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Symmetries and Conserved quantities

How to obtain conserved quantities for systems with symmetries?
> system?
> symmetries?

> conserved quantity?
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Semi-classical Step

Let's put a Poisson structure on our Lie group!

New structures:
» Poisson Lie groups

> Lie bialgebras

What is a Hamiltonian action in this context?
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Poisson action

Definition

The action of (G, 7g) on (M, ) is called Poisson action if the
map ¢ : G x M — M is Poisson, where G x M is a Poisson
manifold with structure m¢ @ 7.

Generalization of canonical action! If m¢ = 0, the action is Poisson
if and only if it preserves 7.



Hamiltonian actions Hamiltonian actions in canonical setting
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Momentum map

Definition (Lu)
A momentum map for the Poisson action ®: G x M — M is a
map p: M — G* such that

X = 7*(p*(0x))

where Ox is the left invariant 1-form on G* defined by the element
X € g=(T.G*)* and p* is the cotangent lift T*G* — T*M.
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Hamiltonian actions in Poisson-Lie setting

Momentum map

Definition (Lu)
A momentum map for the Poisson action ®: G x M — M is a
map p: M — G* such that

X = 7*(p*(0x))

where Ox is the left invariant 1-form on G* defined by the element
X € g=(T.G*)* and p* is the cotangent lift T*G* — T*M.

A Hamiltonian action is a Poisson action induced by an equivariant
momentum map.
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Infinitesimal momentum map

The forms ax = pu*(fx) satisfy

ax,y] = lax,aylz  and  dax +aAaod(X)=0

Definition

Let M be a Poisson manifold and G a Poisson Lie group. An
infinitesimal momentum map is a morphism of Gerstenhaber
algebras

a (/\'g,d, [ , ]) — (Q.(M)vdDRa [> ]W)
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Steps in formal approach

Goal: quantize Hamiltonian actions

1. Quantize structures
2. Quantize Poisson action

3. Quantize Momentum map
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Quantum action

How can we define a quantum action of Uy(g) on Ap?

» Hopf algebra action

» h — 0 Poisson action
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Quantum action

How can we define a quantum action of Uy(g) on Ap?

» Hopf algebra action

» h — 0 Poisson action

Definition
The quantum action is a linear map

&y, Un(g) — End Ap 2 X = Ox(X)(f)

such that
1. Hopf algebra action

2. Algebra homomorphism
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Quantum Hamiltonian action

1. Quantum momentum map which, as in the classical case,
generates the quantum action

2. h — 0 classical momentum map
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Quantum Hamiltonian action

1. Quantum momentum map which, as in the classical case,
generates the quantum action

2. h — 0 classical momentum map

Definition
A quantum momentum map is defined to be a linear map

pr  Un(g) — QHAp) © X +— axdbx.
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General idea

joint with R. Nest and P. Bieliavsky

» Formal Drinfeld twist

» Non-formal Drinfeld twists (Bieliavsky, Gayral)
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Triangular Lie biagebras

Consider a particular class of Lie bialgebras (g, d) with

(x) = [r, ]
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Triangular Lie biagebras

Consider a particular class of Lie bialgebras (g, d) with

(x) = [r, ]

Theorem (Drinfeld)

Let g be a finite dimensional real Lie algebra, with r-matrix

r € g®g. There exists a deformation Uy(g) of U(g) whose classical
limit is g with Lie bialgebra structure defined by r. Furthermore,
Ur(g) is a triangular Hopf algebra and isomorphic to U(g)[[A]]
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Drinfeld Twist

> giving a twist on Uj(g) is equivalent to give an associative
star product on C*°(G)

fxg:=m(F(f®g))
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13 /15



Formal approach
Quantization Drinfeld approach

Drinfeld Twist
> giving a twist on Uj(g) is equivalent to give an associative
star product on C*°(G)

fxg:=m(F(f®g))

» Given a twist, every U(g)-module-algebra .A may then be
formally deformed into an associative algebra A[[A]]

mf == moF.

Question: does twist produce quantum Hamiltonian action?
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Bieliavsky-Gayral construction

Triangular structures associated to Kahler Lie groups: non formal
approach!

Explicit construction of families of kernels
{kt € C®°(G x G)}:+

such that for “any” action of G on a C*-algebra A by C*-algebra
automorphisms, k; defines an star product on A
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Non formal Twist?

If A is the algebra of (complex valued continuous) functions on G,
which G acts on via the right-regular representation, then
asymptotic expansion automatically yields a left-invariant formal

x-product on (G,w®):

ENK ~(x o
fixe s = fify + Z(E) FO(RB) (. F e CG(G))
k>1

F defines formal twist quantization of our triangular Lie bialgebral
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