Quantization of Poisson-Lie Hamiltonian systems

Chiara Esposito

Julius Maximilian University of Würzburg

August 22, 2014

・ロン ・四 と ・ 回 と ・ 回 と

1/15

Outline

Hamiltonian actions

Hamiltonian actions in canonical setting Hamiltonian actions in Poisson-Lie setting

Quantization

Formal approach Drinfeld approach

Symmetries and Conserved quantities

How to obtain conserved quantities for systems with symmetries?

- system?
- symmetries?
- conserved quantity?

イロト 不得 トイヨト イヨト 二日

4/15

Semi-classical Step

Let's put a Poisson structure on our Lie group!

New structures:

- Poisson Lie groups
- Lie bialgebras

What is a Hamiltonian action in this context?

Poisson action

Definition

The action of (G, π_G) on (M, π) is called Poisson action if the map $\Phi : G \times M \to M$ is Poisson, where $G \times M$ is a Poisson manifold with structure $\pi_G \oplus \pi$.

Generalization of canonical action! If $\pi_G = 0$, the action is Poisson if and only if it preserves π .

Momentum map

Definition (Lu)

A momentum map for the Poisson action $\Phi: G \times M \to M$ is a map $\mu: M \to G^*$ such that

$$\widehat{X} = \pi^{\sharp}(\mu^*(heta_X))$$

where θ_X is the left invariant 1-form on G^* defined by the element $X \in \mathfrak{g} = (T_e G^*)^*$ and μ^* is the cotangent lift $T^*G^* \to T^*M$.

Momentum map

Definition (Lu)

A momentum map for the Poisson action $\Phi: G \times M \to M$ is a map $\mu: M \to G^*$ such that

$$\widehat{X} = \pi^{\sharp}(\mu^*(heta_X))$$

where θ_X is the left invariant 1-form on G^* defined by the element $X \in \mathfrak{g} = (T_e G^*)^*$ and μ^* is the cotangent lift $T^*G^* \to T^*M$.

A Hamiltonian action is a Poisson action induced by an equivariant momentum map.

Infinitesimal momentum map

The forms $\alpha_X = \mu^*(\theta_X)$ satisfy

$$\alpha_{[X,Y]} = [\alpha_X, \alpha_Y]_{\pi}$$
 and $d\alpha_X + \alpha \wedge \alpha \circ \delta(X) = 0$

Definition

Let M be a Poisson manifold and G a Poisson Lie group. An infinitesimal momentum map is a morphism of Gerstenhaber algebras

$$\alpha: (\wedge^{\bullet}\mathfrak{g}, \delta, [,]) \longrightarrow (\Omega^{\bullet}(M), d_{DR}, [,]_{\pi}).$$

Formal approach

Steps in formal approach

Goal: guantize Hamiltonian actions

- 1. Quantize structures
- 2. Quantize Poisson action
- 3. Quantize Momentum map

Quantum action

How can we define a quantum action of $\mathcal{U}_{\hbar}(\mathfrak{g})$ on \mathcal{A}_{\hbar} ?

- Hopf algebra action
- $\hbar \rightarrow 0$ Poisson action

Quantum action

How can we define a quantum action of $\mathcal{U}_{\hbar}(\mathfrak{g})$ on \mathcal{A}_{\hbar} ?

- Hopf algebra action
- $\hbar \rightarrow 0$ Poisson action

Definition

The quantum action is a linear map

$$\Phi_{\hbar}: \mathcal{U}_{\hbar}(\mathfrak{g}) \rightarrow \mathit{End} \ \mathcal{A}_{\hbar}: X \mapsto \Phi_{\hbar}(X)(f)$$

such that

- 1. Hopf algebra action
- 2. Algebra homomorphism

Quantum Hamiltonian action

- 1. Quantum momentum map which, as in the classical case, generates the quantum action
- 2. $\hbar \rightarrow 0$ classical momentum map

Quantum Hamiltonian action

- 1. Quantum momentum map which, as in the classical case, generates the quantum action
- 2. $\hbar \rightarrow 0$ classical momentum map

Definition

A quantum momentum map is defined to be a linear map

$$oldsymbol{\mu}_{\hbar}:\mathcal{U}_{\hbar}(\mathfrak{g})
ightarrow\Omega^{1}(\mathcal{A}_{\hbar}):X\mapsto a_{X}db_{X}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

General idea

joint with R. Nest and P. Bieliavsky

- Formal Drinfeld twist
- Non-formal Drinfeld twists (Bieliavsky, Gayral)

Triangular Lie biagebras

Consider a particular class of Lie bialgebras (\mathfrak{g},δ) with

$$\delta(x) = [r, x]$$

Triangular Lie biagebras

Consider a particular class of Lie bialgebras (\mathfrak{g}, δ) with

$$\delta(\mathbf{x}) = [\mathbf{r}, \mathbf{x}]$$

Theorem (Drinfeld)

Let \mathfrak{g} be a finite dimensional real Lie algebra, with r-matrix $r \in \mathfrak{g} \otimes \mathfrak{g}$. There exists a deformation $\mathcal{U}_{\hbar}(\mathfrak{g})$ of $\mathcal{U}(\mathfrak{g})$ whose classical limit is \mathfrak{g} with Lie bialgebra structure defined by r. Furthermore, $\mathcal{U}_{\hbar}(\mathfrak{g})$ is a triangular Hopf algebra and isomorphic to $\mathcal{U}(\mathfrak{g})[[\hbar]]$

Drinfeld Twist

▶ giving a twist on U_ħ(g) is equivalent to give an associative star product on C[∞](G)

$$f \star g := m(\tilde{F}(f \otimes g))$$

Drinfeld Twist

▶ giving a twist on U_ħ(g) is equivalent to give an associative star product on C[∞](G)

$$f \star g := m(\tilde{F}(f \otimes g))$$

► Given a twist, every U(g)-module-algebra A may then be formally deformed into an associative algebra A[[ħ]]

$$m^F := m \circ F.$$

イロト 不得 とくき とくき とうき

Drinfeld Twist

▶ giving a twist on U_ħ(g) is equivalent to give an associative star product on C[∞](G)

$$f \star g := m(\tilde{F}(f \otimes g))$$

► Given a twist, every U(g)-module-algebra A may then be formally deformed into an associative algebra A[[ħ]]

$$m^F := m \circ F.$$

Question: does twist produce quantum Hamiltonian action?

Bieliavsky-Gayral construction

Triangular structures associated to Kähler Lie groups: non formal approach!

Explicit construction of families of kernels

$$\{\kappa_t \in C^\infty(G \times G)\}_t$$

such that for "any" action of G on a C*-algebra A by C*-algebra automorphisms, κ_t defines an star product on A

Non formal Twist?

If \mathcal{A} is the algebra of (complex valued continuous) functions on G, which G acts on via the right-regular representation, then asymptotic expansion automatically yields a left-invariant formal \star -product on (G, ω^G) :

$$f_1 \star_t f_2 := f_1 f_2 + \sum_{k \ge 1} \left(\frac{t}{2i}\right)^k \tilde{F}_k^{(\kappa)}(f_1, f_2) \quad (f_1, f_2 \in C_0^\infty(G))$$

F defines formal twist quantization of our triangular Lie bialgebra!