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1 Introduction

In these notes we will take a look at the extension of symplectic group action
to deformation quantizations. This is mainly motivated for two reasons. The
first is that classification of such extensions of group action, particularly
in cohomological form might lead to explicit formulas for algebraic index
theorems for deformation quantization in the presence of group actions.
The second is related to our idea of the extension of a group action and the
construction of deformation quantization applied in these notes. Fedosov
notes in the paper in which he introduce his simple geometric construction
for formal deformation quantization of symplectic manifolds[1] that one can
in this construction always find a way to relate symplectic automorphisms of
the manifold to automorphisms of a deformation quantization. We do this
by simply composing the push-forward with a certain inner automorphism
(which need not be unique). We see this as the extension of the symplectic
automorphism. In the case of a group action we consider the case when
all the autmorphisms defined by the elements of the group are extended
while preserving the group structure an extension of the group action. The
motivation is that although Fedosov noted this idea he also notes that there
is no guarantee such extensions exist. We will use mainly the conventions
and some results as laid out in [2].

2 The Fedosov Construction

2.1 Weyl Bundle

The fedosov construction is a geometric construction for deformation quan-
tizations of symplectic manifolds. It identifies these deformations as subal-
gebras of the sections of a bundle of algebras called the Weyl bundle.

Definition 2.1 (Weyl Functor).
Denote by W : SymV ecC → GrAssC the Weyl functor from the category of
complex symplectic vector spaces to the category of complex graded associa-
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tive algebras given by

W(V, ω) = ̂(TV )[[~]]/I,

where the ideal I ⊂ TV [[~]] is generated by the elements

v ⊗ w − w ⊗ v − i~ω(v, w)

for v, w ∈ V and the hat signifies completion in the 〈V 〉-adic topology. The
grading is given by the assertion that |~| = 2 and |v| = 1 for all v ∈ V .

Since taking the tensor algebra, formal power series etc. are all covariant
functors so is W. Note especially that the ideals corresponding to different
symplectic spaces map into each other, since symplectic maps preserve the
symplectic form. We will call the algebra W(V, ω) the Weyl algebra asso-
ciated to (V, ω). In fact a more general definition is possible by replacing
C with a field containing the square root of −1. In the complex case the
existence of symplectic bases shows that the isomorphism classes of (finite
dimensional) symplectic vector spaces are classified by 2N in terms of the di-
mension. Consider then the symplectic vector space R2n with the standard
symplectic form ωst =

∑n
i=1 ξ

i ∧ xi corresponding to the symplectic basis
x1, . . . , xn, ξ1, . . . , ξn (where the subscripts imply duality). By complexifica-
tion we obtain the symplectic vector space (C2n = R2n⊗RC, ω := ωst⊗R 1).
In the following we will simply denote W~,n = W(C2n, ω) and even omit the
n if it is implied (for instance by dimension of the manifold).

Now let us apply this construction in the case of a symplectic manifold
(M,ω) of dimension 2n. Recall that ω ∈ Ω2(M) such that dω = 0 and
ωx : TxM ⊗ TxM → R is a symplectic form. This means in particular that
ωx is non-degenerate for all x ∈M and therefore defines an isomorphism
Iωx : T ∗xM → TxM for every x ∈ M , which we can group into the iso-
morphism Iω : T ∗M → TM . Thus we obtain the corresponding symplectic
vector spaces (T ∗xM, ω̄x) for each x ∈M , where ω̄ = (Iω ⊗ Iω)∗ω.

Lemma 2.2.
There exists a system of coordinate neighborhoods U on M such that the
corresponding trivializations of TM become symplectomorphisms. Here, for
every U ∈ U , we consider the standard symplectic structure (U × R2n, ωst).

Proof.
Recall that for every x ∈M there exists a Darboux coordinate neighborhood
(Ux, q

1, . . . , qn, p1, . . . , pn) such that ∂
∂q1
|y, . . . , ∂

∂qn |y,
∂
∂p1
|y, . . . , ∂

∂pn |y forms a
symplectic basis for every y ∈ Ux. Then define

φx : (TUx, ω|Ux)→ (Ux × R2n, ωst)

by

φx(

n∑
i=1

ai
∂

∂qi
|y + bi

∂

∂pi
|y) = (y,

n∑
i=1

aixi + biξi).
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Since this map sends a symplectic basis to a symplectic basis we see that
the φx are indeed symplectomorphisms.

An immediate corollary of the lemma is that the transition functions of TM
take values in Sp(2n,R) ⊂ GL(2n,R). Therefore the same is true when we
consider T ∗M instead of TM , so by functoriality of complexification and
W we find the bundle of algebras W with fibers isomorphic to W~. Where
the vector bundle structure is given by the one on T ∗M ⊗R C (here we
use the lemma to assert that all the necessary maps are in the category
of symplectic vector spaces and thus have counterparts in the category of
graded algebras).

Definition 2.3.
For (M,ω) a symplectic manifold we call the bundle W, with fiber
W(T ∗xM ⊗R C, ωx ⊗ 1) at x ∈M , the Weyl bundle on M .

We will now use the Fedosov construction to identify subalgebras of
the sections of the Weyl bundle that are isomorphic to formal deformation
quantizations. In the Fedosov construction this subalgebra is obtained as
the kernel of a particular kind of connection. Then let us introduce some
notation for relevant objects and also the only constant “part” of the con-
nection. First of all let us be precise about what we mean by a connection
on the Weyl bundle.
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Definition 2.4.
A connection ∇ on W →M is a C[[~]]-linear map Γ(W)→ Γ(W)⊗ Ω1(M)
that respects the algebra structure of W. That is we have

∇(τσ) = σ∇τ + (∇σ)τ ∀σ, τ ∈ Γ(W)

and
∇f = df ∀f ∈ C∞(M) ⊂ Γ(W).

Thus we see that a connection is indeed a map from vector fields into
derivations of the algebra Γ(W). That is to say for each point x ∈ M
and vector X ∈ TxM ∇ assign a derivation of the Weyl-algebra W~ with
smoothness and linearity conditions. Thus let us denote this last Lie algebra
of derivations by g. Now we can use the following result about the standard
notion of Weyl-algebra.

Lemma 2.5.
Denote by An the algebra over C given by the following construction (the
resulting algebra is usually called the nth Weyl algebra over C). First let
V = 〈x1, . . . , xn, y1, . . . , yn〉 and let TV be the tensor algebra generated by
V . Then impose on TV the relations [xi, xj ] = [yi, yj ] = 0 and [yi, xj ] = δij
for i, j = 1, . . . , n, where the brackets denote the commutator and δij denotes
the Kronecker delta. Then all derivations of An are inner for all n ∈ N.

We will omit the proof because it is quite long, but it comes down to
observing a sort of formal integration of polynomials in the sense that we
may identify [yi,−] as ∂xi Now it is easy to see that this lemma carries over
in slightly altered form for W~ (because of the ~ and grading9). Denoting by
g̃ the Lie algebra given by 1

~W~ under commutation (the ~ will cancel against
the ~ in the commutator) we can summarize the result in the statement that
the sequence

0 → 1
~Z ↪→ g̃ → g → 0

1
~Φ 7→ 1

~ [Φ,−]

is short exact, where Z = C[[~]] denotes the center of W~. Note that we
retain still the grading on g̃ and g (where the lowest order in the first is
−2 and in the second −1 since the scalars commute). We will denote the
homogeneous elements of degree i in g or g̃ by gi and g̃i respectively.

There is one last standard element of the symplectic geometry. Namely
the canonical form A−1 : Γ(TM)→ Γ(T ∗M) ⊂ Γ(W), given as

A−1(v)|x = ωx(v,−)

for all v ∈ TM and x ∈M .
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2.2 Fedosov connection

The main object of the Fedosov construction is the notion of Fedosov connec-
tion which determines the deformation quantization in terms of flat sections
in the Weyl-bundle.

Definition 2.6.
We call a flat connection ∇ : Γ(W)→ Γ(W)⊗Ω1(M) a Fedosov connection
if it is of the form

∇ =
1

~
[A−1,−] +∇0 +

1

~
[A1,−] +

1

~
[A2,−] + . . . ,

where ∇0 denotes the lift of a symplectic connection and Ai is a one-form
with values in the degree i+ 2 of section of the Weyl bundle for each i.

Note that we can view a symplectic connection as taking values in deriva-
tions of Γ(T ∗M) ⊂ Γ(W), we mean the lift in this sense, and so ∇0 takes
values in g0. Thus we see that every summand in the Fedosov connection
takes values in the degree of it’s subscript that is 1

~ [Ai,−] takes values in gi
for each i ∈ N ∪ {−1} and ∇0 takes values in g0.

As mentioned a Fedosov connection allows us to construct and classify
the deformation quantizations associated to (M,ω) as follows.

Theorem 2.7. (R. Nest, B. Tsygan; 1999)
Suppose θ ∈ (i~)−1ω + Ω2(M,C[[~]]) with dθ = 0 and ∇0 any lift of a sym-
plectic connection as above, then there is a g̃ valued one form 1

~Aθ such that

∇θ = ∇0 + 1
~ [Aθ,−] is a Fedosov connection on M and ∇̃2

θ = θ, where ∇̃θ
is any lift to g̃. Furthermore Ker∇θ ' C∞(M)[[~]] as vector spaces and pro-
moting this isomorphism to an algebra isomorphism defines a star-product.
Overmore if [θ] = [θ′] ∈ (i~)−1ω +H2(M,C[[~]]) we have Ker∇θ ' Ker∇θ′.

We will omit the proof here, but the idea is to construct Aθ starting
with A−1 and continuing by induction on the degree. Note also that we
could write 1

2 [∇̃θ, ∇̃θ] = ∇̃2
θ and that the assertion is that this is a scalar

valued one form. So we see that the deformation quantizations of (M,ω)
correspond exactly to the Fedosov connections and that they are classified
by classes in (i~)−1ω+H2(M,C[[~]]). Here the (i~)−1ω term shows up since
1
~2 [A−1, A−1] = (i~)−1ω.

Now let us determine how Fedosov connections corresponding to the
same deformation quantization are related. So let ∇ and ∇′ be Fedosov
connections such that Ker∇ ' Ker∇′ then we have corresponding lifts and
forms θ = ∇̃2 and θ′ = ∇̃′2, with [θ] = [θ′]. Then suppose θ′ = θ + dα
for some (scalar valued) one-form α. Then we might consider the Fedosov
connection ∇+ [α,−] (flatness is immediate since α is scalar valued). Then
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we see that ∇̃ + α lifts this connection and Ker(∇ + [α,−]) = Ker∇, but
we also have (∇̃ + α)2 = θ + dα = θ′. Thus we might as well assume that
∇̃2 = ∇̃′2 as forms. Then we find by induction on the degree and the Baker-
Campbell-Hausdorff formula and acyclicity of a certain complex[2] that there
exists an element φ ∈ Γ(W) such that ∇′ = Ad eφ ◦∇ ◦Ad e−φ. So we may
conclude that for two Fedosov connections as above we have in general that
∇′ = Ad eφ ◦ ∇ ◦ Ad e−φ + [α,−] for some scalar valued one-form α and a
section φ of the Weyl bundle. Note also that this induces the automorphism
Ad eφ ∈ Aut(Γ(W)) which is an isomorphism of the kernels, sending the ∇
flat section σ to eφσe−φ which are ∇′ flat.

3 Extending automorphisms of (M,ω) to algebra
automorphisms

Now let us turn to the matter of symplectic group actions on the manifold.
We would like to know whether and in what way such actions persist in
the deformation quantization. Let us then fix a deformation quantization,
i.e. a Fedosov connection and denote the kernel A~ when this is convenient.
Obviously the first step is to find out how a general symplectomorphism (by
symplectomorphism we will always mean a symplectic automorphism of the
manifold) can induce an automorphism of the deformation quantization. In
the language above this means that given a deformation quantization, i.e. a
Fedosov connection ∇, and a symplectomorphism γ : (M,ω) → (M,ω) we
would like to find an induced map Aγ on Γ(W) which gives an automorphism
of Ker∇ in a sensible way.

Note first of all that by functoriality of the Weyl-bundle construction the
pull-back γ∗ and push-forward γ∗ = (γ∗)−1 are automorphisms of Γ(W).

Lemma 3.1.
Identifying for the moment Ker∇ = (C∞(M)[[~]], ?), the symplectomorphism
induces another equivalent star-product •γ by the rule

f •γ g = (γ−1)∗(γ∗(f) ? γ∗(g)).

Proof.
The lemma follows immediately from the fact that γ∗ω = ω and that

pullbacks under an automorphism of differential operators are still differen-
tial operators. Note that the isomorphism in the lemma is given simply by
γ∗.

Note also that on the level of the sections of the Weyl bundle the
isomorphism in the lemma is deduced from the connection γ∗∇ given by
γ∗∇σ = γ∗(∇γ∗σ) for all σ ∈ Γ(W), where we follow the convention that
γ∗α(X) = α(γ∗X) for all one-forms α and vector fields X. So we have then
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the deformation quantizations Ker∇ and Ker γ∗∇ and the isomorphism γ∗

between them.

Lemma 3.2.
γ∗∇ is a Fedosov connection

Proof.
Explicitely we have ∇ = 1

~ [A−1,−] +∇0 + 1
~ [A,−] as above. But then

γ∗∇σ =
1

~
γ∗([A−1, γ∗σ] + γ∗∇0σ +

1

~
γ∗[A, γ∗σ] =

=
1

~
[A−1, σ] + γ∗∇0σ +

1

~
[γ∗(A), σ].

Note that
γ∗∇0ω = γ∗(∇0γ∗ω) = γ∗(∇0ω) = 0,

so γ∗∇0 is again a symplectic connection. Lastly we have

γ∗∇στ = γ∗(∇γ∗(στ)) =

= γ∗(γ∗σ∇γ∗τ) + γ∗(∇(γ∗σ)γ∗τ) =

= σγ∗∇τ + (γ∗∇σ)τ

and
(γ∗∇)2σ = γ∗∇γ∗(∇γ∗σ) = γ∗(∇2γ∗σ) = 0,

so, by noting that the push-forward and pull-back of symplectomorphisms
preserve the degree in the sections of the Weyl bundle, the lemma is proved.

The isomorphism above then implies that [ ˜γ∗∇2
] = [∇̃2] for any lifts to

g̃. So by the last section we have γ∗∇ = Ad eφγ∇Ad e−φγ +[αγ ,−] for some
section φγ and some scalar valued one form αγ . Also we have immediately
the induced automorphism of the sections of the Weyl bundle Ad eφγ which
maps Ker∇ isomorphically onto Ker∇. So we have now

Ker∇
Ad eφγ

⇒
γ∗

Ker γ∗∇,

where both arrows denote isomorphisms. Thus we can compose them in
order to obtain the automorphism Aγ := γ∗ ◦ Ad eφγ ∈ Aut(Γ(W)|Ker∇).
Note also that in the case that γ∗ preserves the connection (up to a scalar
valued one-form) we obtain again the isomorphism from the lemma.
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4 Group actions

Now let us move on to group actions. Suppose we have a symplectic group
action Γ y (M,ω) and a deformation quantization ∇. Then by the preced-
ing section this means that we have for each γ ∈ Γ an automorphism Aγ ,
which corresponds to a map (of sets) φ : Γ→ Γ(W) such that for all γ ∈ Γ
we have

Ad eφγ ◦ ∇ ◦Ad e−φγ = ∇.
Since we would like to have another group action Γ y Ker∇ this means we
should have Aγ ◦Aµ = Aγµ for each pair γ, µ ∈ Γ (note that indeed the unit
e ∈ Γ will preserve ∇ and therefore Ae = Id).

Note that
Aγ ◦Aµ = γ∗ ◦Ad eφγ ◦ µ∗ ◦Ad eφµ =

= γ∗ ◦ µ∗ ◦Ad µ∗(eφγ ) ◦Ad eφµ =

= (γµ)∗ ◦Ad µ∗(eφγ )eφµ ,

since for each σ, φ ∈ Γ(W) we have

γ∗ ◦Ad eφ(σ) = γ∗(eφσe−φ) = eγ
∗(φ)γ∗(σ)e−γ

∗(φ) = Ad eγ
∗(φ) ◦ γ∗(σ).

On the other hand Aγµ = (γµ)∗ ◦ Ad eφγµ . Thus we see that the Aγ define
a group action if and only if

Ad e−φγµµ∗(eφγ )eφµ = Id,

so if and only if

Aγ,µ := e−φγµeµ
∗(φγ)eφµ ∈ Γ(Z) ⊂ Γ(W),

for all pairs γ, µ ∈ Γ. We have slightly abused notation here by writing Z
both for the bundle and the fiber of the bundle, to be completely clear by
Γ(Z) we mean the center of Γ(W).

This expression might seem familiar to one who is used to dealing with
group cohomology. At least if one would assume commutation of the expo-
nents the logarithm of Aγ,µ would read exactly as a 2-coboundary in group
cohomology. However, we cannot assume them to commute. So we will
proceed by using the non-abelian group cohomology.

5 Cohomological Obstruction and Classification

5.1 Cohomological Approach

Let us fix the function φ mentioned above. Note that this function is not
unique. Then we can identify a cochain corresponding to φ, which deter-
mines whether the corresponding Aγ define a group action or not. Namely
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let the function Φ̃ : Γ → Γ(W)× be given by Φ̃(γ) = γ∗(e
φγ ). Denoting by

π the quotient map to Γ(W)×/Γ(Z)× we find a 1-cochain

Φ := π ◦ Φ̃ ∈ C1(Γ,Γ(W)×/Γ(Z)×),

where the action is given by the push-forward of elements of Γ. Then Φ is
a cocycle if

γ∗(e
φγ )(γµ)∗(e

φµ) = (γµ)∗(e
φγµ) mod Γ(Z)×

by definition. But then we have also that

e−φγµµ∗(eφγ )eφµ ∈ Γ(Z)×,

so the Aγ define an action. Thus finding an extension of the symplectic
action is equivalent to finding a 1-cocycle as above. A better characterization
of such 1-cocycles is needed and future research is aimed in that direction.

This is not the end of the story however. Let us turn from existence to
classification of extensions of symplectic group actions. In the definition of
the Aγ we have the invertible elements eφγ . We have not shown however
that these choices were unique. In fact it is easy to see that we can move
from one choice to another in the following way. Suppose that φ, ψ ∈ Γ(W)
such that

Ad eφ ◦ ∇ ◦Ad e−φ = Ad eψ ◦ ∇ ◦Ad e−ψ,

then we see that
Ad U ◦ ∇ ◦Ad U−1 = ∇,

where U = e−ψeφ. So suppose σ ∈ Γ(W) then

U(∇(U−1σU))U−1 = ∇(σ) + [U∇U−1, σ],

where we used that∇(U)U−1 = −U∇U−1. So we see that the above identity
holds iff U ∈ G∇ := {U ∈ Γ(W)×|U−1∇U ∈ Γ(Z)⊗ Ω1(M)}.

Note first of all that G is a group with the multiplication of Γ(W). Using
the fact that the centralizer of A~ is the entire center of Γ(W) (this follows
from the fact that for each element in the a fiber of W) one can find a flat
section passing through it) it is easy to see that both Γ(Z)× and A×~ are
normal subgroups of G.

Now we see that the group G encodes exactly our freedom of choice for
the eφγ . Let us fix a choice of eφγ . Then we see that the group action
persists if there exists a map U : Γ→ G such that Aγ ◦Ad Uγ ◦Aµ ◦Ad Uµ =
Aγµ ◦Ad Uγµ or in other terms such that ∃Cγ,µ ∈ Γ(Z)× with

Cγ,µe
φγµUγµ = µ∗(eφγUγ)eφµUµ,
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for all γ, µ ∈ Γ. This last expressions seems to imply again some kind of
cohomological statement.

From now on we will write simply Z instead of Γ(Z) for notational
simplicity.

Lemma 5.1.
We have G/Z× ' Inn(Γ(W)|Ker∇) and Aγ(G) ⊂ G for all γ ∈ Γ.

Proof.
Denote by Ad the map that sends an element of G to the inner automor-
phism of the sections of the weyl bundle given by conjugation. Obviously
the map is a group homomorphism and Ker Ad = Z×. Suppose now that
Ad U ∈ Inn(Γ(W)| ker∇) then for all flat sections σ we have

0 = Ad U ◦ ∇ ◦Ad U−1(σ) = [U∇U−1, σ].

So by the comment about the centralizer of Ker∇ above we see that U ∈ G.
Thus the first claim is shown. Suppose now that U ∈ G then using the first
claim it is sufficient to show that Ad Aγ(U) preserves Ker∇ for all γ ∈ Γ.
Suppose then that σ ∈ Ker∇, we have

∇ ◦Ad Aγ(U)(σ) = γ∗(γ
∗∇(Ad eφγUσU−1)) = γ∗ ◦Ad eφγ ◦ ∇ ◦Ad U(σ).

Thus the second claim is also shown.

Proposition 5.2.

Z1
Φ(Γ,G/Z×) := {U : Γ→ G/Z×|UγAγ(Uµ)Φ(γ)γ∗(Φ(µ)) = UγµΦ(γµ)}

classifies the extensions of symplectic groups actions on A~.

Proof.
Suppose ψ : Γ → Γ(W) defines an extension of the symplectic group

action Γ y (M,ω). Then let us denote by U the map given by
Uγ = γ∗(e

ψγe−φγ ). We have

Ad UγAγ(Uµ)Φ(γ)γ∗(Φ(µ))Φ(γµ)−1U−1
γµ =

= γ∗ ◦Ad eψγ ◦ µ∗ ◦Ad eψµ ◦Ad e−ψγµ ◦ (γµ)∗ = Id,

since ψ defines a group action. But the above equation shows that π(U)
is in Z1

Φ(Γ,G/Z×). Conversely suppose Ũ ∈ Z1
Φ(Γ,G/Z×) then denote by

U an arbitrary lift to G. Then by direct computation we see that Bγ :=
Ad Uγ ◦ γ∗ ◦Ad eφγ defines an action.
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Then we see that if we assume the existence of an extension of an action
(i.e. a φ that satisfies the cocycle condition) then in fact Z1

Φ(Γ,G/Z×) =
Z1(Γ,G/Z×) with the action given by the Aγ . In this case we can pass to co-
homology in order to be able to use the homological algebra[3]. By homolog-
ical algebra we mean here that we can obtain from Γ-equivariant short exact
sequences of coefficient groups a truncated long exact sequence of cohomol-
ogy pointed sets, as examplified below. The corresponding H1(Γ,G/Z×)
then classifies extensions of actions up to conjugation by inner automor-
phism.

5.2 Computing Cohomology

Now we would like to show that computation of this non-abelian first group
cohomology pointed set is possible. The idea is to bring it down to the
problem of computing cohomology with values in A×~ /C[[~]]× and use a cer-
tain sequence of subgroups to approximate the cohomology pointed set here.
The best way to show this approach is through example. So let us present
the very simplest of examples here.

Our example will be of the manifold R2 with the standard symplectic
structure and action of Z/2Z given by rotation. In this case the action
preserves the Fedosov connection since the pushforward and pullback are
given by constant matrices. So we indeed have an action on A~ and G given
by the pushforward of the action.

Note that the sequence (we will always mean Γ-equivariant sequence)

1 → C[[~]]× ↪→ Z× → Z1
dR(R2)[[~]] → 0,

f 7→ df
f

is exact, where we used the identification of Z with power series in complex
valued smooth functions on the manfiold. Surjectivity of the last map can
be shown by induction on the degree and the fact that e−gdeg = dg. Since
the group in this case is finite we find already that H1(Γ,Z×/C[[~]]×) = 0
(note that this is even a statement in Abelian group cohomology). Here we
use the fact that first de Rham cohomology vanishes to show surjectivity.
Now let us promote the above sequence to the sequence

1 → A×~ ↪→ G → Z1
dR(R2)[[~]] → 0,

U 7→ U−1∇U

which is of course still exact. It remains exact after modding out C[[~]]×

on the right. After modding out we even find the section df 7→ ef from
Z1
dR(R2)[[~]] to G. So we find thatH1(Γ,A×~ /C[[~]]×) surjects onH1(Γ,G/C[[~]]×)

which surjects on H1(Γ,G/Z×) since we have the exact sequence
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1→ Z×/C[[~]]× → G/C[[~]]× → G/Z× → 1.

Lastly we consider the descending chain of normal subgroups of A×~ given
by Gn := 1 + ~A~. Then we have first of all the exact sequence

1→ G1 → G0 → C∞(R2)× → 1,

which shows that cohomology with values in G1 surjects on cohomology with
values in G1, for the higher orders in n we have

1→ Gn+1 → Gn → C∞(R2)→ 0,

note that these are exact sequences of groups. So again since Z/2Z is finite
we see that we have a chain of surjections which in the limit form a surjection
from cohomology with values in the trivial group to the cohomology we want
to compute. Therefore we see that in this simplest of examples the only
extension of the group action is the natural one.

The answer to this example may not be very exciting, however we do
see from the computation that the only things that are essentially used are
surjectivity of the last map in the first sequence, existence of a section after
modding out scalars and finiteness of the group. So we do have some control
over the computability of our cohomology pointed sets.
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