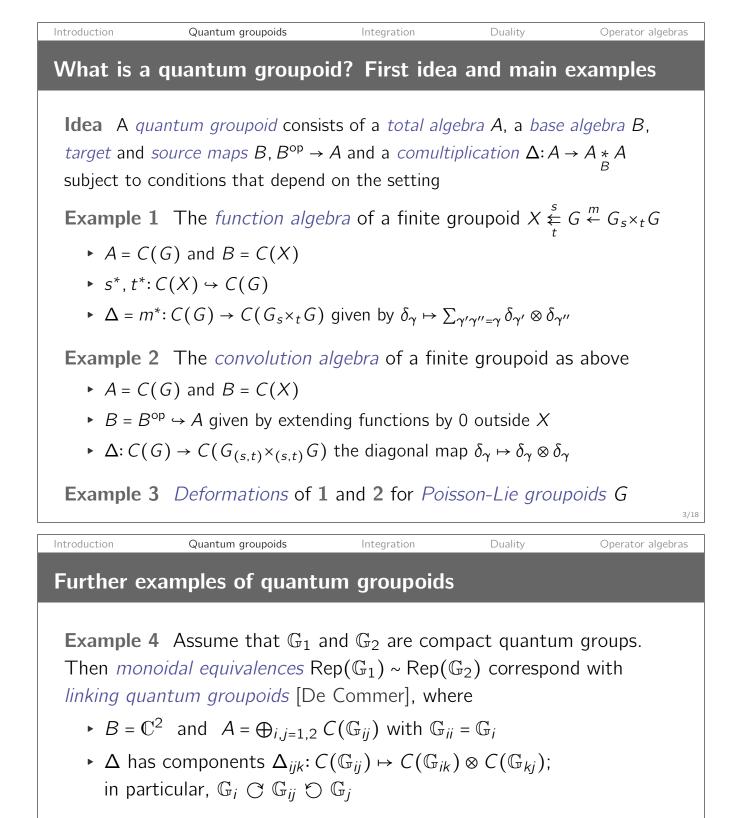
Introduction	Quantum groupoids	Integration	Duality	Operator algebras
	Integration	on and dual	ity of	
	-	uantum grou		
		s Timmermann	1	
	Unive	rsity of Münster		
	20th	of August 2014		
	2011	of August 2014		
				:
	Quantum groupoids			Operator algebras
Introduction	Quantum groupoids	Integration	Duality	Operator algebras
	background	Integration	Duality	Operator algebra:
	background	Integration	Duality	Operator algebra
Plan and I would like	background			Operator algebra
Plan and I would like 1. What	background to discuss	d in the algebraic		Operator algebra
Plan and I would like 1. What 2. Integr	background to discuss is a quantum groupoid	d in the algebraic ntum groupoids	setup?	Operator algebra
Plan and I would like 1. What 2. Integr 3. Pontrj	background to discuss is a quantum groupoid ation on algebraic qua	d in the algebraic ntum groupoids aic quantum gro	setup? upoids	Operator algebra
Plan and I would like 1. What 2. Integr 3. Pontrj	background to discuss is a quantum groupoid ation on algebraic qua jagin duality for algebra	d in the algebraic ntum groupoids aic quantum gro	setup? upoids	Operator algebra
Plan and I would like 1. What 2. Integr 3. Pontrj 4. The p following • T.T. J	background to discuss is a quantum groupoid ation on algebraic qua jagin duality for algebra	d in the algebraic ntum groupoids aic quantum gro ebraic quantum ality of algebraic	setup? upoids groupoids	
Plan and I would like 1. What 2. Integr 3. Pontry 4. The p following • T.T. (arxiv:	background to discuss is a quantum groupoid ation on algebraic qua jagin duality for algebra assage to operator-alg	d in the algebraic ntum groupoids aic quantum gro lebraic quantum a <i>lity of algebraic</i>)	: setup? upoids groupoids quantum grou	poids.
Plan and I would like 1. What 2. Integr 3. Pontrj 4. The p following • T.T. 4 (arxiv: and genera	background to discuss is a quantum groupoid ation on algebraic qua jagin duality for algebra assage to operator-alg <i>Integration on and dua</i> 1403.5282, submitted lising the theory of mu nite-dimensional case	d in the algebraic ntum groupoids aic quantum gro lebraic quantum a <i>lity of algebraic</i>)	: setup? upoids groupoids <i>quantum group</i> ebras [Van Dae	<i>poids.</i> le] and
Plan and I would like 1. What 2. Integr 3. Pontry 4. The p following • T.T. 4 (arxiv: and genera • the fir	background to discuss is a quantum groupoid ation on algebraic qua jagin duality for algebra assage to operator-alg <i>Integration on and dua</i> 1403.5282, submitted lising the theory of mu nite-dimensional case	d in the algebraic ntum groupoids aic quantum gro ebraic quantum a <i>lity of algebraic</i>) Iltiplier Hopf alge -Nill-Szlachányi;	: setup? upoids groupoids <i>quantum group</i> ebras [Van Dae Nikshych-Vain	<i>poids.</i> le] and
Plan and I would like 1. What 2. Integr 3. Pontry 4. The p following • T.T. 4 (arxiv: and genera • the fir	background to discuss is a quantum groupoid ation on algebraic qua jagin duality for algebra assage to operator-alg <i>Integration on and dua</i> 1403.5282, submitted lising the theory of mu nite-dimensional case [Böhme	d in the algebraic ntum groupoids aic quantum gro ebraic quantum a <i>lity of algebraic</i>) Iltiplier Hopf alge -Nill-Szlachányi;	: setup? upoids groupoids <i>quantum group</i> ebras [Van Dae Nikshych-Vain se finite case	<i>poids.</i> le] and

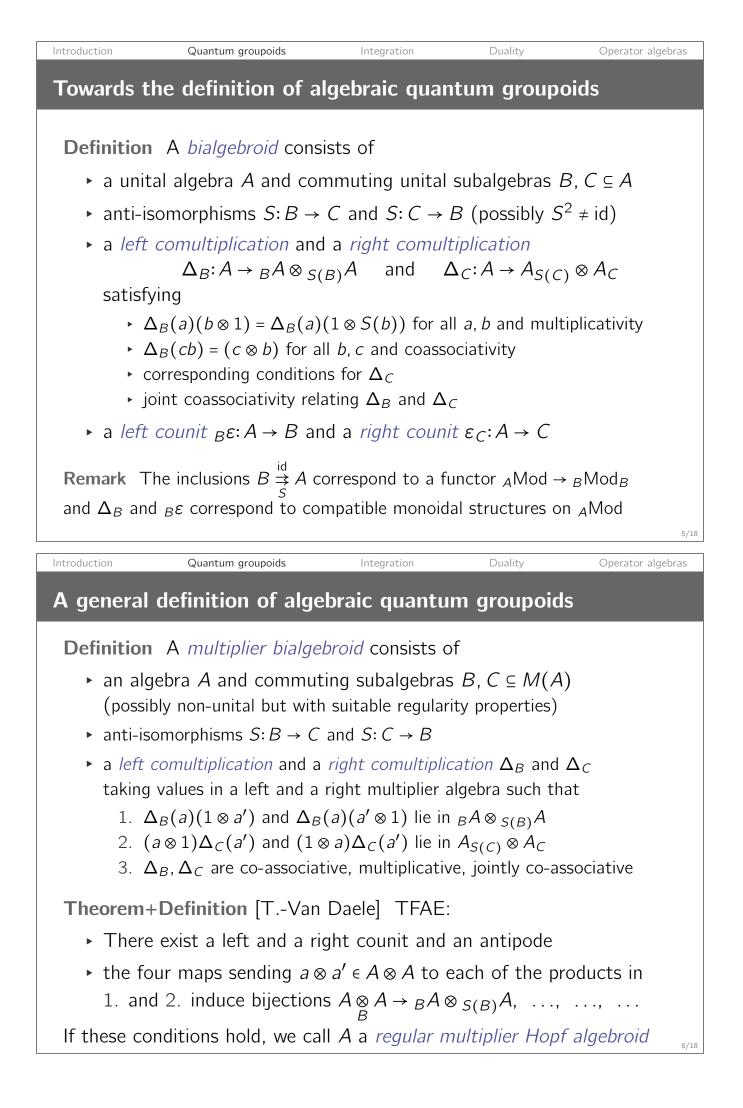


Example 5 Extending Woronowicz-Tannaka-Krein duality, assume

- C is a semi-simple rigid C^* -tensor category
- + $_{\mathbb{Z}}\mathsf{Hilb}_{\mathbb{Z}}$ is the category of $\mathbb{Z}\text{-bigraded}$ Hilbert spaces

Then fiber functors $F: \mathcal{C} \to {}_{\mathbb{Z}}Hilb_{\mathbb{Z}}$ correspond with *partial compact quantum groups* [De Commer+T.], where the dual is given by

• $B = C_c(\mathbb{Z}), A = \bigoplus \operatorname{Nat}(F_{ln}, F_{km}) \text{ and } \Delta(\tau) \approx (\tau_{X \otimes Y})_{X,Y \in \mathcal{C}}$



Introduction

Duality

Why consider integration on algebraic quantum groupoids?

Definition A *left integral* on a (multiplier) Hopf algebra A is a functional $\phi: A \to \mathbb{C}$ satisfying $(id \otimes \phi)(\Delta(a)) = \phi(a)$ for all $a \in A$. Likewise, one defines *right integrals*.

Significance Integrals on (multiplier) Hopf algebras are the key to

- 1. extending *Pontrjagin duality* [Van Daele]
 - dim $A < \infty$: $(A \otimes A)' = A' \otimes A'$, so A' becomes a Hopf algebra
 - dim $A = \infty$: $\hat{A} = \{\phi(-a) : a \in A\} \subseteq A'$ is a multiplier Hopf algebra
- 2. developing the *structure theory of CQGs* [Woronowicz]
 - averaging inner products and morphisms, find that every representation is equivalent to a unitary and splits into irreducibles
- 3. passing to *completions* in the form of operator algebras [Kustermans-Van Daele]
 - the GNS-construction $\pi_{\phi}: A \to \mathcal{B}(H_{\phi})$ yields the C*-algebra $\overline{\pi_{\phi}(A)}$ and the von Neumann algebra $\pi_{\phi}(A)''$ of a LCQG

Integration

7/18

Operator algebras

What do we need for integration — heuristics

Quantum groupoids

Ansatz For integration on a regular multiplier Hopf algebroid with total algebra A and base algebras $B, C \subseteq M(A)$, we need

- ▶ a map $_C\phi_C$: $A \to C$ that is *left-invariant*: for all $a, a' \in A, c \in C$,
 - 1. $_{C}\phi_{C}(ac) = _{C}\phi_{C}(a)c$ and $(id \otimes_{C}\phi_{C})((a \otimes 1)\Delta_{C}(a')) = a_{C}\phi_{C}(a')$

2.
$$_{C}\phi_{C}(ca) = c_{C}\phi_{C}(a)$$
 and $(\operatorname{id} \bigotimes_{B}^{\circ} c\phi_{C})(\Delta_{B}(a)(a' \otimes 1)) = _{C}\phi_{C}(a)a'$

- a map ${}_B\psi_B: A \to B$ that is *right-invariant*
- functionals μ_B , μ_C on *B*, *C* that are *relatively invariant*:

 $\phi: A \xrightarrow{C \phi_C} C \xrightarrow{\mu_C} \mathbb{C}$ and $\psi: A \xrightarrow{B \psi_B} B \xrightarrow{\mu_B} \mathbb{C}$

are related by invertible multipliers δ, δ' s.t. $\psi = \phi(\delta -) = \phi(-\delta')$

Example 1 For the function algebra of an étale groupoid $X \stackrel{s}{\Leftarrow} G$, let

- $_C\phi_{C,B}\psi_B: C_c(G) \to C_c(X)$ be summation along the fibers of t or s
- $\mu_B = \mu_C$ on $C_c(X)$ be integration w.r.t. a quasi-invariant measure

Further examples of quantum groupoids

Example 2 For the convolution algebra of an étale groupoid G, let

• $_C\phi_C = _B\psi_B: C_c(G) \to C_c(X)$ be the restriction of functions to $X \subseteq G$

Integration

• $\mu_B = \mu_C$ on $C_c(X)$ be integration w.r.t. a quasi-invariant measure

Example 4 Assume that \mathbb{G}_1 and \mathbb{G}_2 are compact quantum groups with a monoidal equivalence $\operatorname{Rep}(\mathbb{G}_1) \sim \operatorname{Rep}(\mathbb{G}_2)$ and associated linking quantum groupoid $B = \mathbb{C}^2$ and $A = \bigoplus_{i,j=1,2} C(\mathbb{G}_{ij})$

- have Haar states $h_i = h_{ii}$ on $C(\mathbb{G}_i) = C(\mathbb{G}_{ii})$ and unique states h_{ij} on $C(\mathbb{G}_{ij})$ invariant for $\mathbb{G}_i \subset \mathbb{G}_{ij} \supset \mathbb{G}_j$
- $_C\phi_C(a) = \sum_i h_{ij}(a_{ij})$ and $_B\psi_B(a) = \sum_i h_{ij}(a_{ij})$

Example 5 Given a fiber functor $F: \mathcal{C} \to_{\mathbb{Z}} Hilb_{\mathbb{Z}}$ with associated partial CQG $B = C_c(\mathbb{Z})$ and $A = \bigoplus \operatorname{Nat}(F_{ln}, F_{km})'$,

• $_C\phi_C$ and $_B\psi_B$ come from evaluating a $\tau \in Nat(F_{ln}, F_{km})$ at 1_C

What do we need for integration — formal definition

Quantum groupoids

Definition Consider a regular multiplier Hopf algebroid as above.

• A base weight consists of functionals μ_B , μ_C on B, C subject to

Integration

- 1. faithfulness, i.e., if $\mu_B(bB) = 0$ or $\mu_B(Bb) = 0$, then $b \neq 0$
- 2. $\mu_B \circ S = \mu_C = \mu_B \circ S^{-1}$ and 3. $\mu_B \circ B\varepsilon = \mu_C \circ \varepsilon_C$
- Call a functional $\omega: A \to \mathbb{C}$ adapted (to μ_B, μ_C) if one can write $\omega = \mu_B \circ B \omega = \mu_B \circ \omega_B = \mu_C \circ C \omega = \mu_C \circ \omega_C$

with $B\omega \in \text{Hom}(BA, BB)$, $\omega_B \in \text{Hom}(A_B, B_B)$, ...

• A *left integral* is an adapted functional ϕ s.t. $_{C}\phi = \phi_{C} = _{C}\phi_{C}$ is left-invariant. We call ϕ full if $_B\phi$ and ϕ_B are surjective. Similarly, we define (full) right integrals.

Key observation For adapted functionals v, ω , we can define $v \odot id$, id $\odot \omega$ and $\upsilon \odot \omega$ on all kinds of *balanced tensor products* $A \odot A$, e.g., $\upsilon \bigotimes_{B} \omega : A \bigotimes_{B} A \to \mathbb{C}, \ a \otimes b \mapsto \mu_{B}(\upsilon_{B}(a)_{B}\omega(b)) = \upsilon(a_{B}\omega(b)) = \omega(\upsilon_{B}(a)b)$

9/18

Operator algebras

Duality

Introduction

Duality

The main results on integrals

Theorem [T.] Let A be a regular multiplier Hopf algebroid with base weight (μ_B, μ_C) and full left integral ϕ .

1. If ${}_{B}A$, A_{B} , ${}_{C}A$, A_{C} are projective, then ϕ is faithful.

Assume that ${}_{B}A$, A_{B} , ${}_{C}A$, A_{C} are flat and that ϕ is faithful.

- 2. There exists an *automorphism* σ^{ϕ} s.t. (A, σ^{ϕ}) is a twisted trace. Moreover, $\sigma^{\phi}(c) = S^2(c)$ for $c \in C$, and $\sigma^{\phi}(M(B)) = M(B)$.
- 3. Every left integral has the form $\phi(b-)$ with $b \in M(B)$.
- 4. Every right integral has the form $\phi(\delta)$ with $\delta \in M(A)$.
- 5. There exist invertible *modular elements* $\delta, \delta^{\dagger} \in M(A)$ such that $\phi \circ S^{-1} = \phi(\delta -)$ and $\phi \circ S = \phi(-\delta^{\dagger})$. These elements satisfy $\Delta_{C}(\delta) = \delta \otimes \delta, \ \Delta_{B}(\delta) = \delta^{\dagger} \otimes \delta, \ \Delta_{B}(\delta^{\dagger}) = \delta^{\dagger} \otimes \delta^{\dagger}, \ \Delta_{C}(\delta^{\dagger}) = \delta \otimes \delta^{\dagger}$

$$S(\delta^{\dagger}) = \delta^{-1}$$
, $\varepsilon(\delta a) = \varepsilon(a) = \varepsilon(a\delta^{\dagger})$, and (in the *-case) $\delta^{\dagger} = \delta^{*}$.

Introduction

Quantum groupoids

Integration

Operator algebras

11/18

An example coming from quantum group actions

Example Assume that

- *H* is a regular (multiplier) Hopf algebra with integrals ϕ_H , ψ_H ,
- B is an algebra with a right action of H, written $x \triangleleft h$
- μ_B is a faithful *H*-invariant trace on *B*
- Then $C = B^{\text{op}}$ carries a left *H*-action and an *H*-invariant trace μ_C s.t. $h \triangleright x^{\text{op}} = (x \triangleleft S_H^{-1}(h))^{\text{op}}$ and $\mu_C(x^{\text{op}}) = \mu_B(x)$

We obtain a regular multiplier Hopf algebroid with integrals, where

- $A = C \rtimes H \ltimes B$ is the space $C \otimes H \otimes B$ with the multiplication $(y \otimes h \otimes x)(y' \otimes h' \otimes x') = y(h_{(1)} \triangleright y') \otimes h_{(2)}h'_{(1)} \otimes (x \triangleleft h'_{(2)})x'$
- the left and right comultiplication Δ_B and Δ_C are given by

 $\Delta_B(y \otimes h \otimes x)(a \otimes b) = yh_{(1)}a \otimes h_{(2)}xb$ $(a \otimes b)\Delta_C(y \otimes h \otimes x) = ayh_{(1)} \otimes bh_{(2)}x$

• $\phi(y \otimes h \otimes x) = \mu_{\mathcal{C}}(y)\phi_{\mathcal{H}}(h)\mu_{\mathcal{B}}(x), \quad \psi(y \otimes h \otimes x) = \mu_{\mathcal{C}}(y)\psi_{\mathcal{H}}(h)\mu_{\mathcal{B}}(x)$

12/18

The dual algebra of a measured multiplier Hopf algebroid

Definition We call a regular multiplier Hopf algebroid *measured* if it is equipped with a base weight and full and faithful left and a right integrals and if the modules ${}_{B}A$, A_{B} , ${}_{C}A$, A_{C} are flat. **Lemma** Consider the space $\hat{A} := \{ \phi(a-) : a \in A \} \subseteq A'$. 1. $\hat{A} = \{\phi(-a) : a \in A\} = \{\psi(a-) : a \in A\} = \{\psi(-a) : a \in A\}.$ 2. Let $v, \omega \in \hat{A}$. Then the compositions $\upsilon *_B \omega \coloneqq (\upsilon \otimes \omega) \circ \Delta_B$ and $\upsilon *_C \omega \coloneqq (\upsilon \otimes \omega) \circ \Delta_C$ (a) are well-defined, (b) belong to \hat{A} and (c) coincide. 3. \hat{A} is a non-degenerate, idempotent algebra w.r.t. $(v, \omega) \mapsto v * \omega$. **Proof** of assertion 2.(c): • coassociativity $\Rightarrow (\upsilon *_B \theta) *_C \omega = \upsilon *_B (\theta *_C \omega)$ for all μ -adapted θ • counit property $\Rightarrow \upsilon *_B \varepsilon = \upsilon$ and $\varepsilon *_C \omega = \omega$ ▶ relations 1.+2. $\Rightarrow \upsilon *_B \omega = \upsilon *_B (\varepsilon *_C \omega) = (\upsilon *_B \varepsilon) *_C \omega = \upsilon *_C \omega$ 13/18 Duality Introduction Quantum groupoids Integration Operator algebras The duality of measured regular multiplier Hopf algebroids **Theorem** [T.] Let (A, μ, ϕ, ψ) form a MRMHAd. Then there exists a dual MRMHAd $(\hat{A}, \hat{\mu}, \hat{\phi}, \hat{\psi})$, where \hat{A} was defined above and • $\hat{B} = C$ and $\hat{C} = B$ are embedded in $M(\hat{A})$ such that $c\omega = \omega(-c), \quad \omega c = \omega(-S^{-1}(c)), \quad b\omega = \omega(S^{-1}(b)-), \quad \omega b = \omega(b-)$ for all $c \in C$, $b \in B$, $\omega \in \hat{A}$ • the left and the right comultiplication $\hat{\Delta}_{\hat{B}}$ and $\hat{\Delta}_{\hat{C}}$ of \hat{A} satisfy $(\hat{\Delta}_{\hat{B}}(\upsilon)(1\otimes\omega)|a\otimes a') = (u\otimes\omega|(a\otimes 1)\Delta_{\mathcal{C}}(a'))$ $((\upsilon \otimes 1)\hat{\Delta}_{\hat{C}}(\omega)|a \otimes a') = (u \otimes \omega|\Delta_B(a)(1 \otimes a'))$ for all $a, a' \in A, v, \omega \in \hat{A}$ • the dual counit $\hat{\varepsilon}$, antipode \hat{S} and integrals $\hat{\phi}$ and $\hat{\psi}$ are given by $\hat{\varepsilon}(\phi(-a)) = \phi(a), \quad \hat{S}(\omega) = \omega \circ S, \quad \hat{\phi}(\psi(a-)) = \varepsilon(a) = \hat{\psi}(\phi(-a))$ In the *-case, $\omega^* = \omega \circ * \circ S$ and $\hat{\psi}(\phi(-a)^*\phi(-a)) = \phi(a^*a)$. **Theorem** [T.] Every m.r.m.H.a. is naturally isomorphic to its bidual.

14/18

16/18

15/18

Outline of the construction of the dual comultiplications

By [T.-Van Daele], an RMHAd is determined by the algebras A, $B, C \subseteq M(A)$, the anti-automorphisms $B \Leftrightarrow C$, and the bijections

$$T_{1}: A \underset{B}{\otimes} A \to A \underset{l}{\otimes} A, \ a \otimes a' \mapsto \Delta_{B}(a)(1 \otimes a')$$
$$T_{2}: A \underset{C}{\otimes} A \to A \underset{r}{\otimes} A, \ a \otimes a' \mapsto (a \otimes 1)\Delta_{C}(a').$$

Starting from these maps, we obtain

Quantum groupoids

- dual bijections $(T_1)^{\vee}$ and $(T_2)^{\vee}$, taking transposes
- various embeddings $\hat{A} \otimes \hat{A} \rightarrow (A \otimes A)^{\vee}$, using the fact that elements of \hat{A} are adapted functionals and forming balanced tensor products
- bijections $\hat{\mathcal{T}}_1$, $\hat{\mathcal{T}}_2$, which then define the structure of an RMHAd on $\hat{\mathcal{A}}$

Theorem [Lu '96; Brzeziński, Militaru '01] Let *B* be a *braidedcommutative Yetter-Drinfeld algebra* over a Hopf algebra *H*. Then the crossed product $A = B \rtimes H$ for the action is a Hopf algebroid.

Theorem [Neshveyev-Yamashita '13] Let H be a compact quantum group. Then there exists an equivalence between

- unital braided-commutative Y.D.-algebras over H and
- unitary tensor functors from $\operatorname{Rep}(H)$ to C^* -tensor categories.

In the case when

- H is a regular multiplier Hopf algebra with integrals
- ► B carries a faithful quasi-invariant entire twisted trace

we expect $B \rtimes H$ and $B^{op} \rtimes \hat{H}^{co}$ to form mutually dual MRMHAds.

Duality

Duality

To do: passage to the setting of operator algebras

Let (A, μ, ϕ, ψ) be an MMH-*-Ad.

Aim To construct completions on the level of von Neumann algebras, to get a *measured quantum groupoid* [Enock, Lesieur, Vallin], and of C^* -algebras, where a full theory does not exist yet.

We will need additional assumptions, e.g.,

- μ_B and μ_C have associated GNS-representations $B, C \rightarrow \mathcal{L}(H_{\mu})$
- the modular automorphisms of ϕ and ψ commute
- (the modular element δ relating ϕ and ψ has a square root $\delta^{1/2}$)

The key steps will be to show that

- 1. ϕ and ψ admit a *bounded* GNS-representation $A \rightarrow \mathcal{L}(H)$
- 2. Δ_B extends to a comultiplication on $A'' \subseteq \mathcal{B}(H)$ rel. to $B'' \subseteq \mathcal{B}(H_{\mu})$
- 3. ϕ and ψ induce left- and right-invariant n.s.f. weights $A'' \rightarrow B''$, C''

This was done for *measured proper dynamical quantum groups* [T.] and *partial compact quantum groups* [De Commer-T.]

Introduction Quantu

Quantum groupoids

Integration

Operator algebras

17/18

Steps for the passage to the setting of operator algebras

Theorem [T.] Let (A, μ, ϕ, ψ) be a MMH-*-Ad, where μ, ϕ, ψ are positive and μ_B , μ_C admit bounded GNS-representations. Then:

- 1. ϕ and ψ admit *bounded* GNS-representations $\pi_{\phi}: A \to \mathcal{B}(H_{\phi})$ and $\pi_{\psi}: A \to \mathcal{B}(H_{\psi})$
- 2. Δ_B extends to comultiplications on $\pi_{\phi}(A)'' \subseteq \mathcal{B}(H_{\phi})$ and $\pi_{\psi}(A)'' \subseteq \mathcal{B}(H_{\psi})$ relative to $B'' \subseteq \mathcal{B}(H_{\mu})$ so that
 - $\pi_{\phi}(A)''$ and $\pi_{\psi}(A)''$ become Hopf-von Neumann bimodules
 - $\overline{\pi_{\phi}(A)}$ and $\overline{\pi_{\psi}(A)}$ become concrete Hopf C*-bimodules
- 3. $\Lambda_{\phi}(A) \subseteq H_{\phi}$ and $\Lambda_{\psi}(A) \subseteq H_{\psi}$ are Hilbert algebras so that ϕ and ψ extend to n.s.f. weights on $\pi_{\phi}(A)''$ and $\pi_{\psi}(A)''$

Idea of proof: use (C^*) pseudo-multiplicative unitaries [Vallin, T]:

- the map a ⊗ a' → Δ_B(a')(a ⊗ 1) induces a unitary on suitable completions of the domain and range
- identify these completions with certain Connes' fusions of H_{ϕ} over B''
- show that U^* is a pseudo-multiplicative unitary