# PIECEWISE PRINCIPAL COACTIONS OF CO-COMMUTATIVE HOPF ALGEBRAS

#### Bartosz Zieliński

Department of Computer Science, Faculty of Physics and Applied Informatics, University of Łódź

#### NCG 2014

Principal comodule algebras can be thought of as objects representing principal bundles in non-commutative geometry. A crucial component of a principal comodule algebra is a **strong connection map**.

- Sometimes it suffices to prove that strong connection exists,
- Computing the associated bundle projectors or Chern-Galois characters requires an explicit formula for a strong connection.
- It is known how to construct a strong connection map on a multi-pullback comodule algebra from strong connections on multi-pullback components (in particular we know that it exists):
  - Hajac P.M., Krähmer U., Matthes R., Zieliński B., *Piecewise principal comodule algebras*, J. Noncomm. Geom. **5** (2011), 591–614.
  - Hajac P.M., Wagner E., *The Pullbacks of Principal Coactions* Documenta Math. 19 (2014) 1025–1060.
- Unfortunately, the known explicit general formula is unwieldy.

- Here we derive a much easier to use formula for strong connection on a mulitipullback comodule algebra, but applicable only in the case when a Hopf algebra is co-commutative.
- As certain linear splittings of projections in multi-pullback comodule algebras play a crucial role in the construction, we also present some derivations of the explicit formulas for such a splittings.
- Finally, we utilize our results to derive a strong connection formula for a recently constructed quantum sphere viewed as a quantum Z<sub>2</sub>-principal bundle.

# Principal Comodule Algebras and Strong Connections

Let H be a Hopf algebra with bijective antipode, and let P be a right H-comodule algebra.

#### P is a principal comodule algebra iff

there exists a linear map  $\ell : H \to P \otimes P$ ,  $\ell(h) =: \ell(h)^{\langle 1 \rangle} \otimes \ell(h)^{\langle 2 \rangle}$  satisfying the following conditions:

$$\ell(1_{H}) = 1_{P} \otimes 1_{P}$$

$$\ell(h)^{\langle 1 \rangle} \ell(h)^{\langle 2 \rangle} = \epsilon(h),$$

$$\ell(h_{(1)})^{\langle 1 \rangle} \otimes \ell(h_{(1)})^{\langle 2 \rangle} \otimes h_{(2)} = \ell(h)^{\langle 1 \rangle} \otimes \ell(h)^{\langle 2 \rangle}{}_{(0)} \otimes \ell(h)^{\langle 2 \rangle}{}_{(1)},$$

$$S(h_{(1)}) \otimes \ell(h_{(2)})^{\langle 1 \rangle} \otimes \ell(h_{(2)})^{\langle 2 \rangle} = \ell(h)^{\langle 1 \rangle}{}_{(1)} \otimes \ell(h)^{\langle 1 \rangle}{}_{(0)} \otimes \ell(h)^{\langle 2 \rangle}.$$

Such a map, if it exists, is called a **strong connection** on *P*. Strong connections are usually non-unique.

B. Zieliński (WFIS)

# Piecewise Principal Comodule Algebras

#### Definition

A family of surjective algebra homomorphisms  ${\pi_i : P \to P_i}_{i \in {1,...,N}}$  is called a **covering** iff

- $\ \, \bigcirc_{i\in\{1,\ldots,N\}} \ker \pi_i = \{0\},$
- ② The family of ideals  $(\ker \pi_i)_{i \in \{1,...,N\}}$  generates a distributive lattice with + and ∩ as meet and join respectively.

#### Definition

An *H*-comodule algebra *P* is called **piecewise principal** iff there exists a finite family  $\{\pi_i : P \to P_i\}_{i \in J}$  of surjective *H*-comodule algebra morphisms such that:

- The restrictions  $\pi_i|_{P^{coH}}$ :  $P^{coH} \to P_i^{coH}$  form a covering.
- **2** The  $P_i$ 's are principal *H*-comodule algebras.

#### Theorem

A piecewise principal comodule algebra is principal.

#### Theorem

Let H be a cocomutative Hopf algebra. Let  $\{\pi_i : P \to P_i\}_{i \in \{0,...,n\}}$  be a piecewise principal H-comodule algebra, and let  $\{\ell_i : H \to P_i \otimes P_i\}_{i \in \{0,...,n\}}$  denote a family of strong connections on  $P_i$ 's. Let  $V_i$ ,  $i \in \{0,...,n\}$ , be an H sub-comodule of  $P_i$  such that  $\ell_i(H) \subseteq V_i \otimes V_i$  and let  $\alpha_i : V_i \to P$  be a unital, colinear splitting of  $\pi_i$ , i.e.,  $\pi_i \circ \alpha_i = id_{V_i}$ . For brevity, denote for  $i \in \{0,...,n\}$ ,  $h \in H$ 

$$\begin{aligned} \theta_i(h) &:= \epsilon(h) - \alpha_i(\ell_i(h)^{\langle 1 \rangle}) \alpha_i(\ell_i(h)^{\langle 2 \rangle}), \\ T_i(h) &:= \theta_i(h_{(1)}) \theta_{i+1}(h_{(2)}) \cdots \theta_n(h_{(n-i+1)}), \quad T_{n+1}(h) := \epsilon(h). \end{aligned}$$

Then the linear map  $\ell: H \to P \otimes P$  defined for all  $h \in H$  by the formula

$$\ell(h) = \sum_{i=0}^{n} \alpha_i (\ell_i(h_{(1)})^{\langle 1 \rangle}) \otimes \alpha_i (\ell_i(h_{(1)})^{\langle 2 \rangle}) T_{i+1}(h_{(2)})$$

is a strong connection on P.

$$\begin{split} \theta_{i}(h) &:= \epsilon(h) - \alpha_{i}(\ell_{i}(h)^{\langle 1 \rangle}) \alpha_{i}(\ell_{i}(h)^{\langle 2 \rangle}), \quad T_{i}(h) &:= \theta_{i}(h_{(1)}) \theta_{i+1}(h_{(2)}) \cdots \theta_{n}(h_{(n-i+1)}), \quad T_{n+1}(h) &:= \epsilon(h), \\ \ell(h) &= \sum_{i=0}^{n} \alpha_{i}(\ell_{i}(h_{(1)})^{\langle 1 \rangle}) \otimes \alpha_{i}(\ell_{i}(h_{(1)})^{\langle 2 \rangle}) T_{i+1}(h_{(2)}) \end{split}$$

- First we prove that  $\alpha_i(\ell_i(h)^{\langle 1 \rangle})\alpha_i(\ell_i(h)^{\langle 2 \rangle})$ 's are coaction invariant, using the bi-colinearity of  $\ell_i$ 's, colinearity of  $\alpha_i$ 's and the co-commutativity of *H*.
- Hence  $T_i(h)$ 's are coaction invariant as well.
- The bi-colinearity of  $\ell$  easily follows. In case of right *H*-colinearity it is necessary to use co-commutativity of *H* again.
- The unitality of  $\ell$  follows from the unitality of  $\ell_i$ 's and  $\alpha_i$ 's.

### OUTLINE OF THE PROOF. PART II Prove that $\ell(h)^{(1)}\ell(h)^{(2)} = \epsilon(h)$

$$\begin{aligned} \theta_{i}(h) &:= \epsilon(h) - \alpha_{i}(\ell_{i}(h)^{\langle 1 \rangle}) \alpha_{i}(\ell_{i}(h)^{\langle 2 \rangle}), \quad T_{i}(h) &:= \theta_{i}(h_{(1)}) \theta_{i+1}(h_{(2)}) \cdots \theta_{n}(h_{(n-i+1)}), \quad T_{n+1}(h) &:= \epsilon(h), \\ \ell(h) &= \sum_{i=0}^{n} \alpha_{i}(\ell_{i}(h_{(1)})^{\langle 1 \rangle}) \otimes \alpha_{i}(\ell_{i}(h_{(1)})^{\langle 2 \rangle}) T_{i+1}(h_{(2)}) \end{aligned}$$

Note now that for all  $i \in \{0, ..., n\}$ , and  $h \in H$ 

$$\begin{split} T_{i}(h) &= \theta_{i}(h_{(1)})T_{i+1}(h_{(2)}) \\ &= \epsilon(h_{(1)})T_{i+1}(h_{(2)}) - \alpha_{i}(\ell_{i}(h_{(1)})^{\langle 1 \rangle})\alpha_{i}(\ell_{i}(h_{(1)})^{\langle 2 \rangle})T_{i+1}(h_{(2)}) \\ &= T_{i+1}(h) - \alpha_{i}(\ell_{i}(h_{(1)})^{\langle 1 \rangle})\alpha_{i}(\ell_{i}(h_{(1)})^{\langle 2 \rangle})T_{i+1}(h_{(2)}). \end{split}$$

By applying this formula to  $T_0(h)$  and keeping to expand with it the leftmost summand of the resulting expansion we obtain easily:

$$T_0(h) = \epsilon(h) - \sum_{i=0}^n \alpha_i(\ell_i(h_{(1)})^{(1)}) \alpha_i(\ell_i(h_{(1)})^{(2)}) T_{i+1}(h_{(2)}).$$

### OUTLINE OF THE PROOF. PART III Prove that $\ell(h)^{\langle 1 \rangle} \ell(h)^{\langle 2 \rangle} = \epsilon(h)$ cd.

$$\begin{split} \theta_{i}(h) &:= \epsilon(h) - \alpha_{i}(\ell_{i}(h)^{\langle 1 \rangle}) \alpha_{i}(\ell_{i}(h)^{\langle 2 \rangle}), \quad T_{i}(h) := \theta_{i}(h_{(1)}) \theta_{i+1}(h_{(2)}) \cdots \theta_{n}(h_{(n-i+1)}), \quad T_{n+1}(h) := \epsilon(h), \\ \ell(h) &= \sum_{i=0}^{n} \alpha_{i}(\ell_{i}(h_{(1)})^{\langle 1 \rangle}) \otimes \alpha_{i}(\ell_{i}(h_{(1)})^{\langle 2 \rangle}) T_{i+1}(h_{(2)}), \\ T_{0}(h) &= \epsilon(h) - \sum_{i=0}^{n} \alpha_{i}(\ell_{i}(h_{(1)})^{\langle 1 \rangle}) \alpha_{i}(\ell_{i}(h_{(1)})^{\langle 2 \rangle}) T_{i+1}(h_{(2)}). \end{split}$$

On the other hand, as  $\alpha_i$  is the splitting of  $\pi_i$  it follows that:

$$\begin{aligned} \pi_i(\theta_i(h)) &= \epsilon(h) - \pi_i \Big( \alpha_i(\ell_i(h)^{\langle 1 \rangle}) \Big) \pi_i \Big( \alpha_i(\ell_i(h)^{\langle 2 \rangle}) \Big) \\ &= \epsilon(h) - \ell_i(h)^{\langle 1 \rangle} \ell_i(h)^{\langle 2 \rangle} = 0. \end{aligned}$$

Hence

$$\pi_i(T_j(h)) = 0, \quad \text{for all } i \ge j, \ i \in \{0, \dots, n\}, \ h \in H.$$

In particular,  $\pi_i(T_0(h)) = 0$  for all  $i \in \{0, ..., n\}$  and  $h \in H$ . It follows that  $T_0(h) = 0$  for all  $h \in H$  because  $\bigcap_{i=0}^n \ker \pi_i = \{0\}$ , as  $\{\pi_i : P \to P_i\}_{i \in \{0,...,n\}}$  is a covering by the results of [HKMZ11].

B. Zieliński (WFIS)

### OUTLINE OF THE PROOF. PART IV Prove that $\ell(h)^{\langle 1 \rangle} \ell(h)^{\langle 2 \rangle} = \epsilon(h)$ cd.

$$\begin{split} \theta_{i}(h) &:= \epsilon(h) - \alpha_{i}(\ell_{i}(h)^{\langle 1 \rangle}) \alpha_{i}(\ell_{i}(h)^{\langle 2 \rangle}), \quad T_{i}(h) := \theta_{i}(h_{(1)}) \theta_{i+1}(h_{(2)}) \cdots \theta_{n}(h_{(n-i+1)}), \quad T_{n+1}(h) := \epsilon(h), \\ \ell(h) &= \sum_{i=0}^{n} \alpha_{i}(\ell_{i}(h_{(1)})^{\langle 1 \rangle}) \otimes \alpha_{i}(\ell_{i}(h_{(1)})^{\langle 2 \rangle}) T_{i+1}(h_{(2)}), \\ T_{0}(h) &= \epsilon(h) - \sum_{i=0}^{n} \alpha_{i}(\ell_{i}(h_{(1)})^{\langle 1 \rangle}) \alpha_{i}(\ell_{i}(h_{(1)})^{\langle 2 \rangle}) T_{i+1}(h_{(2)}) = 0. \end{split}$$

Combining  $T_0(h) = 0$  with the formula for  $\ell(h)$  we obtain that for all  $h \in H$ 

$$\ell(h)^{\langle 1 \rangle} \ell(h)^{\langle 2 \rangle} = \sum_{i=0}^{n} \alpha_{i} (\ell_{i}(h_{(1)})^{\langle 1 \rangle}) \alpha_{i} (\ell_{i}(h_{(1)})^{\langle 2 \rangle}) T_{i+1}(h_{(2)}) = \epsilon(h).$$

### FURTHER DEVELOPMENT

- Our expression for a strong connection requires the unital and colinear splittings of projections π<sub>i</sub> to be given.
- The lemma below guarantees the existence of such a splitting, but the construction assumes  $\ell$  is already known.
- In many cases, the appropriate splittings will be easily guessable.
- However we will examine methods of constructing the splittings in cases when the piecewise principal extension is given as a multimullback comodule algebra, without using  $\ell$ .

#### Lemma [HKMZ11]

Let  $\pi: P \to Q$  be a surjection of right *H*-comodule algebras. If *P* is principal, then:

- The induced map  $\pi^{coH} : P^{coH} \to Q^{coH}$  is surjective.
- **2** There exists a unital *H*-colinear splitting of  $\pi$ .

The splitting is given by  $\alpha(q) := \alpha^{\operatorname{co}H}(q_{(0)}\pi(\ell(q_{(1)})^{\langle 1 \rangle}))\ell(q_{(1)})^{\langle 2 \rangle})$ , where  $\alpha^{\operatorname{co}H}$  is any unital splitting of  $\pi^{\operatorname{co}H}$ .

#### Multi-pullbacks of Algebras

Let *J* be a finite set. and let the following be the family of algebra homomorphisms referred to as as "gluing maps":

$$\{\pi_j^i: A_i \longrightarrow A_{ij} = A_{ji}\}_{i,j \in J, i \neq j} \tag{(*)}$$

#### DEFINITION

A family (\*) of surjective algebra homomorphisms is called **distributive** iff their kernels generate distributive lattices of ideals.

#### Definition

The **multi-pullback algebra**  $A^{\pi}$  of a family (\*) of algebra homomorphisms is defined as

$$A^{\pi} := \left\{ (a_i)_{i \in J} \in \prod_{i \in J} A_i \mid \pi_j^i(a_i) = \pi_i^j(a_j), \forall i, j \in J, i \neq j \right\}.$$

B. Zieliński (WFIS)

# **COCYCLE CONDITION**

Let  $(\pi_j^i : A_i \to A_{ij})_{i,j \in J, i \neq j}$  be a family of surjective algebra homomorphisms. For any distinct *i*, *j*, *k* we put  $A_{jk}^i := A_i / (\ker \pi_j^i + \ker \pi_k^i)$  and take  $[\cdot]_{jk}^i : A_i \to A_{jk}^i$  to be the canonical surjections. Next, we introduce the family of maps

 $\pi_k^{ij}: A_{jk}^i \longrightarrow A_{ij}/\pi_j^i(\ker \pi_k^i), \qquad [a_i]_{jk}^i \longmapsto \pi_j^i(a_i) + \pi_j^i(\ker \pi_k^i).$ 

They are isomorphisms when  $\pi_i^i$ 's are surjective homomorphisms.

#### DEFINITION

We say that a family  $(\pi_j^i : A_i \to A_{ij})_{i,j \in J, i \neq j}$  of surjective algebra homomorphisms satisfies the **cocycle condition** if and only if, for all distinct  $i, j, k \in J$ ,

• 
$$\pi_j^i(\ker \pi_k^i) = \pi_i^j(\ker \pi_k^j),$$

 $@ isomorphisms \phi_k^{ij} := (\pi_k^{ij})^{-1} \circ \pi_k^{ji} : A_{ik}^j \to A_{jk}^i \text{ satisfy } \phi_j^{ik} = \phi_k^{ij} \circ \phi_i^{jk}.$ 

#### One can prove

that the cocycle condition together with distributivity guarantees that all projections on components of a multipullback are surjective (in fact all projections on submultipullbacks are surjective, but we will not make use of that fact).

#### AN OBSERVATION

Observe that, for all distinct  $i, j, k \in J$  and any  $a_i \in A_i, a_j \in A_j$ ,

$$\begin{split} [a_i]^i_{jk} &= \phi^{ij}_k([a_j]^j_{ik}) \iff \pi^{ji}_k([a_j]^j_{ik}) = \pi^{ij}_k([a_i]^i_{jk}) \\ \Leftrightarrow \pi^i_j(a_i) - \pi^j_i(a_j) \in \pi^i_j(\ker \pi^i_k). \end{split}$$

#### Assumptions

Suppose that a distributive family  $(\pi_j^i : A_i \to A_{ij})_{i,j \in J, i \neq j}$  satisfies the cocycle condition and that there exists two families  $\alpha_j^i, \beta_j^i : A_{ij} \to A_i$ ,  $i, j \in J, j \neq i$  of linear (colinear) splittings of  $\pi_j^i$ 's such that all  $\beta_j^i$ 's are unital and for all distinct  $i, j, k \in J$  we have

$$\alpha_j^i(\pi_j^i(\ker \pi_k^i)) \subseteq \ker \pi_k^i. \tag{**}$$

### CONSTRUCTION OF COLINEAR SPLITTINGS CONT.

#### Theorem

Let  $i \in J$ , |J| = n + 1 and let  $\kappa : \{0, ..., n\} \rightarrow J$  be a bijection s.t.  $\kappa_0 = i$ , where  $\kappa_j := \kappa(j)$ . Then

$$\alpha_i: A_i \to A^{\pi}, \quad a \mapsto (a_j)_{j \in J},$$

where  $a_i := a$  and  $a_{\kappa_{m+1}} := a_{\kappa_{m+1}}^m$  for any  $0 \le m < n$ , is a unital and linear (colinear) splitting of  $\pi_i : A^{\pi} \to A_i$ . The collections  $\{a_{\kappa_{m+1}}^k\}_{0 \le k \le m} \subseteq A_{\kappa_{m+1}}$ , for  $0 \le m < n$  are defined by:

$$a_{\kappa_{m+1}}^{0} := \beta_{\kappa_{0}}^{\kappa_{m+1}} (\pi_{\kappa_{m+1}}^{\kappa_{0}}(a_{\kappa_{0}})),$$
$$a_{\kappa_{m+1}}^{k+1} := a_{\kappa_{m+1}}^{k} - \alpha_{\kappa_{k+1}}^{\kappa_{m+1}} (\pi_{\kappa_{k+1}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^{k}) - \pi_{\kappa_{m+1}}^{\kappa_{k+1}}(a_{\kappa_{k+1}}))$$

for  $0 \le k < m$ .

### OUTLINE OF THE PROOF. PART I

$$\begin{aligned} \alpha_{j}^{i}, \beta_{j}^{i} &: A_{ij} \to A_{i}, \quad \pi_{j}^{i} \circ \alpha_{j}^{i} = \pi_{j}^{i} \circ \beta_{j}^{i} = \mathrm{id}_{A_{ij}}, \quad \alpha_{j}^{i}(\pi_{j}^{i}(\ker \pi_{k}^{i})) \subseteq \ker \pi_{k}^{i} \\ \alpha_{i} &: A_{i} \to A^{\pi}, \quad a \mapsto (a_{j})_{j \in J}, \quad \text{where} \quad a_{\kappa_{0}} &:= a, \quad a_{\kappa_{m+1}} &:= a_{\kappa_{m+1}}^{m}, \quad \text{for all } 0 \leq m < n, \\ a_{\kappa_{m+1}}^{0} &:= \beta_{\kappa_{0}}^{\kappa_{m+1}}(\pi_{\kappa_{m+1}}^{\kappa_{0}}(a_{\kappa_{0}})), \quad 0 \leq m < n, \\ a_{\kappa_{m+1}}^{k+1} &:= a_{\kappa_{m+1}}^{k} - \alpha_{\kappa_{k+1}}^{\kappa_{m+1}}(\pi_{\kappa_{m+1}}^{k}(a_{\kappa_{m+1}}^{k}) - \pi_{\kappa_{m+1}}^{\kappa_{k+1}}(a_{\kappa_{k+1}})), \quad 0 \leq k < m < n. \end{aligned}$$

- Because all the maps involved in the definition of *α<sub>i</sub>* are unital and linear (colinear if need be) it follows that also *α<sub>i</sub>* is (co)-linear.
- Unitality of  $\alpha_i$  follows easily from the unitality of  $\beta_k^{j'}$ s.
- Now it remains to show that  $\alpha_i(a) \in A^{\pi}$  for all  $a \in A_i$ . The inductive proof is a constructive version of the proof of Proposition 9 in
  - Calow, D., Matthes, R. (2000). *"Covering and gluing of algebras and differential algebras"*. Journal of Geometry and Physics, **32**(4), 364-396.
  - We will show that for any  $0 \le m \le n$  we have

$$\pi_{\kappa_l}^{\kappa_j}(a_{\kappa_j}) = \pi_{\kappa_j}^{\kappa_l}(a_{\kappa_l}), \quad \text{for all } j, l \in \{0, \dots, m\}, \ j \neq l.$$

For m = 0 this condition is emptily satisfied.

### OUTLINE OF THE PROOF. PART II

$$\begin{split} \beta_j^i &: A_{ij} \to A_i, \quad \pi_j^i \circ \beta_j^i = \mathrm{id}_{A_{ij}}, \\ \alpha_i &: A_i \to A^{\pi}, \quad a \mapsto (a_j)_{j \in J}, \quad \text{where} \quad a_{\kappa_0} := a, \quad a_{\kappa_{m+1}} := a_{\kappa_{m+1}}^m, \quad \text{for all } 0 \le m < n, \\ a_{\kappa_{m+1}}^0 &:= \beta_{\kappa_0}^{\kappa_{m+1}}(\pi_{\kappa_{m+1}}^{\kappa_0}(a_{\kappa_0})), \quad 0 \le m < n. \end{split}$$

$$\pi_{\kappa_l}^{\kappa_j}(a_{\kappa_j}) = \pi_{\kappa_j}^{\kappa_l}(a_{\kappa_l}), \quad \text{for all } j, l \in \{0, \dots, m\}, \ j \neq l.$$
(\*\*\*)

• Suppose we have proven (\*\*\*) for some *m*. In order to demonstrate it for *m* + 1, we prove by induction that for any 0 ≤ *k* ≤ *m* < *n*,

$$\pi_{\kappa_{m+1}}^{\kappa_j}(a_{\kappa_j}) = \pi_{\kappa_j}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^k), \quad \text{for all } 0 \le j \le k.$$
 (\*\*\*\*)

If k = 0 then substituting the definition of  $a_{\kappa_{m+1}}^0$  yields

$$\pi_{\kappa_0}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^0) = \pi_{\kappa_0}^{\kappa_{m+1}} \left( \beta_{\kappa_0}^{\kappa_{m+1}}(\pi_{\kappa_{m+1}}^{\kappa_0}(a_{\kappa_0})) \right) = \pi_{\kappa_{m+1}}^{\kappa_0}(a_{\kappa_0}).$$

### OUTLINE OF THE PROOF. PART III

For any distinct 
$$i, j, k$$
:  $A_{jk}^i := A_i / (\ker \pi_j^i + \ker \pi_k^i), \quad [\cdot]_{jk}^i : A_i \to A_{jk}^i - \text{canonical surjections}$   
 $\phi_k^{ij} : A_{ik}^j \to A_{jk}^i, \quad \phi_j^{ik} = \phi_k^{ij} \circ \phi_i^{jk}$   
For distinct  $i, j, k \in J$  and all  $a_i \in A_i, a_j \in A_j, \quad [a_i]_{jk}^i = \phi_k^{ij} ([a_j]_{ik}^j) \Leftrightarrow \pi_j^i(a_i) - \pi_i^j(a_j) \in \pi_j^i(\ker \pi_k^i).$ 

$$\pi_{\kappa_{l}}^{\kappa_{j}}(a_{\kappa_{j}}) = \pi_{\kappa_{j}}^{\kappa_{l}}(a_{\kappa_{l}}), \quad \text{for all } j, l \in \{0, \dots, m\}, \ j \neq l,$$

$$\pi_{\kappa_{m+1}}^{\kappa_{j}}(a_{\kappa_{j}}) = \pi_{\kappa_{j}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^{k}), \quad \text{for all } 0 \le j \le k.$$

$$(****)$$

Suppose now that we have proven Condition (\*\*\*\*) for some  $0 \le k < m$ . Pick any  $0 \le j \le k$ . Then by (inductively assumed) Condition (\*\*\*)  $[a_{\kappa_j}]_{\kappa_{k+1}\kappa_{m+1}}^{\kappa_j} = \phi_{\kappa_{m+1}}^{\kappa_j\kappa_{k+1}} ([a_{\kappa_{k+1}}]_{\kappa_j\kappa_{m+1}}^{\kappa_{k+1}})$ . Then it follows that

$$\begin{split} [a_{\kappa_{m+1}}^{k}]_{\kappa_{j}\kappa_{k+1}}^{\kappa_{m+1}} &= \phi_{\kappa_{k+1}}^{\kappa_{m+1}\kappa_{j}} \left( [a_{\kappa_{j}}]_{\kappa_{m+1}\kappa_{k+1}}^{\kappa_{j}} \right) \\ &= \phi_{\kappa_{k+1}}^{\kappa_{m+1}\kappa_{j}} \left( \phi_{\kappa_{m+1}}^{\kappa_{j}\kappa_{k+1}} \left( [a_{\kappa_{k+1}}]_{\kappa_{j}\kappa_{m+1}}^{\kappa_{k+1}} \right) \right) \\ &= \phi_{\kappa_{j}}^{\kappa_{m+1}\kappa_{k+1}} \left( [a_{\kappa_{k+1}}]_{\kappa_{j}\kappa_{m+1}}^{\kappa_{k+1}} \right). \end{split}$$

### Outline of the Proof. Part IV

For any distinct 
$$i, j, k$$
:  $A_{jk}^{i} := A_{i}/(\ker \pi_{j}^{i} + \ker \pi_{k}^{i}), \quad [\cdot]_{jk}^{i} : A_{i} \to A_{jk}^{i} - \text{canonical surjections}$   
 $\phi_{k}^{ij} : A_{ik}^{j} \to A_{jk}^{i}, \quad \phi_{jk}^{ik} = \phi_{k}^{ij} \circ \phi_{jk}^{jk}$   
For distinct  $i, j, k \in J$  and all  $a_{i} \in A_{i}, a_{j} \in A_{j}, \quad [a_{i}]_{jk}^{i} = \phi_{k}^{ij}([a_{j}]_{ik}^{j}) \Leftrightarrow \pi_{j}^{i}(a_{i}) - \pi_{i}^{j}(a_{j}) \in \pi_{j}^{i}(\ker \pi_{k}^{i}).$ 

The equality 
$$[a_{\kappa_{m+1}}^k]_{\kappa_j\kappa_{k+1}}^{\kappa_{m+1}} = \phi_{\kappa_j}^{\kappa_{m+1}\kappa_{k+1}} \left( [a_{\kappa_{k+1}}]_{\kappa_j\kappa_{m+1}}^{\kappa_{k+1}} \right)$$
 is equivalent to

$$\pi_{\kappa_{k+1}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^k) - \pi_{\kappa_{m+1}}^{\kappa_{k+1}}(a_{\kappa_{k+1}}) \in \pi_{\kappa_{k+1}}^{\kappa_{m+1}}(\ker \pi_{\kappa_j}^{\kappa_{m+1}}).$$

Because the above relation "is an element of" holds for an arbitrary  $0 \le j \le k$  it implies immediately that

$$\pi_{\kappa_{k+1}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^k) - \pi_{\kappa_{m+1}}^{\kappa_{k+1}}(a_{\kappa_{k+1}}) \in \bigcap_{0 \le j \le k} \pi_{\kappa_{k+1}}^{\kappa_{m+1}}(\ker \pi_{\kappa_j}^{\kappa_{m+1}}).$$

### Outline of the Proof. Part V

$$\begin{aligned} \alpha_{j}^{i}:A_{ij} \to A_{i}, \quad \alpha_{j}^{i}(\pi_{j}^{i}(\ker \pi_{k}^{i})) \subseteq \ker \pi_{k}^{i}, \\ \pi_{\kappa_{k+1}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^{k}) - \pi_{\kappa_{m+1}}^{\kappa_{k+1}}(a_{\kappa_{k+1}}) \in \bigcap_{0 \le j \le k} \pi_{\kappa_{k+1}}^{\kappa_{m+1}}(\ker \pi_{\kappa_{j}}^{\kappa_{m+1}}). \end{aligned}$$

#### Then

$$\alpha_{\kappa_{k+1}}^{\kappa_{m+1}} \left( \pi_{\kappa_{k+1}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^{k}) - \pi_{\kappa_{m+1}}^{\kappa_{k+1}}(a_{\kappa_{k+1}}) \right) \in \alpha_{\kappa_{k+1}}^{\kappa_{m+1}} \left( \bigcap_{0 \le j \le k} \pi_{\kappa_{k+1}}^{\kappa_{m+1}}(\ker \pi_{\kappa_{j}}^{\kappa_{m+1}}) \right)$$
$$\in \bigcap_{0 \le j \le k} \alpha_{\kappa_{k+1}}^{\kappa_{m+1}} \left( \pi_{\kappa_{k+1}}^{\kappa_{m+1}}(\ker \pi_{\kappa_{j}}^{\kappa_{m+1}}) \right)$$
$$\subseteq \bigcap_{0 \le j \le k} \ker \pi_{\kappa_{j}}^{\kappa_{m+1}}$$

that is

$$\alpha_{\kappa_{k+1}}^{\kappa_{m+1}} \Big( \pi_{\kappa_{k+1}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^k) - \pi_{\kappa_{m+1}}^{\kappa_{k+1}}(a_{\kappa_{k+1}}) \Big) \in \bigcap_{0 \le j \le k} \ker \pi_{\kappa_j}^{\kappa_{m+1}}.$$

### OUTLINE OF THE PROOF. PART VI

10.

$$\pi_{\kappa_l}^{\kappa_j}(a_{\kappa_j}) = \pi_{\kappa_j}^{\kappa_l}(a_{\kappa_l}), \quad \text{for all } j, l \in \{0, \dots, m\}, \ j \neq l,$$

$$\pi_{\kappa_{m+1}}^{\kappa_j}(a_{\kappa_j}) = \pi_{\kappa_j}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^k), \quad \text{for all } 0 \le j \le k.$$
(\*\*\*\*)

$$\begin{aligned} \alpha_{j}^{i} &: A_{ij} \to A_{i}, \quad \pi_{j}^{i} \circ \alpha_{j}^{i} = \mathrm{id}_{A_{ij}}, \quad \alpha_{j}^{i}(\pi_{j}^{i}(\ker \pi_{k}^{i})) \subseteq \ker \pi_{k}^{i} \\ \alpha_{i} &: A_{i} \to A^{\pi}, \quad a \mapsto (a_{j})_{j \in J}, \quad \text{where} \quad a_{\kappa_{0}} &:= a, \quad a_{\kappa_{m+1}} := a_{\kappa_{m+1}}^{m}, \quad \text{for all } 0 \le m < n, \\ a_{\kappa_{m+1}}^{k+1} &:= a_{\kappa_{m+1}}^{k} - \alpha_{\kappa_{k+1}}^{\kappa_{m+1}} \left( \pi_{\kappa_{k+1}}^{\kappa_{m+1}} (a_{\kappa_{m+1}}^{k}) - \pi_{\kappa_{m+1}}^{\kappa_{k+1}} (a_{\kappa_{k+1}}) \right), \quad 0 \le k < m < n, \\ \alpha_{\kappa_{k+1}}^{\kappa_{m+1}} \left( \pi_{\kappa_{k+1}}^{\kappa_{m+1}} (a_{\kappa_{m+1}}^{k}) - \pi_{\kappa_{m+1}}^{\kappa_{k+1}} (a_{\kappa_{k+1}}) \right) \in \bigcap_{0 \le j \le k} \ker \pi_{\kappa_{j}}^{\kappa_{m+1}}. \end{aligned}$$

Then for all  $0 \le l \le k$ 

$$\begin{aligned} \pi_{\kappa_{l}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^{k+1}) &= \pi_{\kappa_{l}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^{k}) - \pi_{\kappa_{l}}^{\kappa_{m+1}}\left(\alpha_{\kappa_{k+1}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^{k}) - \pi_{\kappa_{m+1}}^{\kappa_{k+1}}(a_{\kappa_{k+1}})\right) \\ &= \pi_{\kappa_{l}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^{k}) \\ &= \pi_{\kappa_{m+1}}^{\kappa_{l}}(a_{\kappa_{l}}). \end{aligned}$$

#### OUTLINE OF THE PROOF. PART VII

10.

$$\begin{aligned} \pi_{\kappa_{l}}^{\kappa_{j}}(a_{\kappa_{j}}) &= \pi_{\kappa_{j}}^{\kappa_{l}}(a_{\kappa_{l}}), \quad \text{for all } j, l \in \{0, \dots, m\}, \ j \neq l, \end{aligned}$$

$$\pi_{\kappa_{m+1}}^{\kappa_{j}}(a_{\kappa_{j}}) &= \pi_{\kappa_{j}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^{k}), \quad \text{for all } 0 \leq j \leq k. \end{aligned}$$

$$(***)$$

$$\begin{aligned} \alpha_j^i : A_{ij} \to A_i, \quad \pi_j^i \circ \alpha_j^i = \mathrm{id}_{A_{ij}}, \quad \alpha_j^i (\pi_j^i (\ker \pi_k^i)) \subseteq \ker \pi_k^i \\ \alpha_i : A_i \to A^{\pi}, \quad a \mapsto (a_j)_{j \in J}, \quad \text{where} \quad a_{\kappa_0} := a, \quad a_{\kappa_{m+1}} := a_{\kappa_{m+1}}^m, \quad \text{for all } 0 \le m < n, \\ a_{\kappa_{m+1}}^{k+1} := a_{\kappa_{m+1}}^k - \alpha_{\kappa_{k+1}}^{\kappa_{m+1}} (\pi_{\kappa_{k+1}}^{\kappa_{m+1}} (a_{\kappa_{m+1}}^k) - \pi_{\kappa_{m+1}}^{\kappa_{k+1}} (a_{\kappa_{k+1}})), \quad 0 \le k < m < n. \end{aligned}$$

Moreover, using the fact that  $\alpha_{\kappa_{k+1}}^{\kappa_{m+1}}$  is a splitting of  $\pi_{\kappa_{k+1}}^{\kappa_{m+1}}$  we obtain

$$\begin{aligned} \pi_{\kappa_{k+1}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^{k+1}) &= \pi_{\kappa_{k+1}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^{k}) - \pi_{\kappa_{k+1}}^{\kappa_{m+1}}\left(\alpha_{\kappa_{k+1}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^{k}) - \pi_{\kappa_{m+1}}^{\kappa_{k+1}}(a_{\kappa_{k+1}})\right) \\ &= \pi_{\kappa_{k+1}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^{k}) - \left(\pi_{\kappa_{k+1}}^{\kappa_{m+1}}(a_{\kappa_{m+1}}^{k}) - \pi_{\kappa_{m+1}}^{\kappa_{k+1}}(a_{\kappa_{k+1}})\right) \\ &= \pi_{\kappa_{m+1}}^{\kappa_{k+1}}(a_{\kappa_{k+1}}), \end{aligned}$$

which ends the proof.

B. Zieliński (WFIS)

- At this point, the skeptical reader might be excused for doubting the applicability of the above theorem.
- Unital and linear splittings  $\beta_j^{i'}$ s of  $\pi_j^{i'}$ s exist because of the surjectivity of  $\pi_j^{i'}$ s, and the colinear ones can be constructed using strong connections on  $A_i$ 's.
- But it is not clear how to find the linear splittings  $\alpha_j^i$  satisfying  $\alpha_j^i(\pi_j^i(\ker \pi_k^i)) \subseteq \ker \pi_k^i$ , nor that they exist at all.
- Fortunately, the results from the subsequent slides assure the existence of splittings α<sup>i</sup><sub>j</sub> and provide the method of their (semi)-explicit construction.

### PARTITIONS OF SETS

Let *A* be a set and let  $A_i$ ,  $i \in J$  be a fixed finite family of subsets of *A*. For any  $\Gamma \in 2^J$  we denote for brevity:

$$A_{\Gamma} := \bigcap_{i \in \Gamma} A_i.$$

Obviously  $A_{\Gamma_1} \cap A_{\Gamma_2} = A_{\Gamma_1 \cup \Gamma_2}$ . Also  $A_{\emptyset} = A$  by convention.

It is easy to see that  $A_i$ 's generate a partition  $\{B_{\Gamma}\}_{\Gamma \in 2^J}$  of A (i.e., all  $B_{\Gamma}$ 's are disjoint and  $A = \bigcup_{\Gamma \in 2^J} B_{\Gamma}$ ) such that

$$A_{\Gamma} = \bigcup_{\Gamma' \in 2^J \mid \Gamma \subseteq \Gamma'} B_{\Gamma'}, \quad \text{for all } \Gamma \in 2^J.$$

The partition can be described explicitly, for all  $\Gamma \in 2^J$  by

$$B_{\Gamma} \quad := \quad \{x \in A \mid \forall i \in J : x \in A_i \Leftrightarrow i \in \Gamma\}.$$

Let *A* be a vector space and let  $A_i$ ,  $i \in J$  be a fixed finite family of vector subspaces of *A*. We define

$$A_{\Gamma} := \bigcap_{i \in \Gamma} A_i.$$

- We want to define a linear counterpart of the associated partition.
- Similarly to plain sets, vector sub-spaces can be ordered by the set inclusion, and the resulting ordered set is a lattice with
  - $V_1 \cap V_2$  serving as infimum
  - and subspace sum  $(V_1 + V_2)$  playing the role of supremum.
- The problem is that this lattice is not, in general, distributive.
- It turns out that the assumption that the subspaces  $A_i$ ,  $i \in J$  generate a distributive lattice is pivotal for proving the desired result.

#### Lemma

Let A be a vector space and let  $A_i$ ,  $i \in I$  be a finite family of vector subspaces of A generating a distributive lattice. A has a linear basis  $\mathcal{B} = \bigcup_{\Gamma \in 2^I} \mathcal{B}_{\Gamma}$ , where  $\mathcal{B}_{\Gamma} \subseteq A_{\Gamma}$ ,  $\Gamma \in 2^I$ , such that subsets  $\mathcal{B}_{\Gamma}$  are all disjoint and satisfy the following property:

$$A_{\Gamma} = Span\left(\bigcup_{\Gamma' \in 2^{I}, \ \Gamma' \supseteq \Gamma} \mathcal{B}_{\Gamma'}\right)$$

for all  $\Gamma \in 2^I$ .

### OUTLINE OF THE PROOF. PART I

Fix a linear order  $\leq$  on  $2^I$  subject to the condition

 $\Gamma_1 \supseteq \Gamma_2 \quad \Rightarrow \quad \Gamma_1 \leq \Gamma_2, \qquad \text{for all } \Gamma_1, \Gamma_2 \in 2^I.$ 

It is immediate that the minimal element in this order is *I* and maximal is  $\emptyset$ . Note the following property of  $\leq$ :

$$\Gamma > \Gamma' \implies \Gamma \cup \Gamma' \supset \Gamma$$
, for all  $\Gamma, \Gamma' \in 2^{I}$ .

The sets  $\mathcal{B}_{\Gamma}$ ,  $\Gamma \in 2^{I}$  can be generated inductively (with respect to  $\leq$ ):

- $\mathcal{B}_I$  is some linear basis of  $A_I$ .
- **2**  $\mathcal{B}_{\Gamma}$ , for  $\Gamma > I$ , is chosen as a maximal subset of  $A_{\Gamma}$  such that  $\bigcup_{\Gamma' \leq \Gamma} \mathcal{B}_{\Gamma'}$  is linearly independent.

It is immediate by construction of  $\mathcal{B}_{\Gamma}$ 's that  $\mathcal{B} := \bigcup_{\Gamma \in 2^{I}} \mathcal{B}_{\Gamma}$  is a linear basis of *A* and that all  $\mathcal{B}_{\Gamma}$ 's are disjoint.

### Outline of the Proof. Part II

 $\mathcal{B}_{I} \text{ is some linear basis of } A_{I}.$  $\mathcal{B}_{\Gamma}, \text{ for } \Gamma > I, \text{ is chosen as a maximal subset of } A_{\Gamma} \text{ such that } \bigcup_{\Gamma' \leq \Gamma} \mathcal{B}_{\Gamma'} \text{ is linearly independent}$ We want to prove  $A_{\Gamma} = \text{Span} \left( \bigcup_{\Gamma' \in 2^{I}, \Gamma' \supset \Gamma} \mathcal{B}_{\Gamma'} \right)$  (\*)

Also by construction,  $\mathcal{B}_{\Gamma'} \subseteq A_{\Gamma}$ ,  $\Gamma \in 2^{I}$  whenever  $\Gamma \subseteq \Gamma'$ , which implies that half of Property (\*) is trivially satisfied:

$$\operatorname{Span}\left(\bigcup_{\Gamma'\in 2^{I}, \ \Gamma'\supseteq \Gamma} \mathcal{B}_{\Gamma'}\right)\subseteq A_{\Gamma}, \quad \text{for all } \Gamma\in 2^{I}.$$

It also is immediate that

$$A_{\Gamma} \subseteq \operatorname{Span}\left(\bigcup_{\Gamma' \in 2^{I}, \ \Gamma' \leq \Gamma} \mathcal{B}_{\Gamma'}\right).$$
(\*\*)

We will prove the second half of Property (\*) by induction on  $\leq$ .

B. ZIELIŃSKI (WFIS)

 $\mathcal{B}_I$  is some linear basis of  $A_I$ .  $\mathcal{B}_{\Gamma}$ , for  $\Gamma > I$ , is chosen as a maximal subset of  $A_{\Gamma}$  such that  $\bigcup_{\Gamma' \leq \Gamma} \mathcal{B}_{\Gamma'}$  is linearly independent We want to prove  $A_{\Gamma} = \operatorname{Span}(\bigcup_{\Gamma' \in I} \mathcal{B}_{\Gamma'})$  (\*)

**Induction base**: *I* is minimal in  $2^I$  with respect to  $\leq$ . Then by definition of  $B_I$  we have

$$A_{I} = \operatorname{Span}(\mathcal{B}_{I}) = \operatorname{Span}\left(\bigcup_{\Gamma' \in 2^{I}, \ \Gamma' \supseteq I} \mathcal{B}_{\Gamma'}\right).$$

### Outline of the Proof. Part IV

 $\mathcal{B}_{I} \text{ is some linear basis of } A_{I}.$   $\mathcal{B}_{\Gamma}, \text{ for } \Gamma > I, \text{ is chosen as a maximal subset of } A_{\Gamma} \text{ such that } \bigcup_{\Gamma' \leq \Gamma} \mathcal{B}_{\Gamma'} \text{ is linearly independent}$   $We \text{ want to prove } A_{\Gamma} = \text{Span} (\bigcup_{\Gamma' \in 2^{I}, \Gamma' \supseteq \Gamma} \mathcal{B}_{\Gamma'}), \qquad (*)$   $A_{\Gamma} \subseteq \text{Span} (\bigcup_{\Gamma' \in 2^{I}, \Gamma' \subseteq \Gamma} \mathcal{B}_{\Gamma'}). \qquad (**)$ 

**Induction step:** Suppose we have proven Eq. (\*) for all  $\Gamma < \Gamma_0$ . For any  $a \in A$ , denote by  $\{\alpha_{\Gamma}(a)\}_{\Gamma \in 2^I}$  the unique family of vectors such that  $a = \sum_{\Gamma \in 2^I} \alpha_{\Gamma}(a)$  and that  $\alpha_{\Gamma}(a) \in \text{Span}(\mathcal{B}_{\Gamma})$ . By (\*\*)  $\alpha_{\Gamma'}(a) = 0$  whenever  $a \in A_{\Gamma}$  and  $\Gamma' > \Gamma$ , i.e.,

$$a = \sum_{\Gamma' \in 2^{I}, \ \Gamma' \leq \Gamma} \alpha_{\Gamma'}(a), \quad \text{for all } a \in A_{\Gamma}.$$
(\*\*\*)

Let  $a \in A_{\Gamma_0}$ . Define  $v := a - \alpha_{\Gamma_0}(a)$ . By Eq. (\*\*\*)

$$A_{\Gamma_0} \ni v = \sum_{\Gamma' \in 2^I, \, \Gamma' < \Gamma_0} \alpha_{\Gamma'}(a) \in \sum_{\Gamma' \in 2^I, \, \Gamma' < \Gamma_0} A_{\Gamma'}.$$

### Outline of the Proof. Part V

We want to prove 
$$A_{\Gamma} = \operatorname{Span}(\bigcup_{\Gamma' \in 2^{I}, \Gamma' \supseteq \Gamma} \mathcal{B}_{\Gamma'}),$$
 (\*)  
 $A_{\Gamma} \subseteq \operatorname{Span}(\bigcup_{\Gamma' \in 2^{I}, \Gamma' \leq \Gamma} \mathcal{B}_{\Gamma'}),$  (\*\*)  
 $\Gamma_{0} \ni v = \sum_{\Gamma' \in 2^{I}, \Gamma' < \Gamma_{0}} \alpha_{\Gamma'}(a) \in \sum_{\Gamma' \in 2^{I}, \Gamma' < \Gamma_{0}} A_{\Gamma'}, \quad \Gamma \subset \Gamma \cup \Gamma' \text{ if } \Gamma' < \Gamma, \quad \Gamma' < \Gamma \text{ if } \Gamma' \supset \Gamma.$ 

Hence

Α

$$v \in A_{\Gamma_0} \cap \left(\sum_{\Gamma' \in 2^I, \ \Gamma' < \Gamma_0} A_{\Gamma'}\right) = \sum_{\Gamma' \in 2^I, \ \Gamma' < \Gamma_0} A_{\Gamma' \cup \Gamma_0}$$
$$\subseteq \sum_{\Gamma' \in 2^I, \ \Gamma' \supset \Gamma_0} A_{\Gamma'} \subseteq \operatorname{Span}\left(\bigcup_{\Gamma' \in 2^I, \ \Gamma' \supset \Gamma_0} \mathcal{B}_{\Gamma'}\right).$$

It follows that

$$a = \alpha_{\Gamma_0}(a) + v \in \operatorname{Span}(\mathcal{B}_{\Gamma_0}) + \operatorname{Span}\left(\bigcup_{\Gamma' \in 2^I, \ \Gamma' \supset \Gamma_0} \mathcal{B}_{\Gamma'}\right) = \operatorname{Span}\left(\bigcup_{\Gamma' \in 2^I, \ \Gamma' \supseteq \Gamma_0} \mathcal{B}_{\Gamma'}\right).$$

#### Lemma

Let  $\pi : A \to B$  be a linear surjection, and let  $\{A_i\}_{i \in I}$  be a finite family of vector subspaces of A such that  $\{A_i\}_{i \in I} \cup \{\ker \pi\}$  generates a distributive lattice of vector subspaces. Then there exists a linear splitting  $\alpha : B \to A$  of  $\pi$  such that  $\alpha(\pi(A_i)) \subseteq A_i$  for all  $i \in I$ .

### THE PROOF OF THE LEMMA

There exists a linear splitting  $\alpha : B \to A$  of  $\pi$  such that  $\alpha(\pi(A_i)) \subseteq A_i$  for all  $i \in I$ .

#### AUXILLIARY LEMMA

Let  $\pi : A \to B$  be a linear map, and let  $\{A_i\}_{i \in I}$  be a finite family of vector subspaces of A. Assume that ker  $\pi \cap (\sum_{i \in I} A_i) = \sum_{i \in I} (\ker \pi \cap A_i)$ . Then  $\pi (\bigcap_{i \in I} A_i) = \bigcap_{i \in I} \pi(A_i)$ .

Let  $\mathcal{B} := \bigcup_{\Gamma \in 2^{I}} \mathcal{B}_{\Gamma}$  be a linear basis of *B* defining a partition of *B* with respect to the family  $\{B_i\}_{i \in I}$ , where  $B_i := \pi(A_i)$ .

Note that the auxilliary lemma implies that  $B_i$ 's generate distributive lattice of ideals because  $A_i$ 's generate distributive lattice of ideals, and also that  $B_{\Gamma} = \pi(A_{\Gamma})$ .

We define the splitting  $\alpha : B \to A$  on basis elements. For all  $b \in \mathcal{B}$  we define  $\alpha(b)$  to be an arbitrary element of  $\pi^{-1}(b) \cap A_{\Gamma}$ , where  $b \in \mathcal{B}_{\Gamma}$ . Let  $b \in B_i$ ,  $i \in I$ . Then  $b \in \text{Span}\left(\bigcup_{\Gamma \in 2^I \mid i \in \Gamma} \mathcal{B}_{\Gamma}\right)$  and hence

$$\alpha(b) \in \sum_{\Gamma \in 2^{I} \mid i \in \Gamma} \sum_{b' \in \mathcal{B}_{\Gamma}} \left( \pi^{-1}(b') \cap A_{\Gamma} \right) \subseteq \sum_{\Gamma \in 2^{I} \mid i \in \Gamma} A_{\Gamma} \subseteq A_{i}.$$

#### Lemma

Let A be a principal H-comodule algebra, let  $\pi : A \to B$  be an H-comodule algebra surjection, and let  $\{A_i\}_{i \in I}$  be a finite family of ideals in A which are subcomodules, such that  $\{A_i\}_{i \in I} \cup \{\ker \pi\}$  generates a distributive lattice. Define for all  $i \in I$ :  $A_i^{coH} := A_i \cap A^{coH}$ ,  $B_i := \pi(A_i)$ ,  $B_i^{coH} := B^{coH} \cap B_i$ . Suppose that there exists a linear map  $\alpha^{coH} : B^{coH} \to A^{coH}$  such that

$$\pi \circ \alpha^{coH} = \mathrm{id}_{B^{coH}}, \quad \alpha^{coH}(B_i^{coH}) \subseteq A_i^{coH}, \text{ for all } i \in I.$$

Let  $\ell: H \to A \otimes A$  be a strong connection on A. Then the following formula:

$$\alpha: B \longrightarrow A, \quad b \longmapsto \alpha^{coH} \left( b_{(0)} \pi(\ell(b_{(1)})^{\langle 1 \rangle}) \right) \ell(b_{(1)})^{\langle 2 \rangle}$$

defines a right H-colinear map satisfying

$$\pi \circ \alpha = \mathrm{id}_B, \quad \alpha(B_i) \subseteq A_i, \text{ for all } i \in I.$$

B. Zieliński (WFIS)

#### Example

- Recently a new non-commutative real projective space  $\mathbb{R}P_T^2$  and a non-commutative sphere  $S^2_{\mathbb{R}T}$  were introduced, by defining  $C(\mathbb{R}P_T^2)$  and  $C(S^2_{\mathbb{R}T})$  as a particular triple pullbacks of, respectively, three copies of the Toeplitz algebra  $\mathcal{T}$  and the tensor product  $\mathcal{T} \otimes C(\mathbb{Z}_2)$ .
- The algebra  $C(S^2_{\mathbb{R}\mathcal{T}})$  has a natural (component-wise) diagonal coaction of the Hopf algebra  $C(\mathbb{Z}_2)$ , and the subspace of invariants of this coaction is isomporphic with  $C(\mathbb{R}P^2_{\mathcal{T}})$ .
- Moreover, C(S<sup>2</sup><sub>IRT</sub>) is a piecewise principal (hence principal) C(Z<sub>2</sub>)-comodule algebra.
- Because  $C(\mathbb{Z}_2)$  is co-commutative and  $C(S^2_{\mathbb{R}T})$  is defined as a triple pullback algebra, our main result is applicable here.

Hajac P.M., Rudnik J., Zieliński B., Reductions of piecewise trivial principal comodule algebras.

### Squaring the Toeplitz Algebra I

Toeplitz algebra  $\mathcal{T}$  is the universal  $C^*$ -algebra generated by an isometry *s*. The symbol map is given by  $\sigma : \mathcal{T} \ni s \mapsto \widetilde{u} \in C(S^1)$ , where  $\widetilde{u}$  is the unitary function generating  $C(S^1)$ . The following maps

$$\delta_1: \mathbb{Z}_2 \times I \to S^1, \quad \delta_2 I \times \mathbb{Z}_2 \to S^1,$$

are defined as the parametrisation of two appropriate quarters of  $S^1$ :



### Squaring the Toeplitz Algebra II

We denote the pullbacks of  $\delta_1$  and  $\delta_2$  by

 $\delta_1^*\colon C(S^1) \longrightarrow C(\mathbb{Z}_2) \otimes C(I), \quad \delta_2^*\colon C(S^1) \longrightarrow C(I) \otimes C(\mathbb{Z}_2).$ 

We denote for brevity  $\sigma_i := \delta_i^* \circ \sigma$ , i = 1, 2.

- We view S<sup>1</sup> and I as Z<sub>2</sub>-spaces via multiplication by ±1. Then Z<sub>2</sub>×I and I×Z<sub>2</sub> are Z<sub>2</sub>-spaces with the diagonal action.
- Accordingly, C(I),  $C(S^1)$ ,  $C(\mathbb{Z}_2) \otimes C(I)$  and  $C(I) \otimes C(\mathbb{Z}_2)$  are right  $C(\mathbb{Z}_2)$ -comodule algebras with coactions given by the pullbacks of respective  $\mathbb{Z}_2$ -actions.
- Denote by *u* the generator *C*(ℤ<sub>2</sub>) given by *u*(±1) := ±1. Then the assignment *s* → *s* ⊗ *u* makes *T* a *C*(ℤ<sub>2</sub>)-comodule algebra. (This coaction corresponds to the ℤ<sub>2</sub>-action given by α<sup>*T*</sup><sub>-1</sub>(*s*) = −*s*.)
- The maps  $\delta_i$ , i = 1, 2, are  $\mathbb{Z}_2$ -equivariant, so that  $\delta_i^*$ 's are right  $C(\mathbb{Z}_2)$ -comodule maps. Also, since the symbol map  $\sigma$  is a right  $C(\mathbb{Z}_2)$ -comodule map, so are  $\sigma_i$ 's.

# The construction of $C(S^2_{\mathbb{R}\mathcal{T}})$

The quantum version of constructing the topological 2-sphere by assembling three pairs of squares to the boundary of a cube.  $T \otimes C(\mathbb{Z}_2)$  replaces the pair of squares.



# The Multi-Pullback Presentation of $C(S^2_{\mathbb{R}\tau})$ . Part I

The algebra  $C(S^2_{\mathbb{R}T})$  is defined to be the following triple pullback of three copies of  $T \otimes C(\mathbb{Z}_2)$ :

$$\begin{array}{c|c} \mathcal{T}_0 \otimes C(\mathbb{Z}_2) & \mathcal{T}_1 \otimes C(\mathbb{Z}_2) \\ & \sigma_1 \otimes \mathrm{id} \\ & & & \downarrow \\ C(\mathbb{Z}_2) \otimes C(I) \otimes C(\mathbb{Z}_2) \xleftarrow{} \\ & \bullet_{01} \\ \end{array} \\ \mathcal{C}(\mathbb{Z}_2) \otimes C(I) \otimes C(\mathbb{Z}_2) \xleftarrow{} \\ & \bullet_{01} \\ \end{array}$$

$$\begin{array}{c|c} \mathcal{T}_0 \otimes C(\mathbb{Z}_2) & \mathcal{T}_2 \otimes C(\mathbb{Z}_2) \\ & \sigma_2 \otimes \mathrm{id} \\ & & & \downarrow \\ C(I) \otimes C(\mathbb{Z}_2) \otimes C(\mathbb{Z}_2) \swarrow C(\mathbb{Z}_2) \otimes C(I) \otimes C(\mathbb{Z}_2) \,, \end{array}$$

$$\begin{array}{ccc} \mathcal{T}_1 \otimes C(\mathbb{Z}_2) & \mathcal{T}_2 \otimes C(\mathbb{Z}_2) \\ & \sigma_2 \otimes \mathrm{id} \\ & & & & & \\ C(I) \otimes C(\mathbb{Z}_2) \otimes C(\mathbb{Z}_2) \xleftarrow{} \\ & & & \\ \end{array} \\ \mathcal{C}(I) \otimes C(\mathbb{Z}_2) \otimes C(\mathbb{Z}_2) \xleftarrow{} \\ \mathcal{C}(I) \otimes C(\mathbb{Z}_2) \otimes C(\mathbb{Z}_2) & \\ \end{array}$$

B. Zieliński (WFIS)

# The Multi-Pullback Presentation of $C(S^2_{\mathbb{R}\mathcal{T}})$ . Part II

The isomorphisms  $\Phi_{ij}$  are defined by the following formulas, for all  $h, k \in C(\mathbb{Z}_2)$  and  $p \in C(I)$ :

$$\begin{split} \Phi_{01}(h\otimes p\otimes k) &:= k\otimes p\otimes h, \\ \Phi_{02}(h\otimes p\otimes k) &:= p\otimes k\otimes h, \\ \Phi_{12}(p\otimes h\otimes k) &:= p\otimes k\otimes h. \end{split}$$

We view the algebras  $\mathcal{T} \otimes C(\mathbb{Z}_2)$ ,  $C(I) \otimes C(\mathbb{Z}_2) \otimes C(\mathbb{Z}_2)$  and  $C(\mathbb{Z}_2) \otimes C(I) \otimes C(\mathbb{Z}_2)$  as right  $C(\mathbb{Z}_2)$ -comodules with the diagonal  $C(\mathbb{Z}_2)$ -coaction. The coaction of  $C(\mathbb{Z}_2)$  is defined on  $C(S^2_{\mathbb{R}\mathcal{T}})$  componentwise.

### Auxilliary Elements of ${\mathcal T}$

The construction of a strong connection will require the existence of elements  $\phi_1 \in \sigma_1^{-1}(u \otimes 1_{C(I)}) \subseteq T$ ,  $\phi_2 \in \sigma_2^{-1}(1_{C(I)} \otimes u) \subseteq T$  with certain additional properties. These elements will play the crucial role in the construction of appropriate splittings.

#### Lemma

*There exist elements*  $\phi_1, \phi_2 \in T$  *satisfying:* 

$$\rho(\phi_1) = \phi_1 \otimes u, \quad \rho(\phi_2) = \phi_2 \otimes u, \tag{1a}$$

$$\sigma_1(\phi_1) = u \otimes 1_{C(I)}, \quad \sigma_2(\phi_1) = \iota_I \otimes 1_{C(\mathbb{Z}_2)}, \tag{1b}$$

$$\sigma_2(\phi_2) = \mathbf{1}_{C(I)} \otimes u, \quad \sigma_1(\phi_2) = \mathbf{1}_{C(\mathbb{Z}_2)} \otimes \iota_I, \tag{1c}$$

$$(1 - \phi_2^2)(1 - \phi_1^2) \neq 0.$$
 (1d)

where  $\iota_I \in C(I)$  is an an identity map  $\iota_I(t) = t$  and  $\rho : T \to T \otimes C(\mathbb{Z}_2)$  is a right coaction.

B. Zieliński (WFIS)

# A Strong Connection Formula for $C(S^2_{\mathbb{R}\mathcal{T}})$ . Part I

The strong connections on the three copies of  $C(\mathbb{Z}_2)$ -comodule algebra (with diagonal coaction)  $\mathcal{T} \otimes C(\mathbb{Z}_2)$  are chosen as

$$\ell_1(u) = \ell_2(u) = \ell_3(u) = (1_T \otimes u) \otimes (1_T \otimes u),$$
  
$$\ell_1(1_{C(\mathbb{Z}_2)}) = \ell_2(1_{C(\mathbb{Z}_2)}) = \ell_3(1_{C(\mathbb{Z}_2)}) = (1_T \otimes 1_{C(\mathbb{Z}_2)}) \otimes (1_T \otimes 1_{C(\mathbb{Z}_2)}).$$

In order to use our main result we need the appropriate colinear and unital splittings from the linear subspaces generated by the legs of  $\ell_i$ 's into  $C(S^2_{\mathbb{R}T})$ : the maps  $\alpha_i$ : Span $\{1_T \otimes u, 1_T \otimes 1_{C(\mathbb{Z}_2)}\} \rightarrow C(S^2_{\mathbb{R}T})$ , i = 0, 1, 2 which can be defined by

$$\begin{aligned} \alpha_0(1_{\mathcal{T}} \otimes u) &:= (1_{\mathcal{T}} \otimes u, \phi_1 \otimes 1_{C(\mathbb{Z}_2)}, \phi_1 \otimes 1_{C(\mathbb{Z}_2)}), \\ \alpha_1(1_{\mathcal{T}} \otimes u) &:= (\phi_1 \otimes 1_{C(\mathbb{Z}_2)}, 1_{\mathcal{T}} \otimes u, \phi_2 \otimes 1_{C(\mathbb{Z}_2)}), \\ \alpha_2(1_{\mathcal{T}} \otimes u) &:= (\phi_2 \otimes 1_{C(\mathbb{Z}_2)}, \phi_2 \otimes 1_{C(\mathbb{Z}_2)}, 1_{\mathcal{T}} \otimes u). \end{aligned}$$

# A Strong Connection Formula for $C(S^2_{\mathbb{R}\mathcal{T}})$ . Part II

Let us denote for brevity  $\alpha_i := \alpha_i (1_T \otimes u)$ . Because  $u^2 = 1$  we have

$$1 - \alpha_1^2 = \left( (1 - \phi_1^2) \otimes 1, 0, (1 - \phi_2^2) \otimes 1 \right), \quad 1 - \alpha_1^2 = \left( (1 - \phi_2^2) \otimes 1, (1 - \phi_2^2) \otimes 1, 0 \right)$$

The straightforward application of the formula from the main theorem yields:

$$\begin{split} \ell(u) &:= \alpha_0 \otimes \alpha_0 (1 - \alpha_1^2) (1 - \alpha_2^2) + \alpha_1 \otimes \alpha_1 (1 - \alpha_2^2) + \alpha_2 \otimes \alpha_2 \\ &= (1 \otimes u, \phi_1 \otimes 1, \phi_1 \otimes 1) \otimes \left( (1 - \phi_1^2) (1 - \phi_2^2) \otimes u, 0, 0 \right) \\ &+ (\phi_1 \otimes 1, 1 \otimes u, \phi_2 \otimes 1) \otimes \left( \phi_1 (1 - \phi_2^2) \otimes 1, (1 - \phi_2^2) \otimes u, 0 \right) \\ &+ (\phi_2 \otimes 1_{C(\mathbb{Z}_2)}, \phi_2 \otimes 1_{C(\mathbb{Z}_2)}, 1_T \otimes u) \otimes (\phi_2 \otimes 1_{C(\mathbb{Z}_2)}, \\ &\phi_2 \otimes 1_{C(\mathbb{Z}_2)}, 1_T \otimes u). \end{split}$$

Both left and right legs of the above strong connection are linearly independent (when taken separately).

B. Zieliński (WFIS)