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SPECTRAL TRIPLES

DEFINITION: THE SPECTRAL TRIPLE

Algebra A, its faithful representation π on a Hilbert space H, a
selfadjoint operator D, satisfying several conditions:

1 ∀a ∈ A [D, π(a)] ∈ B(H), D−1 is compact
2 even ST: ∃γ ∈ A′ : γ2 = 1, γ = γ†, γD + Dγ = 0,
3 ∃ J, antilinear J2 = ±1, JJ† = 1

Jγ = ±γJ, JD = ±DJ, [Jπ(a)J, π(b)] = 0,
4 [[D,a], Jπ(b)J] = 0 (D: first order differential operator)
5 ...+ conditions of „analysis” type

THEOREM [CONNES]
If A = C∞(M), M a spin Riemannian compact manifold,
H = L2(S) (sections of spinor bundle) and D the Dirac operator
on M then to (A,H,D) is a spectral triple (with a real structure).



EXAMPLES OF SPECTRAL GEOMETRIES

The Noncommutative Torus: UV = e2πiθVU
Dirac operator the same as on the torus [Connes]
Finite matrix algebras (Mn(C)⊕Mk (C)⊕ · · ·
Dirac operator is a finite hermitian matrix [AS & Paschke,
Krajewski]
Quantum spaces (q-deformations of spheres)
Interesting Dirac operators [Dabrowski, AS, Landi, Varilly,
et al]
Moyal deformation [xµ, xν ] = θµν

The usual Dirac [Gracia-Bondia et al]
κ-deformation [x0, x i ] = 1

κx i

Doubly Special Relativity [Matassa]

HOW TO CONSTRUCT THEM?
There is so far no general method.
There are very few examples.



GEOMETRY FROM SPECTRAL DATA (1)

THE SPECTRAL PROPERTIES OF THE DIRAC OPERATOR

Classically it is known that the spectrum of the Dirac is discrete
(separate eigenvalues), with finite multiplicities and no point of
convergence apart form∞. Roughly speaking - spectrum of
Dirac squared is like the spectrum of Laplace operator. The
properties do not change if we modify the operator (change the
metric, add connections, torsion etc etc.)

SO ONE CAN COMPUTE SOME SPECTRAL FUNCTIONALS

S(D, f ) = tr
(

f (D2)
)
,

where f is a suitable function such that the expression makes
sense and tr is the usual trace on the Hilbert space.



GEOMETRY FROM SPECTRAL DATA (2)

THE EXOTIC TRACE

Although the usual trace does not extend to the operators like
Dirac (or its powers) there are some exotic traces which might
be interpreted as regularized traces (something of the form of
ζ-function regularization).

THE SPECTRAL FUNCTIONAL (2)
Using this exotic traces we can postulate the spectral functional
to be (for example)

S(D,Λ) =
∑

n

Λn
∫
− D−n,

where
∫

is that exotic trace. For most n that would be 0 but
some terms would be nonzero.



HEAT-KERNEL ASYMPTOTICS

THEOREM (GILKEY)
For a Riemannian n-dimensional manifold M, with a metric
compatible connection, ∇, on a vector bundle E over M and a
Laplace-type operator is of the form:

L = −gab∇a∇b − Z ,

we have:

tr e−tL =
n∑

k=0

(
1

4πt

) k−n
2
∫

M
a[k ](x) + o(t).

where a[k ](x) are functions on M (De Witt–Seeley–Gilkey).



HEAT-KERNEL ASYMPTOTICS

a[0] = rank(E), a[1] = 0, a[2] = tr(−1
6

R + Z ).

where R is the scalar curvature. In case the genuine or minimal
scalar Laplace operator we have:

a[2] = −1
6

R,

so from the first two terms we recover volume and the
(integrated) curvature.

REMARK

First term gives nothing else but the so-called Weyl’s theorem
about the growth of eigenvalues of the Laplace operator.



SO, WHAT IS THE METRIC ?
WHERE IS THE METRIC HIDDEN ?
The Dirac operator encodes the metric:

d(p,q) = sup
||[D,f ]||≤1

|f (p)− f (q)|,

WARNING: easy but not computable !

WHAT WE CAN COMPUTE ?
We can compute the volume, the volume functional, the norms
of various objects:

f 7→
∫
− f |D|−d , (

∫
M

√
gf )

We can compute the curvature and the curvature funcional:

f 7→
∫
− f |D|−d+2, (

∫
M

√
gR(g)f )



THE QUESTION!

ALL DIRACS ?
What is the space of all possible Dirac operators ?

so far, there is no definitive answer
generalize what is first order differential operator
[D,a] bounded is not enough ?

DIFFERENTIAL AND PSEUDODIFFERENTIAL OPERATORS

The metric is equivalently given by the principal symbol of the
Laplace operator but it is a second order operator. Its naive
square root is a first order pseudodifferential operator only and
[
√

∆,a] is still bounded.



THE PROBLEM:

IF WE HAVE A FAMILY OF DIRAC OPERATORS...
Then:

how can we identify the metric ?
how can we compute some geometric quantities (like
curvature) ?
how do we identify minimal operators (like the true Laplace
operator ?

FOR EXAMPLE:
Classically, all of the operators written below, for a function,
h > 0, give the same metric:

1
2

(h2D + Dh2)2, (hDh)2, h2D2h2,
1
2

(h4D2 + D2h4).

but which one is the genuine (spinor) Laplace operator ??



THE NONCOMMUTATIVE PROBLEM:
HOW TO CREATE A FAMILY OF LAPLACE-TYPE OPERATORS ?

Take a real spectral triple with a Dirac operator D
take h > 0 in the commutant of the algebra: h ∈ JAJ,
consider operators:

1
2

(h2D + Dh2)2, (hDh)2, h2D2h2,
1
2

(h4D2 + D2h4).

compute the spectral functionals using the generalization
of Wodzicki residue:∫

− P = Ress=0(tr P|D|s).

try to identify the geometric meaning of them

THE PROBLEM

There is no way to identify torsion or torsion-like objects
through some other means.



A PERFECT EXAMPLE: NC TORUS

Noncommutative Torus (Tori): C∞(Tn
Θ), is an algebra,

which is generated by two (n) unitary operators, which
commute up to a scalar phase:

Ui Ul = e2πiθkl Ul Uk ,

where θkl is a real antisymmetric matrix (for n = 2
i , l = 1,2).
Let t be the trace on C∞(Tn

Θ), t
(∑

K∈Zn aK Uk) := a0 and
Ht be the GNS Hilbert space obtained by completion of
C∞(Tn

Θ) with respect of the norm induced by the scalar
product 〈a,b〉 := t(a∗b). On Ht we consider the left regular
representation of C∞(Tn

Θ) by bounded operators.
Let δµ, µ ∈ {1, . . . ,n }, be the n (pairwise commuting)
canonical derivations, defined by

δµ(UK ) := KµUK .



SPECTRAL TRIPLE ON NC TORI (N-DIMENSIONAL)

Let AΘ := C∞(Tn
Θ) acting on H := Ht ⊗ C2m

with n = 2m
or n = 2m + 1,
Each element of AΘ is represented on H as L(a)⊗ 12m

where L (resp. R) is the left (resp. right) multiplication.
The Tomita conjugation J0(a) := a∗ satisfies [J0, δµ] = 0
and we define J := J0 ⊗ C0 where C0 is an operator on
C2m

.
The Dirac operator is given by

D := −i δµ ⊗ γµ,

And it has been shown that this is (basically) the unique
equivariant Dirac operator on the noncommutative torus.
What about nonequivariant Dirac operators ?



THEOREM

There exists a family of conformally rescaled Dirac operators on
the noncommutative 2-torus for which the Gauss-Bonnet
formula holds, that is ζD(0) = 0, where ζD(z) = Tr(|D|z).
Classically this means that:

∫
T2
√

gR(g) = 0.

First family of operators of the type (and conformally
rescaled Laplace operators)

Dh = hDh, h2D2h2,

where h ∈ JC∞(T2
Θ)J, so it is in the commutant, h > 0,

was introduced by Connes and Tretkoff.
4-dimensional version was studied by Fatzizadeh +
Khalkhali and AS.
n-dimensional version is possible



ASYMMETRIC TORUS
Take a torus with the metric dx2 + k−2(x , y)dy2 (that is, for
instance the usual „round" torus embedded in R3 which has
k−1 = c + cos y ).

Torus embedded in R3 Asymmetric torus in R3

The scalar curvature of the torus with such metric reads

R = 2k−1∂2
x (k)− 4k−2(∂x (k))2.



ASYMMETRIC TORUS

The Dirac operator is:

D = −iσ1δ1 − iσ2 (k δ2 + 1
2δ2(k)

)
,

THEOREM (L.DABROWSKI+AS)
The scalar curvature functional for the asymmetric torus is:

√
gR =F11(δ1(k), δ1(k)) + F ′11(δ1(k)2)

+F22(δ2(k), δ2(k)) + F ′22(δ2(k)2)

+F1(δ11(k)) + F2(δ22(k)),



where

F11(s, t) = − 2π
3k3

(2s2 + 4st + 4s + 3 + 8t + 3t2)

(t + 1)3(s + 1)(s + t)
,

F ′11(s) =
4π
3k3

1
(s + 1)3 ,

F22(s, t) =
π

2k
(t2 − 6t + 1)

(t + 1)3 ,

F ′2(s) = − π

2k
(s2 − 6s + 1)

(s + 1)3 ,

and
F1(s) =

2π
3k2

1
(s + 1)2 .

F2(s) = 0.

and its trace vanishes.



First, the square of D reads

D2 =
(

(δ1)2 + k2(δ1)2
)

+
(

3
2kδ2(k) + 1

2δ2(k)k + iσ3δ1(k)
)
δ2

+
(

1
4(δ2(k))2 + 1

2 iσ3δ12(k) + 1
2kδ22(k)

)
.

and its symbol is

σ(D2) = a0 + a1 + a2,

where

a0 =
(
ξ2

1 + k2ξ2
2

)
a1 =

(
3
2kδ2(k) + 1

2δ2(k)k + iσ3δ1(k)
)
ξ2

a2 =
(

1
4(δ2(k))2 + 1

2 iσ3δ12(k) + 1
2kδ22(k)

)
.



ζ(0) = −
∫

t(b2(ξ)) dξ,

where b2(ξ) is a symbol of order −4 of the pseudodifferential
operator (D2 + 1)−1. It can be computed by pseudodifferential
calculus of symbols from the symbol a2(ξ) + a1(ξ) + a0(ξ) of D2:

b2 =− (b0a0b0 + b1a1b0 + ∂1(b0)δ1(a1)b0 + ∂2(b0)δ2(a1)b0

+ ∂1(b1)δ1(a2)b0 + ∂2(b1)δ2(a2)b0 +
1
2
∂11(b0)δ2

1(a2)b0

+
1
2
∂22(b0)δ2

2(a2)b0 + ∂12(b0)δ12(a2)b0),

where

b1 = −(b0a1b0 + ∂1(b0)δ1(a2)b0 + ∂2(b0)δ2(a2)b0),

b0 = (a2 + 1)−1,



b2 = A + B + C,
where

A =− 2kb2
0δ1(k)kb0δ1(k)b0ξ

4
2 + 4kb2

0δ1(k)kb2
0δ1(k)b0ξ

2
1ξ

4
2 − 2kb2

0δ1(k)b0δ1(k)kb0ξ
4
2

+ 4kb2
0δ1(k)b2

0δ1(k)kb0ξ
2
1ξ

4
2 + 8kb3

0δ1(k)kb0δ1(k)b0ξ
2
1ξ

4
2 + 8kb3

0δ1(k)b0δ1(k)kb0ξ
2
1ξ

4
2

− b0δ1(k)b0δ1(k)b0ξ
2
2 + 2b2

0δ1(k)δ1(k)b0ξ
2
2 − 2b2

0δ1(k)kb0δ1(k)kb0ξ
4
2

+ 4b2
0δ1(k)kb2

0δ1(k)kb0ξ
2
1ξ

4
2 − 2b2

0δ1(k)k2b0δ1(k)b0ξ
4
2 + 4b2

0δ1(k)k2b2
0δ1(k)b0ξ

2
1ξ

4
2

− 8b3
0δ1(k)δ1(k)b0ξ

2
1ξ

2
2 + 8b3

0δ1(k)kb0δ1(k)kb0ξ
2
1ξ

4
2 + 8b3

0δ1(k)k2b0δ1(k)b0ξ
2
1ξ

4
2,

B = 15
4 kb0δ2(k)kb0δ2(k)b0ξ

2
2 − 3kb0δ2(k)k2b2

0δ2(k)kb0ξ
4
2 − 3kb0δ2(k)k3b2

0δ2(k)b0ξ
4
2

+ 9
4 kb0δ2(k)b0δ2(k)kb0ξ

2
2 + 6k2b2

0δ2(k)δ2(k)b0ξ
2
2 − 8k2b2

0δ2(k)kb0δ2(k)kb0ξ
4
2

− 10k2b2
0δ2(k)k2b0δ2(k)b0ξ

4
2 + 4k2b2

0δ2(k)k3b2
0δ2(k)kb0ξ

6
2 + 4k2b2

0δ2(k)k4b2
0δ2(k)b0ξ

6
2

− 12k3b2
0δ2(k)kb0δ2(k)b0ξ

4
2 + 4k3b2

0δ2(k)k2b2
0δ2(k)kb0ξ

6
2 + 4k3b2

0δ2(k)k3b2
0δ2(k)b0ξ

6
2

− 10k3b2
0δ2(k)b0δ2(k)kb0ξ

4
2 − 8k4b3

0δ2(k)δ2(k)b0ξ
4
2 + 8k4b3

0δ2(k)kb0δ2(k)kb0ξ
6
2

+ 8k4b3
0δ2(k)k2b0δ2(k)b0ξ

6
2 + 8k5b3

0δ2(k)kb0δ2(k)b0ξ
6
2 + 8k5b3

0δ2(k)b0δ2(k)kb0ξ
6
2

− 1
4 b0δ2(k)δ2(k)b0 + 3

4 b0δ2(k)kb0δ2(k)kb0ξ
2
2 + 5

4 b0δ2(k)k2b0δ2(k)b0ξ
2
2

− b0δ2(k)k3b2
0δ2(k)kb0ξ

4
2 − b0δ2(k)k4b2

0δ2(k)b0ξ
4
2 ;

and

C = + kb2
0δ11(k)b0ξ

2
2 − 4kb3

0δ11(k)b0ξ
2
1ξ

2
2 + b2

0δ11(k)kb0ξ
2
2 − 4b3

0δ11(k)kb0ξ
2
1ξ

2
2

− 1
2 kb0δ22(k)b0 + 2k2b2

0δ22(k)kb0ξ
2
2 + 4k3b2

0δ22(k)b0ξ
2
2 − 4k4b3

0δ22(k)kb0ξ
4
2 − 4k5b3

0δ22(k)b0ξ
4
2,



The remaining part of the proof follows the idea of
computations by Lesch (rearrangement lemma):∫ ∞

0
f0(uk2)·b1 · f1(uk2) · b2 · · · bp · fp(uk2)du =

= k−2F (∆
(1)
2 ,∆

(1)
2 ∆

(2)
2 , . . . ,∆

(1)
2 · · ·∆

(p)
2 )(b1 · b2 · · · bp),

where the function F (s1, . . . , sp) is

F (s) =

∫ ∞
0

f0(u)f1(us1) · · · fp(usp)du

and ∆
(j)
2 ; signifies the square of the modular operator ∆2 = ∆2,

acting on the j-th component of the product. Here we shall
rather use ∆ = k−1 · k instead of its square.
In our case we need to adapt the formula to a slightly different
setting, when we integrate over two variables ξ1 and ξ2

J =

∫
dξ1

∫
dξ2 kn1bm1

0 (ξ1, ξ2) X kn2bm2
0 (ξ1, ξ2) Y kn3bm3

0 (ξ1, ξ2)ξ2k1
1 ξ2k2

2 ,

where X ,Y are derivations of k and b0(ξ1, ξ2) = 1
1+ξ2

1+k2ξ2 .



WHY GAUSS-BONET HOLDS ?

First of all, observe that

F22(s,1) + F ′22(1) = 0, F2(1) = 0,

so all terms containing δ2(k) and δ22(k) vanish.
For the terms containing δ1(k) we have:

F11(s,1) + F ′11(1) = − π

3k3
s + 3

(s + 1)2 ,

then using the identity:

t
(
k−2δ11(k)

)
= 2t

(
k−2δ1(k)k−1δ1(k)

)
= 2t

(
k−3∆−1(δ1(k))δ1(k)

)
,

which follows directly from the Leibniz rule and the fact that the trace
is closed, we can rewrite:

t
(
F11(δ1(k), δ1(k)) + F ′11(δ1(k)2) + F1(δ11(k))

)
= t
(
k−3H(∆)(δ1(k))δ1(k)

)
,



(CONTINUED)
where

H(s) =
π

3k3
1− s

s(s + 1)2 .

Next, we observe that for any A and B and an entire function H:

t
(
k−3H(∆)(A)B

)
= t
(
H(∆)(∆3(A))k−3B

)
= t
(
k−3BH(∆)(∆3(A))

)
,

and

t
(
k−3H(∆)(A)B

)
= t
(
k−3AH(∆−1)(B)

)
.

Now if A = B then both expressions on the right-hand side are
identical. In our case, however:

H(s)s3 =
π

3k3
s2(1− s)

(s + 1)2 , and H(s−1) =
π

3k3
s2(s − 1)

(s + 1)2 ,

and therefore since
H(s)s3 = −H(s−1),

the trace of the above expression must vanish, hence, the
Gauss-Bonnet theorem holds.



ARBITRARY DIRAC

THEOREM (L.DABROWSKI + AS)
Let

D =
2∑

j,µ=1

(
σjeµj δµ +

1
2
σjδµ(eµj )

)
,

be a general Dirac operator on the NC Torus, with elements eµj
from the commutant, then for eµj = δµj + εhµj , we have up to ε2:

√
gR =2ε

(
+δ1δ1(h2

2) + δ2δ2(h1
1)− δ1δ2(h2

1)− δ2δ1(h1
2)
)

+ε2
([

h1
1, δ1δ2(h1

2) + (δ1)2(h2
2)− 2(δ2)2(h1

1)
]

+
+
[
h2

2, δ1δ2(h2
1) + (δ2)2(h1

1)− 2(δ1)2(h2
2)
]

+

+
[
h2

1, 2δ1δ2(h2
2) + δ1δ2(h1

1)− (δ2)2(h2
1)− (δ1)2(h1

2)− (δ2)2(h2
1)
]

+

+
[
h1

2, 2δ1δ2(h1
1) + δ1δ2(h2

2)− (δ2)2(h2
1)− (δ1)2(h2

1)− (δ1)2(h1
2)
]

+

+
[
δ2(h1

1), 2δ1(h1
2) + δ1(h2

1)
]

+
+
[
δ1(h2

2), 2δ1(h2
1) + δ2(h2

1)
]

+

+
[
δ1(h1

1), δ1(h2
2) + δ2(h1

2)
]

+
+
[
δ2(h2

2), δ2(h1
1) + δ1(h2

1)
]

+
− 2

[
δ2(h2

1), δ2(h1
2) + δ1(h1

2)
]

+

−2
(
δ2(h2

1)
)2
− 2

(
δ1(h1

2)
)2
− 4

(
δ2(h1

1)
)2
− 4

(
δ1(h2

2)
)2
)

+ O(ε3)



WHAT IS THE LESSON ?

FIRST PROBLEM:
The assymetric noncommutatie torus is a good candidate for a
nontrivial metric. Is it (if so, in what sense) equivalent to the
conformal rescaling of the flat torus ?

SECOND PROBLEM:
Can we use it to characterize all possible Dirac operators ?

THIRD PROBLEM:
Is there a way to extract curvature alone ? Is there an algebraic
way to compute it ?

REFERENCES:
L. Dabrowski, A. Sitarz, Curved noncommutative torus and Gauss-Bonnet, J.Math.Phys. 54, 013518 (2013)

L. Dabrowski, A. Sitarz, Asymmetric noncommutative torus, arXiv:1406.4645



INTO 4 DIMENSIONS: MINIMALITY

THEOREM (AS)
In 4 dimensions the conformally rescaled Laplace operator (as
proposed by Khalkhali and Fatzizadeh) is not minimal:

∆h =
4∑

a=1

h−2δa(h2δa)h−2,

does not minimize the functional: Φ(∆h) = Wres(∆−1
h ).

PROOF.
Using the calculus of pseudodifferential operators on the
noncommutative torus and the formula for Wodzicki residue
expressed in terms of symbol or order −4 of ∆−1

h :

∆h = h−2
(∑

a

δ2
a

)
+
∑

a

Y aδa,

then we look whether the functional has a minimum for some Y .



Using:
Ya = δa(h−2) + Ta,

we have

THEOREM

The Wodzicki residue of ∆−2 depends only on h:

Wres(∆−2) = 2π2 t(h4).

whereas for ∆−1:

Wres(∆−1) =
π2

2

(
t(h2Tah2Tah2) + t(h2[Ta, δa(h2)])

−t(δa(h2)h−2δa(h2))
)
.



WHAT IS THE LESSON HERE?

FIRST PROBLEM:
What are minimal operators in NCG ?

SECOND PROBLEM:
What is metric and torsion ?

THIRD PROBLEM:
Can one distinguish curvature from torsion ?

FOURTH PROBLEM:
Is there an algebraic way to determine torsion or torsion like
objects ?

REFERENCES:
Andrzej Sitarz, Wodzicki residue and minimal operators on a noncommutative 4-dimensional torus,

J. Pseudo-Differ. Oper. Appl. DOI 10.1007/s11868-014-0097-1



DIRAC FROM U(1) CONNECTION

DIRAC OPERATORS ON U(1) BUNDLES

Consider a U(1) principal fibre bundle M → N, assume that the
metric is compatible with the bundle structure. Since the metric on M
completely determines the metric on N, connection 1-form ω and the
length of the fibres `, as a consequence the Dirac operator DM on M
can be expressed in terms of DN , ω, and `.

HOPF-GALOIS EXTENSIONS

There is a good notion of noncommutative principal fibre bundles and
connections – Hopf-Galois extensions and strong connections. So,
posing the same question as in the classical case we have
established a way to construct a Dirac operator over an algebra A on
which C(U(1)) coacts from a strong connection and a spectral triple
over its algebra of coinvariants.

REFERENCES:
L. Dąbrowski, AS, Noncommutative circle bundles and new Dirac operators, Comm.Math.Phys, 318, 1, 111 (2013)

L. Dąbrowski, AS, A.Zucca, Dirac operator on noncommutative principal circle bundles, IJGMP, 11, 1 (2014),



THE T3
θ → T2

θ BUNDLE

Let us consider a U(1) principal bundle T3
θ → T2

θ , given by a
natural U(1) action:

z · (Uα1
1 Uα2

2 Uα3
3 ) = zα3Uα1

1 Uα2
2 Uα3

3 ,

For this U(1) noncommutative principal bundle we can (starting
with the standard Dirac over T3

θ construct a connection
one-form ω and then lift the standard Dirac operator over T2

θ :

D = σ1δ1 + σ2δ2,

to a ω-dependent Dirac operator over T3
θ .



THE DIRAC OPERATOR ON T3
θ FROM U(1)-CONNECTION

Dω =
3∑

i=1

σiδi − JωJ−1δ3,

which is:

Dω =
3∑

i=1

σiδi + (σ2ωo
2 + σ3ωo

3)δ3,

or, in more generality, we should consider

D′ω = Dω + Z ,

where Z is a bounded part, which needs to be fixed. Classically
the Z -part (0-order term comes from the requirement that the
Dirac operator comes from a lift of Levi-Civita connection (no
torsion). For a noncommutative torus - minimizing a functional.



THE DIRAC OPERATOR D′ω

So, we compute the relevant part (leading term of the heat
kernel expansion) for this operator - again using the
approximation that ω is small and expanding Z = Z0 + Z1ε+ · · · .
What we obtain ?

at ε0: Z0 = 0,
at ε2: Z1 = −1

4(δ2ω3 − δ3ω2),
which is exactly the classical term (compare Bär, Amman) !

CLAIM

In the case of the U(1) bundle T3
θ → T 2

θ the minimality condition
fixes the Dirac operator compatible with the connection ω.



CONCLUSIONS

REMARK 1
There are MANY interesting (curved) operators out there !

REMARK 2
Generally, this is possible for ANY reasonable real spectral
triple !

REMARK 3
Once we have a family of them one can ask the questions
about their freedom and MINIMALITY - to identify natural
geometric objects (like curvature, torsion...)

REMARK 4
Computationally - it is a very tough job ! - but we are here just
at the beginning.



CONCLUSIONS

REMARK 5
There are many interesting questions:

what is the distance on the space of states they define ?
how can we identify the metric (in general) ?
what are the fluctuations of such Diracs ?
what are the most general conditions they satisfy ?

REMARK 6
Can one really use them to track some (other) topological
invariants ?

REMARK 7
For q-deformations and the Dirac on the Standard Podleś
Sphere - it is a completely different story.



CONCLUSIONS

REMARK 8
Some abstract problems: take D - a Dirac type operator, h > 0,
what can you say about spectral properties of hDh ? Where are
the poles and what are the residues of:

ζh(z) = tr |hDh|z ,

REMARK 9
Extending the results to q-spheres, Moyal and other examples:
work in progress.

THANK YOU !
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