ) where

- **1** X is a compact quantum group
- **2** $\phi: G \longrightarrow X$ a quantum group homomorphism
- $\phi(G)$ is dense in X (in a suitable sense)

Morphisms from (X_1, ϕ_1) to (X_2, ϕ_2) :

Quantum group homomorphism $\pi: X_1 \to X_2$ such that

Initial object is **Quantum** Bohr compactification of G (P. Sołtan)

G: a locally compact quantum group

Obj (\mathcal{C}) :

A pair (X, ϕ) where

- X is a compact quantum semi-topological (CH)-semigroup
- **2** $\phi: G \longrightarrow X$ a quantum semigroup homomorphism
- $\phi(G)$ is dense in X (in a suitable sense)

Morphisms from (X_1, ϕ_1) to (X_2, ϕ_2) :

Quantum semigroup homomorphism $\pi: X_1 \to X_2$ such that

Do we still have an initial object?

Reduced locally compact quantum group G

Definition (A) (Woronowicz; 1996)

A C* bi-algebra $(C_0(G), \Delta)$ such that

- There exists a manageable multiplicative unitary $W \in B(H \otimes H)$ with $C_0(G) = [(\iota \otimes \omega)(W) : \omega \in B(H)_*]$
- 2 $\Delta(a) = W^*(1 \otimes a)W$ for all $a \in C_0(G)$

Definition (B) (Kustermans & Vaes; 2000)

A C* algebra $C_0(G)$ and a non-degenrate *-homomorphism $\Delta : C_0(G) \longrightarrow M(C_0(G) \otimes C_0(G))$ satisfying:

$$\bullet \ (\Delta \otimes \iota) \circ \Delta = (\iota \otimes \Delta) \circ \Delta$$

- **②** [Δ(*C*₀(*G*))(1 ⊗ *C*₀(*G*))] = *C*₀(*G*) = [Δ(*C*₀(*G*))(*C*₀(*G*) ⊗ 1)]
- There exists a faithful left-invariant approximate KMS weight φ on (C₀(G), Δ)

 There exists a right-invariant approximate KMS weight ψ on (C₀(G), Δ) $G \longrightarrow$ reduced locally compact quantum group ; $S \rightarrow$ the antipode $L^1_*(\widehat{G}) := \{ \omega \in L^1(\widehat{G}) : \overline{\omega} \circ S \subset f \text{ for some } f \in L^1(\widehat{G}) \}$

Definition (Kustermans; 2001)

A C* bialgebra $(C_0^u(G), \Delta_u)$ such that

- $C_0^u(G)$ is the universal enveloping C* algebra of $L^1_*(\widehat{G})$
- $\Delta_u : C_0^u(G) \longrightarrow M(C_0^u(G) \otimes C_0^u(G))$ is a non-degenerate *-homomorphism

$$(\Delta_u \otimes \iota) \circ \Delta_u = (\iota \otimes \Delta_u) \circ \Delta_u$$

$$(\Lambda_G \otimes \Lambda_G) \circ \Delta_u = \Delta \circ \Lambda_G$$

where $\Lambda_G:C^u_0(G)\longrightarrow C_0(G)$ is the reducing morphism and Δ is the coproduct of $C_0(G)$

Compact quantum semi-topological (CH)-semigroup:

Definition:

 (A, Φ, V, H) is called a *compact quantum* (*CH*)-*semigroup* where:

• A: a unital C* algebra

$$\Phi: A \rightarrow A^{**} \overline{\otimes} A^{**}$$
: a unital *-homomorphism
 $V \in A^{**} \overline{\otimes} B(H)$: a contraction
H: a Hilbert space

$${\it @} \ \, {\it A}_V:=\{(\iota\otimes\omega)(V):\ \omega\in B({\it H})_*\}\subset {\it A} \ {\it and} \ {\it is} \ {\it norm-dense} \ {\it in} \ {\it A}$$

$${f 0}~~(\Phi\otimes\iota)\circ\Phi=(\iota\otimes\Phi)\circ\Phi$$
 where Φ is "lifted"

•
$$(\Phi \otimes \iota)(V) = V_{13}V_{23}$$
 where Φ is "lifted"

Compact quantum semi-topological (CH)-semigroup

Theorem:

 Let (A, Φ, V, H) be a compact quantum semi-topological (CH)-semigroup with A abelian.

Then A = C(S) for a compact semi-topological (CH)-semigroup $S \subset B(H)_{\|\cdot\| \le 1}$.

2 Let S be a compact semi-topological (CH)-semigroup acting on a Hilbert space H. For $s, t \in S$ let

 $\Phi: C(S) \longrightarrow C(S)^{**} \overline{\otimes} C(S)^{**} : f \mapsto \Phi(f)(s,t) := f(s \cdot t).$

Then there exists a $V \in C(S)^{**} \overline{\otimes} B(H)$ with $||V|| \leq 1$ such that $(C(S), \Phi, V, H)$ is a compact quantum semi-topological (CH)-semigroup.

Theorem (Existence of bi-invariant mean):

There exists a state $M : A \longrightarrow \mathbb{C}$

$$(\iota\otimes \widetilde{M})(\widetilde{\Phi}(a))=(\widetilde{M}\otimes \iota)(\widetilde{\Phi}(a))=M(a) \quad (a\in A)$$

where \widetilde{M} and $\widetilde{\Phi}$ are the lifts of M and Φ to A^{**} .

G: a locally compact quantum group

Obj (\mathcal{C}) :

A pair (X, ϕ) where

- X is a compact quantum semi-topological (CH)-semigroup
- **2** $\phi: G \longrightarrow X$ a quantum semigroup homomorphism
- $\phi(G)$ is dense in X (in a suitable sense)

Morphisms from (X_1, ϕ_1) to (X_2, ϕ_2) :

Quantum semigroup homomorphism $\pi: X_1 \to X_2$ such that

$$S_1 := (A_1, \Phi_1, V_1, H_1)$$
; $S_2 := (A_2, \Phi_2, V_2, H_2)$

A morphism $\theta : S_1 \longrightarrow S_2$:

A unital *-homomorphism: $\theta: A_2 \longrightarrow A_1$ satisfying $(\widetilde{\theta} \otimes \widetilde{\theta}) \circ \Phi_2 = \Phi_1 \circ \theta$ where $\widetilde{\theta}: A_2^{**} \longrightarrow A_1^{**}$ is the lift of $\theta: A_2 \longrightarrow A_1$

Morphisms: $G \longrightarrow S$

G is a locally compact *universal quantum* group

S is a compact quantum semi-topological (CH)-semigroup $S := (A, \Phi, V, H)$

Morphism $\Theta: G \longrightarrow S$

A non-degenerate *-monomorphism

 $\Theta: A \longrightarrow M(C_0^u(G))$

satisfying

 $\bullet \ \Theta^* : C^u_0(G)^* \longrightarrow A^* \text{ is a homomorphism of Banach algebras}$

(Θ̃ ⊗ ι)(V) is a unitary representation of G
 The representation can be degenerate

Eberlein compactification of quantum group G

 $\ensuremath{\mathcal{C}}$ is a category:

Obj (\mathcal{C}) :

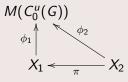
A pair (X, ϕ) where

- X is a compact quantum semi-topological (CH)-semigroup
- **2** A morphism $\phi : G \longrightarrow X$

 $(\phi(G) \text{ is dense in } X \equiv \phi \text{ is a } C^*\text{-monomorphism})$

Morphisms from (X_1, ϕ_1) to (X_2, ϕ_2) :

Morphisms $\pi:X_1 \to X_2$ such that



There exists an initial object in this category (BD & Daws)

The initial object: $(E(G), \Phi, V_u, H_u)$

 $(E(G), \Phi, V_u, H_u)$ is called the Eberlein compactification of G:

- (E(G), Φ, V_u, H_u) is a compact quantum semi-topological (CH)-semigroup
- In general E(G) ⊊ B(G); B(G): Fourier-Stieltjes algebra of G
 e.g. this is the case for G := SU_q(2)
- If G is Kac-type then E(G) = B(G)
- $V_u \in M(C_0^u(G) \otimes B_0(H_u))$ is a unitary representation of G
- G is classical $\implies E(G)$ is the continuous function algebra over the Eberlein compactification of G

Bohr compactification vs Eberlein compactification

de Leeuw & Glicksberg (1961); Spronk & Stokke (2012)

Let G be a locally compact group.

- Bohr(G) is the Bohr compactification of G
- E(G) is the continuous function algebra over the Eberlein compactification of G

Then

$\mathsf{E}(\mathsf{G}) = \mathsf{C}(\mathsf{Bohr}(\mathsf{G})) \oplus \mathcal{I}_0 \quad (\text{as Banach spaces})$

where \mathcal{I}_0 is the kernel of the bi-invariant mean of E(G).

Quantum Bohr compactification vs Quantum Eberlein compactification

- G is a locally compact quantum group.
- $\bullet~\mathsf{E}(\mathsf{G})$ is the Eberlein compactification of G
- $C(G^{SAP})$ is the reduced version of AP(G)

Theorem-(A):

If G is of Kac-type, then

- The bi-invariant mean M on E(G) is tracial
- Let *I*₀ be the kernel of *M*. Then *E*(*G*)/*I*₀ can be given a compact quantum group structure
- The compact quantum group E(G)/I₀ is quantum group isomorphic to C(G^{SAP})

Theorem-(A): (contd.)

Quantum Bohr compactification vs Quantum Eberlein compactification

- G is a locally compact quantum group of Kac-type
- $\bullet~\mathsf{E}(\mathsf{G})$ is the Eberlein compactification of G
- $\bullet \ \mathcal{I}_0$ is the kernel of the bi-invariant mean on $\mathsf{E}(\mathsf{G})$
- $C(G^{SAP})$ is the reduced version of AP(G)

Decomposition Theorem for quantum groups:

If AP(G) is reduced then:

$$\mathsf{E}(\mathsf{G})=\mathsf{AP}(\mathsf{G})\ \oplus\ \mathcal{I}_0$$

e.g.

- If G is a classical locally compact group (de Leeuw & Glicksberg decomposition theorem)
- If G is the dual of a classical locally compact group H such that H_d (H with discrete topology) is amenable

THANK YOU FOR YOUR ATTENTION Dziękuję za uwagę