

ODD-DIMENSIONAL MULTI-PULLBACK QUANTUM SPHERES

Piotr M. Hajac (IMPAN / University of New Brunswick)

Joint work with D. Pask, A. Sims and B. Zieliński

3 November 2014

Motivation, goal and plan

- Motivated by a problem in lattice theory, a new family of quantum complex projective spaces was introduced in 2012 via a combinatorial multi-pullback construction (Hajac, Kaygun, Zieliński).
- 2 The goal of this talk is to unravel the construction of tautological line bundles over these quantum complex projective spaces and to prove that they are not stably trivial.
- Opening Plan:
 - Classical recall
 - Onstruction of multi-pullback quantum spheres.
 - \odot Gauging the diagonal U(1)-action.
 - 4 Constructing a strong connection.
 - Proving the main result.

Odd-dimensional spheres from solid tori

$$S^{2N+1} := \{(z_0, \dots, z_N) \in \mathbb{C}^{N+1} \mid |z_0|^2 + \dots + |z_N|^2 = 1\}$$

Let $V_i := \{(z_0, \dots, z_N) \in S^{2N+1} \mid |z_i| = \max\{|z_0|, \dots, |z_N|\}\}.$ Then

$$S^{2N+1} := \bigcup_{i=0}^{N} V_i.$$

Homeomorphism implementing
$$V_i \cong D^{\times^i} \times S^1 \times D^{\times^{N-i}}$$

$$\phi_i : V_i \ni (z_0, \dots, z_N) \longmapsto \left(\frac{z_0}{|z_i|}, \dots, \frac{z_N}{|z_i|}\right) \in D^{\times^i} \times S^1 \times D^{\times^{N-i}},$$

$$\phi_i^{-1} : D^{\times^i} \times S^1 \times D^{\times^{N-i}} \ni (d_0, \dots, d_{i-1}, s, d_{i+1}, \dots, d_N)$$

$$\phi_i^{-1}: D^{\times^i} \times S^1 \times D^{\times^{N-i}} \ni (d_0, \dots, d_{i-1}, s, d_{i+1}, \dots, d_N)$$

$$\longmapsto \frac{1}{\sqrt{1 + \sum_{j \neq i} |d_j|^2}} (d_0, \dots, d_{i-1}, s, d_{i+1}, \dots, d_N) \in V_i.$$

S^{2N+1} as a multi-pushout of solid tori

Assume that i < j and suppress \times for brevity.

Note that $\phi_{ji} \circ \phi_{ij}^{-1} = id_{D^i S^1 D^{j-i-1} S^1 D^{N-j}}$.

$$S^{2N+1}$$
 is homeomorphic to $\coprod_{0 \leq i \leq N} D^{\times i} \times S^1 \times D^{\times N-i}$ divided by the identifications prescribed by the diagrams $(0 \leq i < j \leq N)$:

$$D^{i}S^{1}D^{N-i} \longleftrightarrow D^{i}S^{1}D^{j-i-1}S^{1}D^{N-j} \longleftrightarrow D^{j}S^{1}D^{N-j}.$$

$C(S^{2N+1})$ as a multi-pullback C*-algebra

Definition

The multi-pullback algebra A^{π} of a finite family $\{\pi_i^i: A_i \longrightarrow A_{ij} = A_{ji}\}_{i,j \in J, i \neq j}$ of algebra morphisms is defined as

$$A^{\pi} := \left\{ (a_i)_{i \in J} \in \prod_{i \in J} A_i \mid \pi_j^i(a_i) = \pi_i^j(a_j), \ \forall i, j \in J, \ i \neq j \right\}.$$

 $C(S^{2N+1})$ is isomorphic as a C*-algebra to the subalgebra of

$$\prod_{0 \le i \le N} C(D)^{\otimes i} \otimes C(S^1) \otimes C(D)^{\otimes N - i}$$

defined by the compatibility conditions ($0 \le i < j \le N$, \otimes suppressed):

$$C(D)^{i}C(S^{1})C(D)^{N-i} C(D)^{j}C(S^{1})C(D)^{N-j}$$

$$C(D)^{i}C(S^{1})C(D)^{j-i-1}C(S^{1})C(D)^{N-j}.$$

S^{2N+1} as a U(1)-principal bundle

The diagonal action of U(1) on S^{2N+1}

$$S^{2N+1} \times U(1) \ni ((z_0, \dots, z_N), \lambda) \longmapsto (z_0 \lambda, \dots, z_N \lambda) \in S^{2N+1}$$

carries componentwise to the multi-pushout presentation, e.g.

$$D^{\times i} \times S^1 \times D^{\times N-i} \times S^1 \ni ((d_0, \dots, d_{i-1}, s, d_{i+1}, \dots d_N), \lambda)$$

$$\longmapsto (d_0 \lambda, \dots, d_{i-1} \lambda, s \lambda, d_{i+1} \lambda, \dots d_N \lambda) \in D^{\times i} \times S^1 \times D^{\times N-i}.$$

Hence we can determine a multi-pushout structure of $\mathbb{P}^N(\mathbb{C}) \cong S^{2N+1}/U(1)$ using the multi-pushout presentation of S^{2N+1} . However, to determine quotients by diagonal actions, we need to gauge them to actions on the rightmost components. This will yield an alternative multi-pushout presentation of S^{2N+1} .

From the diagonal to the rightmost action

Let G be a group and let X be a G-space. Then:

- $(X \times G)^R$ is $X \times G$ understood as a G-space with G-action $(X \times G) \times G \ni ((x,g),h) \longmapsto (x,gh) \in X \times G$.
- $(X \times G)^D$ is $X \times G$ understood as a G-space with G-action $(X \times G) \times G \ni ((x,g),h) \longmapsto (xh,gh) \in X \times G$.

G-space isomorphisms:

$$\kappa: (X \times G)^R \ni (x,g) \longmapsto (xg,g) \in (X \times G)^D,$$

$$\kappa^{-1}: (X \times G)^D \ni (x,g) \longmapsto (xg^{-1},g) \in (X \times G)^R.$$

Gauged multi-pushout presentation of S^{2N+1}

 S^{2N+1} is homeomorphic to $\coprod_{0 \leq i \leq N} D^{\times N} \times S^1$ divided by the identifications prescribed by the diagrams, $0 \leq i < j \leq N$,

where

$$\chi_{ij}: (d_1, \dots, d_{j-1}, t, d_{j+1}, \dots, d_N, s) \longmapsto (t^{-1}d_1, \dots, t^{-1}d_i, t^{-1}, t^{-1}d_{i+1}, \dots, t^{-1}d_{j-1}, t^{-1}d_{j+1}, \dots, t^{-1}d_N, st).$$

The diagrams are U(1)-equivariant with respect to actions on the rightmost components, whence they yield a multi-pushout presentation of $S^{2N+1}/U(1)$.

Complex projective spaces

Definition

$$\begin{split} \mathbb{P}^N(\mathbb{C}) &:= (\mathbb{C}^{N+1} \setminus \{0\}) / \sim \text{, where} \\ &(x_i)_{0 \leq i \leq N} \sim (y_i)_{0 \leq i \leq N} \quad \Leftrightarrow \quad \exists \; \alpha \in \mathbb{C} \setminus \{0\} \; \forall \; i: \; x_i = \alpha y_i \; . \end{split}$$

We denote by $[x_0:\ldots:x_N]$ the class of (x_0,\ldots,x_N) in $\mathbb{P}^N(\mathbb{C})$.

Affine open covering of $\mathbb{P}^N(\mathbb{C})$

Put $U_i := \{ [x_0 : \ldots : x_N] \in \mathbb{P}^N(\mathbb{C}) \mid x_i \neq 0 \}.$

Then $U_i \cong \mathbb{C}^N$, $[x_0:\ldots:x_N] \mapsto \left(\frac{x_0}{x_i},\ldots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\ldots,\frac{x_N}{x_i}\right)$.

Affine closed covering of $\mathbb{P}^N(\mathbb{C})$

Put $V_i := \{ [x_0 : \ldots : x_N] \in \mathbb{P}^N(\mathbb{C}) \mid |x_i| = \max\{|x_0|, \ldots, |x_N|\} \}.$

Then $V_i \cong D^{\times N}$ with a homeomorphism is given by:

$$\psi_i: V_i \ni [x_0: \dots: x_N] \longmapsto \left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_N}{x_i}\right) \in D^{\times N},$$

 $\psi_i^{-1}:(d_1,\ldots,d_N)\longmapsto [d_1:\ldots:d_i:1:d_{i+1}:\ldots:d_N].$

Complex projective spaces as multi-pushouts

Let $0 \le i < j \le N$. We have the multi-pushout diagram:

$$D^{\times N} \stackrel{\smile}{\longleftarrow} V_i \qquad V_j \stackrel{\widetilde{\psi_j}}{\longrightarrow} D^{\times N}$$

$$D^{\times j-1} \times S^1 \times D^{\times N-j} \stackrel{\psi_{ij}}{\longleftarrow} V_i \cap V_j \stackrel{\psi_{ji}}{\longrightarrow} D^{\times i} \times S^1 \times D^{\times N-i-1}.$$

Here

$$\Upsilon_{ij} := \psi_{ji} \circ \psi_{ij}^{-1} : D^{\times j-1} \times S^1 \times D^{\times N-j} \longrightarrow D^{\times i} \times S^1 \times D^{\times N-i-1}$$

$$\Upsilon_{ij}(d_1, \dots, d_{j-1}, s, d_{j+1}, \dots, d_N) =$$

$$(s^{-1}d_1, \dots, s^{-1}d_i, s^{-1}, s^{-1}d_{i+1}, \dots, s^{-1}d_{i-1}, s^{-1}d_{i+1}, \dots, s^{-1}d_N).$$

Since Υ_{ij} coincides with χ_{ij} with the rightmost component deleted, we infer that the quotient multi-pushout structure of $S^{2N+1}/U(1)$ agrees with the above multi-pushout presentation.

$C(\mathbb{P}^N(\mathbb{C}))$ as a multi-pullback C*-algebra

The C*-algebra $C(\mathbb{P}^N(\mathbb{C}))$ is isomorphic with the subalgebra of $\prod_{i=0}^{N} C(D)^{\otimes N}$ defined by the compatibility conditions:

where $0 \le i < j \le N$.

The Toeplitz algebra

Definition

The Toeplitz algebra $\mathcal T$ is the universal C*-algebra generated by z and z^* satisfying $z^*z=1$.

We have a short exact sequence of U(1)-equivariant C*-homomorphisms:

$$0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{T} \stackrel{\sigma}{\longrightarrow} C(S^1) \longrightarrow 0.$$

Here u is the unitary generator of $C(S^1)$, \mathcal{K} is the ideal of compact operators, and σ is the symbol map $(\sigma(z) := u)$. The action of U(1) on \mathcal{T} is given by $z \mapsto \lambda z$.

We dualize this action to a coaction of C(U(1)) on \mathcal{T} . Explicitly, we have:

$$\rho: \mathcal{T} \longrightarrow \mathcal{T} \otimes C(U(1)) \cong C(U(1), \mathcal{T}),$$
$$\rho(z) := z \otimes u, \quad \rho(z)(\lambda) = \lambda z.$$

We use the Heyneman-Sweedler notation $\rho(t) =: t_{(0)} \otimes t_{(1)}$.

Multi-pullback quantum spheres S_H^{2N+1}

 $C(S_H^{2N+1})$ is the C*-subalgebra of $\prod_{i=0}^N \mathcal{T}^{\otimes i} \otimes C(S^1) \otimes \mathcal{T}^{\otimes N-i}$ defined by the compatibility conditions prescribed by the following diagrams ($0 \leq i < j \leq N$, \otimes -supressed):

$$\mathcal{T}^{i}C(S^{1})\mathcal{T}^{N-i}$$
 $\mathcal{T}^{j}C(S^{1})\mathcal{T}^{N-j}$
 $\mathcal{T}^{i}C(S^{1})\mathcal{T}^{j-i-1}C(S^{1})\mathcal{T}^{N-j}$.

Here $\sigma_j := id^j \otimes \sigma \otimes id^{n-j}$.

We equip all C*-algebras in the diagrams with the diagonal actions of U(1). Since all morphisms in the diagrams are U(1)-equivariant, we obtain the diagonal U(1)-action on $C(S_H^{2N+1})$.

Gauging coactions

Let H be a ${\it commutative}$ Hopf algebra, and P be an H-comodule algebra. Then:

- $(P \otimes H)^D$ is an H-comodule algebra $P \otimes H$ with the diagonal coaction $p \otimes h \longmapsto p_{(0)} \otimes h_{(1)} \otimes p_{(1)}h_{(2)}$.
- $(P \otimes H)^R$ is an H-comodule algebra $P \otimes H$ with the coaction on the rightmost factor $p \otimes h \longmapsto p \otimes h_{(1)} \otimes h_{(2)}$.

H-comodule algebra isomorphisms:

$$F: (P \otimes H)^D \longrightarrow (P \otimes H)^R, \quad p \otimes h \longmapsto p_{(0)} \otimes p_{(1)}h,$$

$$F^{-1}: (P \otimes H)^R \longrightarrow (P \otimes H)^D, \quad p \otimes h \longmapsto p_{(0)} \otimes S(p_{(1)})h.$$

$C(S_H^{2N+1})$ as a gauged multi-pullback

The following diagrams ($0 \le i < j \le N$, \otimes suppressed) are U(1)-equivariant with respect to the U(1)-actions on the rightmost factors.

$$i \quad \mathcal{T}^{N}C(S^{1}) \qquad \mathcal{T}^{N}C(S^{1}) \qquad j$$

$$\downarrow \sigma_{i} \qquad \qquad \downarrow \sigma_{i}$$

$$\mathcal{T}^{j-1}C(S^{1})\mathcal{T}^{N-j}C(S^{1}) \stackrel{\tilde{\Psi}_{ij}}{\longleftarrow} \mathcal{T}^{i}C(S^{1})\mathcal{T}^{N-i-1}C(S^{1}),$$

$$\tilde{\Psi}_{ij}: \bigotimes_{k=0}^{i-1} t_k \otimes v \otimes \bigotimes_{\substack{l=i+1\\l\neq j}}^{N} t_l \otimes s$$

$$\longmapsto \bigotimes_{\substack{k=0\\k\neq i}}^{j-1} t_{k(0)} \otimes S \left(\prod_{\substack{m=0\\m\neq i,j}}^{N} t_{m(1)} \right) S(v) s_{(1)} \otimes \bigotimes_{l=j+1}^{N} t_{l(0)} \otimes s_{(2)}.$$

$$C(S_H^{2N+1}) \text{ is isomorphic as a } U(1)\text{-C*-algebra to the multi-pullback}$$

 $C(S_H^{21V+1})$ is isomorphic as a U(1)-C*-algebra to the multi-pullbac U(1)-C*-algebra of the above diagrams.

Quantum complex projective spaces $\mathbb{P}^N(\mathcal{T})$

 $C(\mathbb{P}^N(\mathcal{T}))$ is the C*-subalgebra of $\prod_{i=0}^N \mathcal{T}^{\otimes N}$ defined by the compatibility conditions prescribed by the diagrams $(0 \le i < j \le N)$:

$$i \quad \mathcal{T}^{\otimes N} \qquad \mathcal{T}^{\otimes N} \qquad j$$

$$\downarrow \sigma_{i+1} \qquad \qquad \downarrow \sigma_{i+1}$$

$$\mathcal{T}^{\otimes j-1} \otimes C(S^1) \otimes \mathcal{T}^{\otimes N-j} \xrightarrow{\Psi_{ij}} \mathcal{T}^{\otimes i} \otimes C(S^1) \otimes \mathcal{T}^{\otimes N-i-1},$$

$$\Psi_{ij}: \bigotimes_{k=0}^{i-1} t_k \otimes h \otimes \bigotimes_{l=i+1}^{N-1} t_l \mapsto \bigotimes_{k=0 \atop k \neq i}^{j-1} t_{k(0)} \otimes S \left(\left(\prod_{\substack{m=0 \\ m \neq i}}^{N-1} t_{m(1)} \right) h \right) \otimes \bigotimes_{l=j}^{N-1} t_{l(0)}.$$

It follows from the gauged presentation of $C(S_H^{2N+1})$ that $C(\mathbb{P}^N(\mathcal{T})) \cong C(S_H^{2N+1})^{U(1)}$.

Universal presentation of $C(S_H^{2N+1})$

Let us define the following elements of $C(S_H^{2N+1})$:

$$a_i := \left(\bigotimes_{l=0}^{i-1} 1 \otimes \left(\left\{ egin{aligned} z & \text{if } i
eq k \\ u & \text{if } i = k \end{aligned}
ight) \otimes \bigotimes_{m=i+1}^N 1
ight)_{k=0}^N.$$

It straightforward to check that $\forall i, j \in \{0, ..., N\}, i \neq j$:

$$a_i a_j = a_j a_i$$
, $a_i a_j^* = a_j^* a_i$, $a_i^* a_i = 1$, $\prod_{i=1}^{N} (1 - a_i a_i^*) = 0$.

Lemma (Key Lemma)

 $C(S_H^{2N+1})$ is isomorphic as a U(1)-C*-algebra with the universal C*-algebra generated by a_i 's satisfying the above relations. The U(1)-action on the latter is given by rephasing the generators.

Corollary

$$C(S_H^{2N+1}) \cong \mathcal{T}^{\otimes N+1}/\mathcal{K}^{\otimes N+1}, K_0(C(S_H^{2N+1})) = \mathbb{Z}[C(S_H^{2N+1})] = \mathbb{Z},$$

 $K_1(C(S_H^{2N+1})) = \mathbb{Z}.$

Strong-connection formula

Let H be a Hopf algebra with bijective antipode and P a right H-comodule algebra. A strong connection is a unital bicolinear map $\ell: H \to P \otimes P$ such that $\textit{multiplication} \circ \ell = \varepsilon$.

The dense subalgebra $\mathcal{P}_{U(1)}(C(S_H^{2N+1})) := \bigoplus_{m \in \mathbb{Z}} L_m^{2N+1}$, where

$$L_m^{2N+1} := \{ p \in C(S_H^{2N+1}) \mid \rho(p) = p \otimes u^m \},\$$

is an $\mathcal{O}(U(1))$ -comodule algebra.

A strong connection on $\mathcal{P}_{U(1)}(C(S_H^{2N+1}))$

$$\ell: \mathcal{O}(U(1)) \to \mathcal{P}_{U(1)}(C(S_H^{2N+1})) \underset{\mathsf{alg}}{\otimes} \mathcal{P}_{U(1)}(C(S_H^{2N+1})),$$

 $\ell(1) := 1 \otimes 1, \quad \ell(u^m) := (a_0^*)^m \otimes a_0^m,$

$$\ell((u^*)^m) := \sum_{0 \le k_1 \le \dots \le k_m \le N} \left(\prod_{i=1}^m a_{k_i} \right) \otimes H_{k_1} \left(\prod_{j=1}^m a_{k_j}^* \right).$$

Here $m \in \mathbb{N} \setminus \{0\}$, $H_N = 1$, $H_i = \prod_{j=i+1}^N (1 - a_j a_j^*)$, $i \in \{0, \dots, N-1\}$.

Main result

$\mathsf{Theorem}$

$$\forall m \in \mathbb{Z} \setminus \{0\}, \ N \in \mathbb{N} \setminus \{0\} : [L_m^{2N+1}] \notin \mathbb{Z}[C(\mathbb{P}^N(\mathcal{T}))] \subseteq K_0(C(\mathbb{P}^N(\mathcal{T}))).$$

Proof outline:

① By the preceding lemma, there exist U(1)-equivariant surjections $C(S_H^{2N+1}) \to C(S_H^{2N-1})$ given by

$$a_k \mapsto b_k$$
 when $k < N$, $a_N \mapsto b_{N-1}$.

Here a_0,\ldots,a_N are isometries generating $C(S_H^{2N+1})$ and b_0,\ldots,b_{N-1} are isometries generating $C(S_H^{2N-1})$.

- ② Combining this fact with the stable triviality criterion [Hajac], we conclude that the stable freeness of L_m^{2N+1} implies the stable freeness of L_m^3 .
- § Finally, as by an index pairing computation [Hajac, Matthes, Szymański] L_m^3 is not stably free, neither is L_m^{2N+1} .

Erdös nr 3

- Cameron, P. J.; Erdös, P.: On the number of sets of integers with various properties. Number theory (Banff, AB, 1988), 61–79, de Gruyter, Berlin, 1990.
- **2** Cameron, P. J.; Majid, S. Braided line and counting fixed points of $GL(d, \mathbb{F}_q)$. Comm. Algebra 31 (2003), no. 4, 2003–2013.
- **3** Hajac, P. M.; Majid, S.: Projective module description of the q-monopole. Comm. Math. Phys. 206 (1999), no. 2, 247–264.

Obama nr 1

Obama nr 2

