Integration on and duality of algebraic quantum groupoids

Thomas Timmermann

University of Münster

20th of August 2014

Plan and background

I would like to discuss

1. What is a quantum groupoid in the algebraic setup?
2. Integration on algebraic quantum groupoids
3. Pontrjagin duality for algebraic quantum groupoids
4. The passage to operator-algebraic quantum groupoids
following

- T.T. Integration on and duality of algebraic quantum groupoids. (arxiv:1403.5282, submitted) and generalising the theory of multiplier Hopf algebras [Van Daele] and
- the finite-dimensional case
[Böhm-Nill-Szlachányi; Nikshych-Vainerman; ...]
- partial integration and duality in the fiber-wise finite case
[Böhm-Szlachányi]
- the case of weak multiplier Hopf algebras (w.i.p)

What is a quantum groupoid? First idea and main examples

Idea A quantum groupoid consists of a total algebra A, a base algebra B, target and source maps $B, B^{\text {op }} \rightarrow A$ and a comultiplication $\Delta: A \rightarrow A * A$ subject to conditions that depend on the setting

Example 1 The function algebra of a finite groupoid $X \underset{t}{\underset{\leftrightarrows}{E}} G \stackrel{m}{\leftarrow} G_{s} \times{ }_{t} G$

- $A=C(G)$ and $B=C(X)$
- $s^{*}, t^{*}: C(X) \rightarrow C(G)$
- $\Delta=m^{*}: C(G) \rightarrow C\left(G_{s} \times t\right)$ given by $\delta_{\gamma} \mapsto \sum_{\gamma^{\prime} \gamma^{\prime \prime}=\gamma} \delta_{\gamma^{\prime}} \otimes \delta_{\gamma^{\prime \prime}}$

Example 2 The convolution algebra of a finite groupoid as above

- $A=C(G)$ and $B=C(X)$
- $B=B^{\circ 口} \leftrightarrow A$ given by extending functions by 0 outside X
- $\Delta: C(G) \rightarrow C\left(G_{(s, t) \times(s, t)} G\right)$ the diagonal map $\delta_{\gamma} \mapsto \delta_{\gamma} \otimes \delta_{\gamma}$

Example 3 Deformations of 1 and 2 for Poisson-Lie groupoids G

Introduction	Quantum groupoids	Integration

Further examples of quantum groupoids

Example 4 Assume that \mathbb{G}_{1} and \mathbb{G}_{2} are compact quantum groups. Then monoidal equivalences $\operatorname{Rep}\left(\mathbb{G}_{1}\right) \sim \operatorname{Rep}\left(\mathbb{G}_{2}\right)$ correspond with linking quantum groupoids [De Commer], where

- $B=\mathbb{C}^{2}$ and $A=\oplus_{i, j=1,2} C\left(\mathbb{G}_{i j}\right)$ with $\mathbb{G}_{i i}=\mathbb{G}_{i}$
- Δ has components $\Delta_{i j k}: C\left(\mathbb{G}_{i j}\right) \mapsto C\left(\mathbb{G}_{i k}\right) \otimes C\left(\mathbb{G}_{k j}\right)$; in particular, $\mathbb{G}_{i} \bigcirc \mathbb{G}_{i j} \bigcirc \mathbb{G}_{j}$

Example 5 Extending Woronowicz-Tannaka-Krein duality, assume

- \mathcal{C} is a semi-simple rigid C^{*}-tensor category
- ${ }_{Z}$ Hilb $_{\mathbb{Z}}$ is the category of \mathbb{Z}-bigraded Hilbert spaces

Then fiber functors $F: \mathcal{C} \rightarrow{ }_{\mathbb{Z}}$ Hilb $_{\mathbb{Z}}$ correspond with partial compact quantum groups [De Commer+T.], where the dual is given by

- $B=C_{c}(\mathbb{Z}), A=\oplus \operatorname{Nat}\left(F_{l n}, F_{k m}\right)$ and $\Delta(\tau) \approx\left(\tau_{X \otimes Y}\right)_{X, Y \in \mathcal{C}}$

Towards the definition of algebraic quantum groupoids

Definition A bialgebroid consists of

- a unital algebra A and commuting unital subalgebras $B, C \subseteq A$
- anti-isomorphisms $S: B \rightarrow C$ and $S: C \rightarrow B$ (possibly $S^{2} \neq \mathrm{id}$)
- a left comultiplication and a right comultiplication

$$
\Delta_{B}: A \rightarrow{ }_{B} A \otimes_{S(B)} A \quad \text { and } \quad \Delta_{C}: A \rightarrow A_{S(C)} \otimes A_{C}
$$ satisfying

- $\Delta_{B}(a)(b \otimes 1)=\Delta_{B}(a)(1 \otimes S(b))$ for all a, b and multiplicativity
- $\Delta_{B}(c b)=(c \otimes b)$ for all b, c and coassociativity
- corresponding conditions for Δ_{C}
- joint coassociativity relating Δ_{B} and Δ_{C}
- a left counit ${ }_{B} \varepsilon: A \rightarrow B$ and a right counit $\varepsilon_{C}: A \rightarrow C$

Remark The inclusions $B \underset{S}{\stackrel{\text { id }}{\leftrightarrows}} A$ correspond to a functor ${ }_{A} \operatorname{Mod} \rightarrow{ }_{B} \operatorname{Mod}_{B}$ and Δ_{B} and ${ }_{B} \varepsilon$ correspond to compatible monoidal structures on $A_{A o d}$

Introduction	Quantum groupoids	Integration	Duality

A general definition of algebraic quantum groupoids

Definition A multiplier bialgebroid consists of

- an algebra A and commuting subalgebras $B, C \subseteq M(A)$ (possibly non-unital but with suitable regularity properties)
- anti-isomorphisms $S: B \rightarrow C$ and $S: C \rightarrow B$
- a left comultiplication and a right comultiplication Δ_{B} and Δ_{C} taking values in a left and a right multiplier algebra such that

1. $\Delta_{B}(a)\left(1 \otimes a^{\prime}\right)$ and $\Delta_{B}(a)\left(a^{\prime} \otimes 1\right)$ lie in ${ }_{B} A \otimes{ }_{S(B)} A$
2. $(a \otimes 1) \Delta_{C}\left(a^{\prime}\right)$ and $(1 \otimes a) \Delta_{C}\left(a^{\prime}\right)$ lie in $A_{S(C)} \otimes A_{C}$
3. Δ_{B}, Δ_{C} are co-associative, multiplicative, jointly co-associative

Theorem+Definition [T.-Van Daele] TFAE:

- There exist a left and a right counit and an antipode
- the four maps sending $a \otimes a^{\prime} \in A \otimes A$ to each of the products in 1. and 2. induce bijections $A \underset{B}{\otimes} A \rightarrow{ }_{B} A \otimes{ }_{S(B)} A, \ldots, \ldots, \ldots$

If these conditions hold, we call A a regular multiplier Hopf algebroid

Why consider integration on algebraic quantum groupoids?

Definition A left integral on a (multiplier) Hopf algebra A is a functional $\phi: A \rightarrow \mathbb{C}$ satisfying $(i d \otimes \phi)(\Delta(a))=\phi(a)$ for all $a \in A$. Likewise, one defines right integrals.

Significance Integrals on (multiplier) Hopf algebras are the key to 1. extending Pontrjagin duality [Van Daele]

- $\operatorname{dim} A<\infty:(A \otimes A)^{\prime}=A^{\prime} \otimes A^{\prime}$, so A^{\prime} becomes a Hopf algebra - $\operatorname{dim} A=\infty: \hat{A}=\{\phi(-a): a \in A\} \subseteq A^{\prime}$ is a multiplier Hopf algebra

2. developing the structure theory of $C Q G s$
[Woronowicz]

- averaging inner products and morphisms, find that every representation is equivalent to a unitary and splits into irreducibles

3. passing to completions in the form of operator algebras [Kustermans-Van Daele]

- the GNS-construction $\pi_{\phi}: A \rightarrow \mathcal{B}\left(H_{\phi}\right)$ yields the C^{*}-algebra $\overline{\pi_{\phi}(A)}$ and the von Neumann algebra $\pi_{\phi}(A)^{\prime \prime}$ of a LCQG

Introduction	Quantum groupoids	Integration	Duality

What do we need for integration - heuristics

Ansatz For integration on a regular multiplier Hopf algebroid with total algebra A and base algebras $B, C \subseteq M(A)$, we need

- a map $c \phi_{C}: A \rightarrow C$ that is left-invariant: for all $a, a^{\prime} \in A, c \in C$,

1. $c \phi_{C}(a c)=c \phi_{C}(a) c$ and $\left(i d \otimes_{c} \phi_{C}\right)\left((a \otimes 1) \Delta_{C}\left(a^{\prime}\right)\right)=a_{C} \phi_{C}\left(a^{\prime}\right)$
2. $c \phi_{C}(c a)=c_{C} \phi_{C}(a)$ and $\left(i d{\underset{B}{B}}_{C} \phi_{C}\right)\left(\Delta_{B}(a)\left(a^{\prime} \otimes 1\right)\right)=c \phi_{C}(a) a^{\prime}$

- a map ${ }_{B} \psi_{B}: A \rightarrow B$ that is right-invariant
- functionals μ_{B}, μ_{C} on B, C that are relatively invariant:

$$
\phi: A \xrightarrow{c \phi_{C}} C \xrightarrow{\mu_{C}} \mathbb{C} \quad \text { and } \quad \psi: A \xrightarrow{B \psi_{B}} B \xrightarrow{\mu_{B}} \mathbb{C}
$$

are related by invertible multipliers δ, δ^{\prime} s.t. $\psi=\phi(\delta-)=\phi\left(-\delta^{\prime}\right)$
Example 1 For the function algebra of an étale groupoid $X \underset{t}{\sum_{t}^{s}} G$, let

- ${ }_{C} \phi_{C},{ }_{B} \psi_{B}: C_{C}(G) \rightarrow C_{C}(X)$ be summation along the fibers of t or s
- $\mu_{B}=\mu_{C}$ on $C_{C}(X)$ be integration w.r.t. a quasi-invariant measure

Further examples of quantum groupoids

Example 2 For the convolution algebra of an étale groupoid G, let

- ${ }_{C} \phi_{C}={ }_{B} \psi_{B}: C_{C}(G) \rightarrow C_{C}(X)$ be the restriction of functions to $X \subseteq G$
- $\mu_{B}=\mu_{C}$ on $C_{C}(X)$ be integration w.r.t. a quasi-invariant measure

Example 4 Assume that \mathbb{G}_{1} and \mathbb{G}_{2} are compact quantum groups with a monoidal equivalence $\operatorname{Rep}\left(\mathbb{G}_{1}\right) \sim \operatorname{Rep}\left(\mathbb{G}_{2}\right)$ and associated linking quantum groupoid $B=\mathbb{C}^{2}$ and $A=\oplus_{i, j=1,2} C\left(\mathbb{G}_{i j}\right)$

- have Haar states $h_{i}=h_{i i}$ on $C\left(\mathbb{G}_{i}\right)=C\left(\mathbb{G}_{i i}\right)$
and unique states $h_{i j}$ on $C\left(\mathbb{G}_{i j}\right)$ invariant for $\mathbb{G}_{i} \bigcirc \mathbb{G}_{i j} \bigcirc \mathbb{G}_{j}$
- ${ }_{C} \phi_{C}(a)=\sum_{j} h_{i j}\left(a_{i j}\right)$ and ${ }_{B} \psi_{B}(a)=\sum_{i} h_{i j}\left(a_{i j}\right)$

Example 5 Given a fiber functor $F: \mathcal{C} \rightarrow_{\mathbb{Z}}$ Hilb $_{\mathbb{Z}}$ with associated partial CQG $B=C_{c}(\mathbb{Z})$ and $A=\oplus \operatorname{Nat}\left(F_{l n}, F_{k m}\right)^{\prime}$,

- ${ }_{C} \phi_{C}$ and ${ }_{B} \psi_{B}$ come from evaluating a $\tau \in \operatorname{Nat}\left(F_{l n}, F_{k m}\right)$ at $1_{\mathcal{C}}$

Introduction

Quantum groupoids
Integration
Duality
Operator algebras

What do we need for integration - formal definition

Definition Consider a regular multiplier Hopf algebroid as above.

- A base weight consists of functionals μ_{B}, μ_{C} on B, C subject to

1. faithfulness, i.e., if $\mu_{B}(b B)=0$ or $\mu_{B}(B b)=0$, then $b \neq 0$
2. $\mu_{B} \circ S=\mu_{C}=\mu_{B} \circ S^{-1}$ and 3. $\mu_{B} \circ{ }_{B} \varepsilon=\mu_{C} \circ \varepsilon_{C}$

- Call a functional $\omega: A \rightarrow \mathbb{C}$ adapted (to μ_{B}, μ_{C}) if one can write

$$
\omega=\mu_{B} \circ{ }_{B} \omega=\mu_{B} \circ \omega_{B}=\mu_{C} \circ{ }_{C} \omega=\mu_{C} \circ \omega_{C}
$$

with ${ }_{B} \omega \in \operatorname{Hom}\left({ }_{B} A,{ }_{B} B\right), \omega_{B} \in \operatorname{Hom}\left(A_{B}, B_{B}\right), \ldots$

- A left integral is an adapted functional ϕ s.t. $\subset \phi=\phi_{C}={ }_{c} \phi_{C}$ is left-invariant. We call ϕ full if ${ }_{B} \phi$ and ϕ_{B} are surjective. Similarly, we define (full) right integrals.

Key observation For adapted functionals v, ω, we can define $v \odot$ id, id $\odot \omega$ and $v \odot \omega$ on all kinds of balanced tensor products $A \odot A$, e.g., $v \underset{B}{\otimes} \omega: A \underset{B}{\otimes} A \rightarrow \mathbb{C}, a \otimes b \mapsto \mu_{B}\left(v_{B}(a)_{B} \omega(b)\right)=v\left(a_{B} \omega(b)\right)=\omega\left(v_{B}(a) b\right)$

The main results on integrals

Theorem [T.] Let A be a regular multiplier Hopf algebroid with base weight $\left(\mu_{B}, \mu_{C}\right)$ and full left integral ϕ.

1. If ${ }_{B} A, A_{B}, C A, A_{C}$ are projective, then ϕ is faithful.

Assume that ${ }_{B} A, A_{B}, C A, A_{C}$ are flat and that ϕ is faithful.
2. There exists an automorphism σ^{ϕ} s.t. $\left(A, \sigma^{\phi}\right)$ is a twisted trace.

Moreover, $\sigma^{\phi}(c)=S^{2}(c)$ for $c \in C$, and $\sigma^{\phi}(M(B))=M(B)$.
3. Every left integral has the form $\phi(b-)$ with $b \in M(B)$.
4. Every right integral has the form $\phi(\delta-)$ with $\delta \in M(A)$.
5. There exist invertible modular elements $\delta, \delta^{\dagger} \in M(A)$ such that $\phi \circ S^{-1}=\phi(\delta-)$ and $\phi \circ S=\phi\left(-\delta^{\dagger}\right)$. These elements satisfy $\Delta_{C}(\delta)=\delta \otimes \delta, \quad \Delta_{B}(\delta)=\delta^{\dagger} \otimes \delta, \quad \Delta_{B}\left(\delta^{\dagger}\right)=\delta^{\dagger} \otimes \delta^{\dagger}, \Delta_{C}\left(\delta^{\dagger}\right)=\delta \otimes \delta^{\dagger}$ $S\left(\delta^{\dagger}\right)=\delta^{-1}, \varepsilon(\delta a)=\varepsilon(a)=\varepsilon\left(a \delta^{\dagger}\right)$, and (in the ${ }^{*}$-case) $\delta^{\dagger}=\delta^{*}$.

An example coming from quantum group actions

Example Assume that

- H is a regular (multiplier) Hopf algebra with integrals ϕ_{H}, ψ_{H},
- B is an algebra with a right action of H, written $x \triangleleft h$
- μ_{B} is a faithful H-invariant trace on B

Then $C=B^{\circ p}$ carries a left H-action and an H-invariant trace μ_{C} s.t.

$$
h \triangleright x^{\mathrm{op}}=\left(x \triangleleft S_{H}^{-1}(h)\right)^{\mathrm{op}} \quad \text { and } \quad \mu_{C}\left(x^{\mathrm{op}}\right)=\mu_{B}(x)
$$

We obtain a regular multiplier Hopf algebroid with integrals, where

- $A=C \rtimes H \ltimes B$ is the space $C \otimes H \otimes B$ with the multiplication $(y \otimes h \otimes x)\left(y^{\prime} \otimes h^{\prime} \otimes x^{\prime}\right)=y\left(h_{(1)} \triangleright y^{\prime}\right) \otimes h_{(2)} h_{(1)}^{\prime} \otimes\left(x \triangleleft h_{(2)}^{\prime}\right) x^{\prime}$
- the left and right comultiplication Δ_{B} and Δ_{C} are given by

$$
\begin{aligned}
& \Delta_{B}(y \otimes h \otimes x)(a \otimes b)=y h_{(1)} a \otimes h_{(2)} x b \\
& (a \otimes b) \Delta_{C}(y \otimes h \otimes x)=a y h_{(1)} \otimes b h_{(2)} x
\end{aligned}
$$

- $\phi(y \otimes h \otimes x)=\mu_{C}(y) \phi_{H}(h) \mu_{B}(x), \psi(y \otimes h \otimes x)=\mu_{C}(y) \psi_{H}(h) \mu_{B}(x)$

The dual algebra of a measured multiplier Hopf algebroid

Definition We call a regular multiplier Hopf algebroid measured if it is equipped with a base weight and full and faithful left and a right integrals and if the modules ${ }_{B} A, A_{B}, C A, A_{C}$ are flat.
Lemma Consider the space $\hat{A}:=\{\phi(a-): a \in A\} \subseteq A^{\prime}$.

1. $\hat{A}=\{\phi(-a): a \in A\}=\{\psi(a-): a \in A\}=\{\psi(-a): a \in A\}$.
2. Let $v, \omega \in \hat{A}$. Then the compositions

$$
v *_{B} \omega:=(v \otimes \omega) \circ \Delta_{B} \text { and } v *_{C} \omega:=(v \otimes \omega) \circ \Delta_{C}
$$

(a) are well-defined, (b) belong to \hat{A} and (c) coincide.
3. \hat{A} is a non-degenerate, idempotent algebra w.r.t. $(v, \omega) \mapsto v * \omega$.

Proof of assertion 2.(c):

- coassociativity $\Rightarrow\left(v *_{B} \theta\right) *_{C} \omega=v *_{B}\left(\theta *_{C} \omega\right)$ for all μ-adapted θ
- counit property $\Rightarrow v *_{B} \varepsilon=v$ and $\varepsilon *_{C} \omega=\omega$
- relations 1.+2. $\Rightarrow v *_{B} \omega=v *_{B}\left(\varepsilon *_{C} \omega\right)=\left(v *_{B} \varepsilon\right) *_{C} \omega=v *_{C} \omega$

Introduction Quantum groupoids	Integration	Duality	Operator algebras
The duality of measured regular multiplier	Hopf algebroids		

Theorem [T.] Let (A, μ, ϕ, ψ) form a MRMHAd. Then there exists a dual MRMHAd $(\hat{A}, \hat{\mu}, \hat{\phi}, \hat{\psi})$, where \hat{A} was defined above and

- $\hat{B}=C$ and $\hat{C}=B$ are embedded in $M(\hat{A})$ such that

$$
c \omega=\omega(-c), \omega c=\omega\left(-S^{-1}(c)\right), \quad b \omega=\omega\left(S^{-1}(b)-\right), \quad \omega b=\omega(b-)
$$

for all $c \in C, b \in B, \omega \in \hat{A}$

- the left and the right comultiplication $\hat{\Delta}_{\hat{B}}$ and $\hat{\Delta}_{\hat{C}}$ of \hat{A} satisfy

$$
\begin{aligned}
& \left(\hat{\Delta}_{\hat{B}}(v)(1 \otimes \omega) \mid a \otimes a^{\prime}\right)=\left(u \otimes \omega \mid(a \otimes 1) \Delta_{C}\left(a^{\prime}\right)\right) \\
& \left((v \otimes 1) \hat{\Delta}_{\hat{C}}(\omega) \mid a \otimes a^{\prime}\right)=\left(u \otimes \omega \mid \Delta_{B}(a)\left(1 \otimes a^{\prime}\right)\right)
\end{aligned}
$$

for all $a, a^{\prime} \in A, v, \omega \in \hat{A}$

- the dual counit $\hat{\varepsilon}$, antipode \hat{S} and integrals $\hat{\phi}$ and $\hat{\psi}$ are given by

$$
\hat{\varepsilon}(\phi(-a))=\phi(a), \quad \hat{S}(\omega)=\omega \circ S, \quad \hat{\phi}(\psi(a-))=\varepsilon(a)=\hat{\psi}(\phi(-a))
$$

In the $*$-case, $\omega^{*}=\omega \circ * \circ S$ and $\hat{\psi}\left(\phi(-a)^{*} \phi(-a)\right)=\phi\left(a^{*} a\right)$.
Theorem [T.] Every m.r.m.H.a. is naturally isomorphic to its bidual.

Outline of the construction of the dual comultiplications

By [T.-Van Daele], an RMHAd is determined by the algebras A, $B, C \subseteq M(A)$, the anti-automorphisms $B \leftrightarrows C$, and the bijections

$$
\begin{aligned}
& T_{1}: A \underset{B}{\otimes} A \rightarrow A \otimes A, \quad a \otimes a^{\prime} \mapsto \Delta_{B}(a)\left(1 \otimes a^{\prime}\right) \\
& T_{2}: A \underset{C}{\otimes} A \rightarrow A \underset{r}{\otimes} A, a \otimes a^{\prime} \mapsto(a \otimes 1) \Delta_{C}\left(a^{\prime}\right) .
\end{aligned}
$$

Starting from these maps, we obtain

- dual bijections $\left(T_{1}\right)^{\vee}$ and $\left(T_{2}\right)^{\vee}$, taking transposes
- various embeddings $\hat{A} \otimes \hat{A} \rightarrow(A \otimes A)^{\vee}$, using the fact that elements of \hat{A} are adapted functionals and forming balanced tensor products
- bijections \hat{T}_{1}, \hat{T}_{2}, which then define the structure of an RMHAd on \hat{A}

To do: examples from braided-commutative YD-algebras

Theorem [Lu '96; Brzeziński, Militaru '01] Let B be a braidedcommutative Yetter-Drinfeld algebra over a Hopf algebra H. Then the crossed product $A=B \rtimes H$ for the action is a Hopf algebroid.

Theorem [Neshveyev-Yamashita '13] Let H be a compact quantum group. Then there exists an equivalence between

- unital braided-commutative Y.D.-algebras over H and
- unitary tensor functors from $\operatorname{Rep}(H)$ to C^{*}-tensor categories.

In the case when

- H is a regular multiplier Hopf algebra with integrals
- B carries a faithful quasi-invariant entire twisted trace we expect $B \rtimes H$ and $B^{o p} \rtimes \hat{H}^{c o}$ to form mutually dual MRMHAds.

To do: passage to the setting of operator algebras

Let (A, μ, ϕ, ψ) be an MMH-*-Ad.
Aim To construct completions on the level of von Neumann algebras, to get a measured quantum groupoid [Enock, Lesieur, Vallin], and of C^{*}-algebras, where a full theory does not exist yet.

We will need additional assumptions, e.g.,

- μ_{B} and μ_{C} have associated GNS-representations $B, C \rightarrow \mathcal{L}\left(H_{\mu}\right)$
- the modular automorphisms of ϕ and ψ commute
- (the modular element δ relating ϕ and ψ has a square root $\delta^{1 / 2}$)

The key steps will be to show that

1. ϕ and ψ admit a bounded GNS-representation $A \rightarrow \mathcal{L}(H)$
2. Δ_{B} extends to a comultiplication on $A^{\prime \prime} \subseteq \mathcal{B}(H)$ rel. to $B^{\prime \prime} \subseteq \mathcal{B}\left(H_{\mu}\right)$
3. ϕ and ψ induce left- and right-invariant n.s.f. weights $A^{\prime \prime} \rightarrow B^{\prime \prime}, C^{\prime \prime}$

This was done for measured proper dynamical quantum groups [T.] and partial compact quantum groups [De Commer-T.]

Steps for the passage to the setting of operator algebras

Theorem [T.] Let (A, μ, ϕ, ψ) be a MMH- \neq-Ad, where μ, ϕ, ψ are positive and μ_{B}, μ_{C} admit bounded GNS-representations. Then:

1. ϕ and ψ admit bounded GNS-representations $\pi_{\phi}: A \rightarrow \mathcal{B}\left(H_{\phi}\right)$ and $\pi_{\psi}: A \rightarrow \mathcal{B}\left(H_{\psi}\right)$
2. Δ_{B} extends to comultiplications on $\pi_{\phi}(A)^{\prime \prime} \subseteq \mathcal{B}\left(H_{\phi}\right)$ and $\pi_{\psi}(A)^{\prime \prime} \subseteq \mathcal{B}\left(H_{\psi}\right)$ relative to $B^{\prime \prime} \subseteq \mathcal{B}\left(H_{\mu}\right)$ so that

- $\pi_{\phi}(A)^{\prime \prime}$ and $\pi_{\psi}(A)^{\prime \prime}$ become Hopf-von Neumann bimodules
- $\overline{\pi_{\phi}(A)}$ and $\overline{\pi_{\psi}(A)}$ become concrete Hopf C^{*}-bimodules

3. $\wedge_{\phi}(A) \subseteq H_{\phi}$ and $\Lambda_{\psi}(A) \subseteq H_{\psi}$ are Hilbert algebras so that ϕ and ψ extend to n.s.f. weights on $\pi_{\phi}(A)^{\prime \prime}$ and $\pi_{\psi}(A)^{\prime \prime}$

Idea of proof: use (C^{*})pseudo-multiplicative unitaries [Vallin, T]:

- the map $a \otimes a^{\prime} \mapsto \Delta_{B}\left(a^{\prime}\right)(a \otimes 1)$ induces a unitary on suitable completions of the domain and range
- identify these completions with certain Connes' fusions of H_{ϕ} over $B^{\prime \prime}$
- show that U^{*} is a pseudo-multiplicative unitary

