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G: a locally compact group C: a category

Obj (C):
A pair (X , φ) where

1 X is a compact group
2 φ : G −→ X is a continuous group homomorphism
3 φ(G) is dense in X

Morphisms from (X1, φ1) to (X2, φ2):
Continuous group homomorphism π : X1 → X2 such that

G
φ1
��

φ2

  
X1 π

// X2

Initial object: (Bohr(G), φu) is Bohr compactification of G
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G: a locally compact group C: a category

Obj (C):
A pair (X , φ) where

1 X is a compact semi-topological semigroup
2 φ : G −→ X is a continuous semigroup homomorphism
3 φ(G) is dense in X

Morphisms from (X1, φ1) to (X2, φ2):
Continuous semigroup homomorphism π : X1 → X2 such that

G
φ1
��

φ2

  
X1 π

// X2

Initial object: (Gω, φu) is W.A.P. compactification of G
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G: a locally compact group C: a category

Obj (C):
A pair (X , φ) where

1 X is a compact semi-topological (CH)-semigroup
2 φ : G −→ X is a continuous semigroup homomorphism
3 φ(G) is dense in X

Morphisms from (X1, φ1) to (X2, φ2):
Continuous semigroup homomorphism π : X1 → X2 such that

G
φ1
��

φ2

  
X1 π

// X2

Initial object: (E(G), φu) is Eberlein compactification of G
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G: a locally compact quantum group C: a category

Obj (C):
A pair (X , φ) where

1 X is a compact quantum group
2 φ : G −→ X a quantum group homomorphism
3 φ(G) is dense in X (in a suitable sense)

Morphisms from (X1, φ1) to (X2, φ2):
Quantum group homomorphism π : X1 → X2 such that

G
φ1
��

φ2

  
X1 π

// X2

Initial object is Quantum Bohr compactification of G (P. Sołtan)
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G: a locally compact quantum group C: a category

Obj (C):
A pair (X , φ) where

1 X is a compact quantum semi-topological (CH)-semigroup
2 φ : G −→ X a quantum semigroup homomorphism
3 φ(G) is dense in X (in a suitable sense)

Morphisms from (X1, φ1) to (X2, φ2):
Quantum semigroup homomorphism π : X1 → X2 such that

G
φ1
��

φ2

  
X1 π

// X2

Do we still have an initial object?
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Reduced locally compact quantum group G
Definition (A) (Woronowicz; 1996)
A C* bi-algebra (C0(G),∆) such that

1 There exists a manageable multiplicative unitary
W ∈ B(H ⊗ H) with C0(G) = [(ι⊗ ω)(W ) : ω ∈ B(H)∗]

2 ∆(a) = W ∗(1⊗ a)W for all a ∈ C0(G)

Definition (B) (Kustermans & Vaes; 2000)
A C* algebra C0(G) and a non-degenrate *-homomorphism
∆ : C0(G) −→ M(C0(G)⊗ C0(G)) satisfying:

1 (∆⊗ ι) ◦∆ = (ι⊗∆) ◦∆
2 [∆(C0(G))(1⊗ C0(G))] = C0(G) = [∆(C0(G))(C0(G)⊗ 1)]
3 There exists a faithful left-invariant approximate KMS weight
φ on (C0(G),∆)

4 There exists a right-invariant approximate KMS weight
ψ on (C0(G),∆)
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Universal locally compact quantum group

G −→ reduced locally compact quantum group ; S → the antipode

L1
∗(Ĝ) := {ω ∈ L1(Ĝ): ω ◦ S ⊂ f for some f ∈ L1(Ĝ)}

Definition (Kustermans; 2001)
A C* bialgebra (Cu

0 (G),∆u) such that
1 Cu

0 (G) is the universal enveloping C* algebra of L1
∗(Ĝ)

2 ∆u : Cu
0 (G) −→ M(Cu

0 (G)⊗ Cu
0 (G)) is a non-degenerate

*-homomorphism
3 (∆u ⊗ ι) ◦∆u = (ι⊗∆u) ◦∆u
4 (ΛG ⊗ ΛG) ◦∆u = ∆ ◦ ΛG

where ΛG : Cu
0 (G) −→ C0(G) is the reducing morphism and ∆ is

the coproduct of C0(G)
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Compact quantum semi-topological (CH)-semigroup:

Definition:
(A,Φ,V ,H) is called a compact quantum (CH)-semigroup where:

1 A: a unital C* algebra
Φ : A→ A∗∗⊗A∗∗: a unital *-homomorphism
V ∈ A∗∗⊗B(H): a contraction
H: a Hilbert space

2 AV := {(ι⊗ω)(V ) : ω ∈ B(H)∗} ⊂ A and is norm-dense in A

3 (Φ⊗ ι) ◦ Φ = (ι⊗ Φ) ◦ Φ where Φ is “lifted"

4 (Φ⊗ ι)(V ) = V13V23 where Φ is “lifted"
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Compact quantum semi-topological (CH)-semigroup

Theorem:
1 Let (A,Φ,V ,H) be a compact quantum semi-topological

(CH)-semigroup with A abelian.

Then A = C(S) for a compact semi-topological
(CH)-semigroup S ⊂ B(H)‖·‖≤1 .

2 Let S be a compact semi-topological (CH)-semigroup acting
on a Hilbert space H. For s, t ∈ S let

Φ : C(S) −→ C(S)∗∗⊗C(S)∗∗ : f 7→ Φ(f )(s, t) := f (s · t).

Then there exists a V ∈ C(S)∗∗⊗B(H) with ‖V ‖ ≤ 1 such
that
(C(S),Φ,V ,H) is a compact quantum semi-topological
(CH)-semigroup.
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Invariant means on (A, Φ, V , H)

Theorem (Existence of bi-invariant mean):
There exists a state M : A −→ C

(ι⊗ M̃)(Φ̃(a)) = (M̃ ⊗ ι)(Φ̃(a)) = M(a) (a ∈ A)

where M̃ and Φ̃ are the lifts of M and Φ to A∗∗.
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G: a locally compact quantum group C: a category

Obj (C):
A pair (X , φ) where

1 X is a compact quantum semi-topological (CH)-semigroup
2 φ : G −→ X a quantum semigroup homomorphism
3 φ(G) is dense in X (in a suitable sense)

Morphisms from (X1, φ1) to (X2, φ2):
Quantum semigroup homomorphism π : X1 → X2 such that

G
φ1
��

φ2

  
X1 π

// X2
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Morphisms: S1 −→ S2

S1 := (A1,Φ1,V1,H1) ; S2 := (A2,Φ2,V2,H2)

A morphism θ : S1 −→ S2:

A unital *-homomorphism:

θ : A2 −→ A1

satisfying

(θ̃ ⊗ θ̃) ◦ Φ2 = Φ1 ◦ θ

where θ̃ : A∗∗
2 −→ A∗∗

1 is the lift of θ : A2 −→ A1
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Morphisms: G −→ S

G is a locally compact universal quantum group

S is a compact quantum semi-topological (CH)-semigroup
S := (A,Φ,V ,H)

Morphism Θ : G −→ S

A non-degenerate *-monomorphism

Θ : A −→ M(Cu
0 (G))

satisfying

1 Θ∗ : Cu
0 (G)∗ −→ A∗ is a homomorphism of Banach algebras

2 (Θ̃⊗ ι)(V ) is a unitary representation of G

The representation can be degenerate
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Eberlein compactification of quantum group G
C is a category:
Obj (C):
A pair (X , φ) where

1 X is a compact quantum semi-topological (CH)-semigroup
2 A morphism φ : G −→ X

(φ(G) is dense in X ≡ φ is a C*-monomorphism)

Morphisms from (X1, φ1) to (X2, φ2):
Morphisms π : X1 → X2 such that

M(Cu
0 (G))

X1

φ1

OO

X2π
oo

φ2
dd

There exists an initial object in this category (BD & Daws)
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The initial object: (E (G), Φ, Vu, Hu)

(E (G),Φ,Vu,Hu) is called the Eberlein compactification of G:

1 (E (G),Φ,Vu,Hu) is a compact quantum semi-topological
(CH)-semigroup

2 In general E (G) ( B(G); B(G): Fourier-Stieltjes algebra of G
e.g. this is the case for G := ŜUq(2)

3 If G is Kac-type then E (G) = B(G)

4 Vu ∈ M(Cu
0 (G)⊗ B0(Hu)) is a unitary representation of G

5 G is classical =⇒ E (G) is the continuous function algebra
over the Eberlein compactification of G
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Bohr compactification vs Eberlein compactification

de Leeuw & Glicksberg (1961); Spronk & Stokke (2012)
Let G be a locally compact group.

Bohr(G) is the Bohr compactification of G

E(G) is the continuous function algebra over the Eberlein
compactification of G

Then

E(G) = C(Bohr(G)) ⊕ I0 (as Banach spaces)

where I0 is the kernel of the bi-invariant mean of E (G).
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Quantum Bohr compactification vs Quantum Eberlein
compactification

G is a locally compact quantum group.
E(G) is the Eberlein compactification of G
C(GSAP) is the reduced version of AP(G)

Theorem-(A):
If G is of Kac-type, then

The bi-invariant mean M on E(G) is tracial

Let I0 be the kernel of M. Then E (G)/I0 can be given a
compact quantum group structure

The compact quantum group E (G)/I0 is quantum group
isomorphic to C(GSAP)

Theorem-(A): (contd.)
If G is of Kac-type, then there exists a short exact sequence of C*
algebras :

0 // I0
ι // E (G) π // C(GSAP) // 0

where
ι is the inclusion map

π is the GNS representation of E (G) associated with the
bi-invariant mean
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Quantum Bohr compactification vs Quantum Eberlein
compactification

G is a locally compact quantum group of Kac-type
E(G) is the Eberlein compactification of G
I0 is the kernel of the bi-invariant mean on E(G)
C(GSAP) is the reduced version of AP(G)

Decomposition Theorem for quantum groups:
If AP(G) is reduced then:

E(G) = AP(G) ⊕ I0
e.g.

If G is a classical locally compact group
(de Leeuw & Glicksberg decomposition theorem)

If G is the dual of a classical locally compact group H such
that Hd (H with discrete topology) is amenable
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THANK YOU FOR YOUR ATTENTION

Dziȩkujȩ za uwagȩ
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