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Motivation

Principal comodule algebras can be thought of as objects representing
principal bundles in non-commutative geometry. A crucial component
of a principal comodule algebra is a strong connection map.

Sometimes it suffices to prove that strong connection exists,

Computing the associated bundle projectors or Chern-Galois
characters requires an explicit formula for a strong connection.
It is known how to construct a strong connection map on a
multi-pullback comodule algebra from strong connections on
multi-pullback components (in particular we know that it exists):

Hajac P.M., Krähmer U., Matthes R., Zieliński B., Piecewise principal
comodule algebras, J. Noncomm. Geom. 5 (2011), 591–614.
Hajac P.M., Wagner E., The Pullbacks of Principal Coactions
Documenta Math. 19 (2014) 1025–1060.

Unfortunately, the known explicit general formula is unwieldy.
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The Goal and the Plan

Here we derive a much easier to use formula for strong connection
on a mulitipullback comodule algebra, but applicable only in the
case when a Hopf algebra is co-commutative.

As certain linear splittings of projections in multi-pullback
comodule algebras play a crucial role in the construction, we also
present some derivations of the explicit formulas for such a
splittings.

Finally, we utilize our results to derive a strong connection
formula for a recently constructed quantum sphere viewed as a
quantum Z2-principal bundle.
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Principal Comodule Algebras

and Strong Connections

Let H be a Hopf algebra with bijective antipode, and let P be a right
H-comodule algebra.

P is a principal comodule algebra iff

there exists a linear map ` :H → P ⊗ P , `(h) =: `(h)〈1〉 ⊗ `(h)〈2〉

satisfying the following conditions:

`(1H ) = 1P ⊗ 1P

`(h)〈1〉`(h)〈2〉 = ε(h),

`(h(1))
〈1〉 ⊗ `(h(1))

〈2〉 ⊗ h(2) = `(h)〈1〉 ⊗ `(h)〈2〉(0) ⊗ `(h)〈2〉(1),

S(h(1))⊗ `(h(2))
〈1〉 ⊗ `(h(2))

〈2〉 = `(h)〈1〉(1) ⊗ `(h)〈1〉(0) ⊗ `(h)〈2〉.

Such a map, if it exists, is called a strong connection on P . Strong
connections are usually non-unique.
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Piecewise Principal Comodule Algebras

Definition

A family of surjective algebra homomorphisms {πi : P → Pi}i∈{1,...,N } is
called a covering iff

1

⋂
i∈{1,...,N }kerπi = {0},

2 The family of ideals (kerπi)i∈{1,...,N } generates a distributive lattice
with + and ∩ as meet and join respectively.

Definition

An H-comodule algebra P is called piecewise principal iff there exists
a finite family {πi : P → Pi}i∈J of surjective H-comodule algebra
morphisms such that:

1 The restrictions πi
∣∣∣
P coH : P coH → P coH

i form a covering.
2 The Pi ’s are principal H-comodule algebras.

Theorem

A piecewise principal comodule algebra is principal.
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A Strong Connection Formula

Theorem

Let H be a cocomutative Hopf algebra. Let {πi : P → Pi}i∈{0,...,n} be a
piecewise principal H-comodule algebra, and let {`i :H → Pi ⊗ Pi}i∈{0,...,n}
denote a family of strong connections on Pi ’s. Let Vi , i ∈ {0, . . . ,n}, be an H
sub-comodule of Pi such that `i(H) ⊆ Vi ⊗Vi and let αi : Vi → P be a
unital, colinear splitting of πi , i.e., πi ◦αi = idVi .
For brevity, denote for i ∈ {0, . . . ,n}, h ∈H

θi(h) := ε(h)−αi(`i(h)〈1〉)αi(`i(h)〈2〉),

Ti(h) := θi(h(1))θi+1(h(2)) · · ·θn(h(n−i+1)), Tn+1(h) := ε(h).

Then the linear map ` :H → P ⊗ P defined for all h ∈H by the formula

`(h) =
n∑
i=0

αi(`i(h(1))
〈1〉)⊗αi(`i(h(1))

〈2〉)Ti+1(h(2))

is a strong connection on P .
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Outline of the Proof. Part I

θi (h):=ε(h)−αi (`i (h)〈1〉)αi (`i (h)〈2〉), Ti (h):=θi (h(1))θi+1(h(2))···θn(h(n−i+1)), Tn+1(h):=ε(h),

`(h)=
∑n
i=0αi (`i (h(1))〈1〉)⊗αi (`i (h(1))〈2〉)Ti+1(h(2))

First we prove that αi(`i(h)〈1〉)αi(`i(h)〈2〉)’s are coaction invariant,
using the bi-colinearity of `i ’s, colinearity of αi ’s and the
co-commutativity of H .

Hence Ti(h)’s are coaction invariant as well.

The bi-colinearity of ` easily follows. In case of right
H-colinearity it is necessary to use co-commutativity of H again.

The unitality of ` follows from the unitality of `i ’s and αi ’s.
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Outline of the Proof. Part II

Prove that `(h)〈1〉`(h)〈2〉 = ε(h)

θi (h):=ε(h)−αi (`i (h)〈1〉)αi (`i (h)〈2〉), Ti (h):=θi (h(1))θi+1(h(2))···θn(h(n−i+1)), Tn+1(h):=ε(h),

`(h)=
∑n
i=0αi (`i (h(1))〈1〉)⊗αi (`i (h(1))〈2〉)Ti+1(h(2))

Note now that for all i ∈ {0, . . . ,n}, and h ∈H

Ti(h) = θi(h(1))Ti+1(h(2))

= ε(h(1))Ti+1(h(2))−αi(`i(h(1))
〈1〉)αi(`i(h(1))

〈2〉)Ti+1(h(2))

= Ti+1(h)−αi(`i(h(1))
〈1〉)αi(`i(h(1))

〈2〉)Ti+1(h(2)).

By applying this formula to T0(h) and keeping to expand with it the
leftmost summand of the resulting expansion we obtain easily:

T0(h) = ε(h)−
n∑
i=0

αi(`i(h(1))
〈1〉)αi(`i(h(1))

〈2〉)Ti+1(h(2)).
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Outline of the Proof. Part III

Prove that `(h)〈1〉`(h)〈2〉 = ε(h) cd.

θi (h):=ε(h)−αi (`i (h)〈1〉)αi (`i (h)〈2〉), Ti (h):=θi (h(1))θi+1(h(2))···θn(h(n−i+1)), Tn+1(h):=ε(h),

`(h)=
∑n
i=0αi (`i (h(1))〈1〉)⊗αi (`i (h(1))〈2〉)Ti+1(h(2)),

T0(h)=ε(h)−
∑n
i=0αi (`i (h(1))〈1〉)αi (`i (h(1))〈2〉)Ti+1(h(2)).

On the other hand, as αi is the splitting of πi it follows that:

πi(θi(h)) = ε(h)−πi
(
αi(`i(h)〈1〉)

)
πi

(
αi(`i(h)〈2〉)

)
= ε(h)− `i(h)〈1〉`i(h)〈2〉 = 0.

Hence
πi(Tj(h)) = 0, for all i ≥ j, i ∈ {0, . . . ,n}, h ∈H.

In particular, πi(T0(h)) = 0 for all i ∈ {0, . . . ,n} and h ∈H . It follows that
T0(h) = 0 for all h ∈H because

⋂n
i=0 kerπi = {0}, as {πi : P → Pi}i∈{0,...,n}

is a covering by the rezults of [HKMZ11].
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Outline of the Proof. Part IV

Prove that `(h)〈1〉`(h)〈2〉 = ε(h) cd.

θi (h):=ε(h)−αi (`i (h)〈1〉)αi (`i (h)〈2〉), Ti (h):=θi (h(1))θi+1(h(2))···θn(h(n−i+1)), Tn+1(h):=ε(h),

`(h)=
∑n
i=0αi (`i (h(1))〈1〉)⊗αi (`i (h(1))〈2〉)Ti+1(h(2)),

T0(h)=ε(h)−
∑n
i=0αi (`i (h(1))〈1〉)αi (`i (h(1))〈2〉)Ti+1(h(2))=0.

Combining T0(h) = 0 with the formula for `(h) we obtain that for all
h ∈H

`(h)〈1〉`(h)〈2〉 =
n∑
i=0

αi(`i(h(1))
〈1〉)αi(`i(h(1))

〈2〉)Ti+1(h(2)) = ε(h).
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Further Development

Our expression for a strong connection requires the unital and
colinear splittings of projections πi to be given.
The lemma below guarantees the existence of such a splitting, but
the construction assumes ` is already known.
In many cases, the appropriate splittings will be easily guessable.
However we will examine methods of constructing the splittings
in cases when the piecewise principal extension is given as a
multimullback comodule algebra, without using `.

Lemma [HKMZ11]

Let π : P →Q be a surjection of right H-comodule algebras. If P is
principal, then:

1 The induced map πcoH : P coH →QcoH is surjective.
2 There exists a unital H-colinear splitting of π.

The splitting is given by α(q) := αcoH (q(0)π(`(q(1))〈1〉))`(q(1))〈2〉), where
αcoH is any unital splitting of πcoH .
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Multi-pullbacks of Algebras

Let J be a finite set. and let the following be the family of algebra
homomorphisms referred to as as “gluing maps”:

{πij : Ai −→ Aij = Aji}i,j∈J, i,j (*)

Definition

A family (*) of surjective algebra homomorphisms is called
distributive iff their kernels generate distributive lattices of ideals.

Definition

The multi-pullback algebra Aπ of a family (*) of algebra
homomorphisms is defined as

Aπ :=

 (ai)i∈J ∈
∏
i∈J
Ai

∣∣∣∣∣∣∣ πij(ai) = πji (aj ), ∀ i, j ∈ J, i , j

 .
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Cocycle Condition

Let (πij : Ai → Aij )i,j∈J, i,j be a family of surjective algebra
homomorphisms. For any distinct i, j,k we put
Aijk := Ai/(kerπij + kerπik) and take [·]ijk : Ai → Aijk to be the canonical
surjections. Next, we introduce the family of maps

π
ij
k : Aijk −→ Aij /π

i
j(kerπik), [ai]

i
jk 7−→ πij(ai) +πij(kerπik).

They are isomorphisms when πij ’s are surjective homomorphisms.

Definition

We say that a family (πij : Ai → Aij )i,j∈J, i,j of surjective algebra
homomorphisms satisfies the cocycle condition if and only if, for all
distinct i, j,k ∈ J ,

1 πij(kerπik) = πji (kerπjk),

2 isomorphisms φijk := (πijk )−1 ◦πjik : Ajik→ Aijk satisfy φikj = φijk ◦φ
jk
i .
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Cocycle Condition cont.

One can prove

that the cocycle condition together with distributivity guarantees that
all projections on components of a multipullback are surjective
(in fact all projections on submultipullbacks are surjective, but we will
not make use of that fact).

An observation

Observe that, for all distinct i, j,k ∈ J and any ai ∈ Ai , aj ∈ Aj ,

[ai]
i
jk = φijk ([aj ]

j
ik) ⇔ π

ji
k ([aj ]

j
ik) = πijk ([ai]

i
jk)

⇔ πij(ai)−π
j
i (aj ) ∈ π

i
j(kerπik).
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Construction of Colinear Splittings

Assumptions

Suppose that a distributive family (πij : Ai → Aij )i,j∈J, i,j satisfies the

cocycle condition and that there exists two families αij ,β
i
j : Aij → Ai ,

i, j ∈ J, j , i of linear (colinear) splittings of πij ’s such that all βij ’s are
unital and for all distinct i, j,k ∈ J we have

αij(π
i
j(kerπik)) ⊆ kerπik . (**)
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Construction of Colinear Splittings cont.

Theorem

Let i ∈ J , |J | = n+ 1 and let κ : {0, . . . ,n} → J be a bijection s.t. κ0 = i, where
κj := κ(j). Then

αi : Ai → Aπ, a 7→ (aj )j∈J ,

where ai := a and aκm+1
:= amκm+1

for any 0 ≤m < n, is a unital and linear
(colinear) splitting of πi : Aπ→ Ai .
The collections {akκm+1

}0≤k≤m ⊆ Aκm+1
, for 0 ≤m < n are defined by:

a0
κm+1

:= βκm+1
κ0 (πκ0

κm+1(aκ0
)),

ak+1
κm+1

:= akκm+1
−ακm+1

κk+1

(
πκm+1
κk+1 (akκm+1

)−πκk+1
κm+1(aκk+1

)
)

for 0 ≤ k < m.
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Outline of the Proof. Part I

αij ,β
i
j : Aij → Ai , πij ◦α

i
j = πij ◦ β

i
j = idAij , αij (π

i
j (kerπik )) ⊆ kerπik

αi : Ai → Aπ , a 7→ (aj )j∈J , where aκ0 := a, aκm+1 := amκm+1 , for all 0 ≤m < n,

a0
κm+1 := βκm+1

κ0 (πκ0
κm+1 (aκ0 )), 0 ≤m < n,

ak+1
κm+1 := akκm+1 −α

κm+1
κk+1

(
π
κm+1
κk+1 (akκm+1 )−πκk+1

κm+1 (aκk+1 )
)
, 0 ≤ k < m < n.

Because all the maps involved in the definition of αi are unital
and linear (colinear if need be) it follows that also αi is (co)-linear.

Unitality of αi follows easily from the unitality of βjk’s.
Now it remains to show that αi(a) ∈ Aπ for all a ∈ Ai . The inductive
proof is a constructive version of the proof of Proposition 9 in

Calow, D., Matthes, R. (2000). „Covering and gluing of algebras and
differential algebras”. Journal of Geometry and Physics, 32(4), 364-396.

We will show that for any 0 ≤m ≤ n we have

π
κj
κl (aκj ) = πκlκj (aκl ), for all j, l ∈ {0, . . . ,m}, j , l. (***)

For m = 0 this condition is emptily satisfied.
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Outline of the Proof. Part II

βij : Aij → Ai , πij ◦ β
i
j = idAij ,

αi : Ai → Aπ , a 7→ (aj )j∈J , where aκ0 := a, aκm+1 := amκm+1 , for all 0 ≤m < n,

a0
κm+1 := βκm+1

κ0 (πκ0
κm+1 (aκ0 )), 0 ≤m < n.

π
κj
κl (aκj ) = πκlκj (aκl ), for all j, l ∈ {0, . . . ,m}, j , l. (***)

Suppose we have proven (***) for some m. In order to demonstrate
it for m+ 1, we prove by induction that for any 0 ≤ k ≤m < n,

π
κj
κm+1(aκj ) = πκm+1

κj (akκm+1
), for all 0 ≤ j ≤ k. (****)

If k = 0 then substituting the definition of a0
κm+1

yields

πκm+1
κ0 (a0

κm+1
) = πκm+1

κ0

(
βκm+1
κ0 (πκ0

κm+1(aκ0
))
)
= πκ0

κm+1(aκ0
).
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Outline of the Proof. Part III

For any distinct i, j,k: Aijk := Ai /(kerπij + kerπik ), [·]ijk : Ai → Aijk — canonical surjections

φ
ij
k : A

j
ik → Aijk , φikj = φ

ij
k ◦φ

jk
i

For distinct i, j,k ∈ J and all ai ∈ Ai , aj ∈ Aj , [ai ]
i
jk = φ

ij
k ([aj ]

j
ik ) ⇔ πij (ai )−π

j
i (aj ) ∈ π

i
j (kerπik ).

π
κj
κl (aκj ) = π

κl
κj (aκl ), for all j, l ∈ {0, . . . ,m}, j , l, (***)

π
κj
κm+1 (aκj ) = πκm+1

κj (akκm+1 ), for all 0 ≤ j ≤ k. (****)

Suppose now that we have proven Condition (****) for some 0 ≤ k < m.
Pick any 0 ≤ j ≤ k. Then by (inductively assumed) Condition (***)
[aκj ]

κj
κk+1κm+1 = φ

κjκk+1
κm+1

(
[aκk+1

]κk+1
κjκm+1

)
. Then it follows that

[akκm+1
]κm+1
κjκk+1 = φ

κm+1κj
κk+1

(
[aκj ]

κj
κm+1κk+1

)
= φ

κm+1κj
κk+1

(
φ
κjκk+1
κm+1

(
[aκk+1

]κk+1
κjκm+1

))
= φκm+1κk+1

κj

(
[aκk+1

]κk+1
κjκm+1

)
.
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Outline of the Proof. Part IV

For any distinct i, j,k: Aijk := Ai /(kerπij + kerπik ), [·]ijk : Ai → Aijk — canonical surjections

φ
ij
k : A

j
ik → Aijk , φikj = φ

ij
k ◦φ

jk
i

For distinct i, j,k ∈ J and all ai ∈ Ai , aj ∈ Aj , [ai ]
i
jk = φ

ij
k ([aj ]

j
ik ) ⇔ πij (ai )−π

j
i (aj ) ∈ π

i
j (kerπik ).

The equality [akκm+1
]κm+1
κjκk+1 = φκm+1κk+1

κj

(
[aκk+1

]κk+1
κjκm+1

)
is equivalent to

πκm+1
κk+1 (akκm+1

)−πκk+1
κm+1(aκk+1

) ∈ πκm+1
κk+1 (kerπκm+1

κj ).

Because the above relation “is an element of” holds for an arbitrary
0 ≤ j ≤ k it implies immediately that

πκm+1
κk+1 (akκm+1

)−πκk+1
κm+1(aκk+1

) ∈
⋂

0≤j≤k
πκm+1
κk+1 (kerπκm+1

κj ).
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Outline of the Proof. Part V

αij : Aij → Ai , αij (π
i
j (kerπik )) ⊆ kerπik ,

π
κm+1
κk+1 (akκm+1 )−π

κk+1
κm+1 (aκk+1 )∈

⋂
0≤j≤k π

κm+1
κk+1 (kerπ

κm+1
κj

).

Then

ακm+1
κk+1

(
πκm+1
κk+1 (akκm+1

)−πκk+1
κm+1(aκk+1

)
)
∈ ακm+1

κk+1

 ⋂
0≤j≤k

πκm+1
κk+1 (kerπκm+1

κj )


∈

⋂
0≤j≤k

ακm+1
κk+1

(
πκm+1
κk+1 (kerπκm+1

κj )
)

⊆
⋂

0≤j≤k
kerπκm+1

κj

that is
ακm+1
κk+1

(
πκm+1
κk+1 (akκm+1

)−πκk+1
κm+1(aκk+1

)
)
∈

⋂
0≤j≤k

kerπκm+1
κj .
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Outline of the Proof. Part VI

π
κj
κl (aκj ) = π

κl
κj (aκl ), for all j, l ∈ {0, . . . ,m}, j , l, (***)

π
κj
κm+1 (aκj ) = πκm+1

κj (akκm+1 ), for all 0 ≤ j ≤ k. (****)

αij : Aij → Ai , πij ◦α
i
j = idAij , αij (π

i
j (kerπik )) ⊆ kerπik

αi : Ai → Aπ , a 7→ (aj )j∈J , where aκ0 := a, aκm+1 := amκm+1 , for all 0 ≤m < n,

ak+1
κm+1 := akκm+1 −α

κm+1
κk+1

(
π
κm+1
κk+1 (akκm+1 )−πκk+1

κm+1 (aκk+1 )
)
, 0 ≤ k < m < n,

α
κm+1
κk+1

(
π
κm+1
κk+1 (akκm+1 )−πκk+1

κm+1 (aκk+1 )
)
∈

⋂
0≤j≤k

kerπκm+1
κj .

Then for all 0 ≤ l ≤ k

πκm+1
κl (ak+1

κm+1
) = πκm+1

κl (akκm+1
)−πκm+1

κl

(
ακm+1
κk+1

(
πκm+1
κk+1 (akκm+1

)−πκk+1
κm+1(aκk+1

)
))

= πκm+1
κl (akκm+1

)

= πκlκm+1(aκl ).
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Outline of the Proof. Part VII

π
κj
κl (aκj ) = π

κl
κj (aκl ), for all j, l ∈ {0, . . . ,m}, j , l, (***)

π
κj
κm+1 (aκj ) = πκm+1

κj (akκm+1 ), for all 0 ≤ j ≤ k. (****)

αij : Aij → Ai , πij ◦α
i
j = idAij , αij (π

i
j (kerπik )) ⊆ kerπik

αi : Ai → Aπ , a 7→ (aj )j∈J , where aκ0 := a, aκm+1 := amκm+1 , for all 0 ≤m < n,

ak+1
κm+1 := akκm+1 −α

κm+1
κk+1

(
π
κm+1
κk+1 (akκm+1 )−πκk+1

κm+1 (aκk+1 )
)
, 0 ≤ k < m < n.

Moreover, using the fact that ακm+1
κk+1 is a splitting of πκm+1

κk+1 we obtain

πκm+1
κk+1 (ak+1

κm+1
) = πκm+1

κk+1 (akκm+1
)−πκm+1

κk+1

(
ακm+1
κk+1

(
πκm+1
κk+1 (akκm+1

)−πκk+1
κm+1(aκk+1

)
))

= πκm+1
κk+1 (akκm+1

)−
(
πκm+1
κk+1 (akκm+1

)−πκk+1
κm+1(aκk+1

)
)

= πκk+1
κm+1(aκk+1

),

which ends the proof.
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A Comment on the Applicabilty of the Result

At this point, the skeptical reader might be excused for doubting
the applicability of the above theorem.

Unital and linear splittings βij ’s of πij ’s exist because of the

surjectivity of πij ’s, and the colinear ones can be constructed using
strong connections on Ai ’s.

But it is not clear how to find the linear splittings αij satisfying

αij(π
i
j(kerπik)) ⊆ kerπik , nor that they exist at all.

Fortunately, the results from the subsequent slides assure the
existence of splittings αij and provide the method of their
(semi)-explicit construction.
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Partitions of Sets

Let A be a set and let Ai , i ∈ J be a fixed finite family of subsets of A.
For any Γ ∈ 2J we denote for brevity:

AΓ :=
⋂
i∈Γ
Ai .

Obviously AΓ1
∩AΓ2

= AΓ1∪Γ2
. Also A∅ = A by convention.

It is easy to see that Ai ’s generate a partition {BΓ }Γ ∈2J of A (i.e., all BΓ ’s
are disjoint and A =

⋃
Γ ∈2J BΓ ) such that

AΓ =
⋃

Γ ′∈2J | Γ⊆Γ ′
BΓ ′ , for all Γ ∈ 2J .

The partition can be described explicitly, for all Γ ∈ 2J by

BΓ := {x ∈ A | ∀i ∈ J . x ∈ Ai ⇔ i ∈ Γ }.
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Partitions of Vector Spaces

Let A be a vector space and let Ai , i ∈ J be a fixed finite family of vector
subspaces of A. We define

AΓ :=
⋂
i∈Γ
Ai .

We want to define a linear counterpart of the associated partition.
Similarly to plain sets, vector sub-spaces can be ordered by the set
inclusion, and the resulting ordered set is a lattice with

V1 ∩V2 serving as infimum
and subspace sum (V1 +V2) playing the role of supremum.

The problem is that this lattice is not, in general, distributive.

It turns out that the assumption that the subspaces Ai , i ∈ J
generate a distributive lattice is pivotal for proving the desired
result.
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Existence of the Partition

Lemma

Let A be a vector space and let Ai , i ∈ I be a finite family of vector
subspaces of A generating a distributive lattice. A has a linear basis
B =

⋃
Γ ∈2I BΓ , where BΓ ⊆ AΓ , Γ ∈ 2I , such that subsets BΓ are all disjoint

and satisfy the following property:

AΓ = Span

 ⋃
Γ ′∈2I , Γ ′⊇Γ

BΓ ′

 (*)

for all Γ ∈ 2I .
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Outline of the Proof. Part I

Fix a linear order ≤ on 2I subject to the condition

Γ1 ⊇ Γ2 ⇒ Γ1 ≤ Γ2, for all Γ1,Γ2 ∈ 2I .

It is immediate that the minimal element in this order is I and
maximal is ∅. Note the following property of ≤:

Γ > Γ ′ ⇒ Γ ∪ Γ ′ ⊃ Γ , for all Γ ,Γ ′ ∈ 2I .

The sets BΓ , Γ ∈ 2I can be generated inductively (with respect to ≤):
1 BI is some linear basis of AI .
2 BΓ , for Γ > I , is chosen as a maximal subset of AΓ such that⋃

Γ ′≤Γ BΓ ′ is linearly independent.

It is immediate by construction of BΓ ’s that B :=
⋃

Γ ∈2I BΓ is a linear
basis of A and that all BΓ ’s are disjoint.
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Outline of the Proof. Part II

BI is some linear basis of AI .
BΓ , for Γ > I , is chosen as a maximal subset of AΓ such that

⋃
Γ ′≤Γ BΓ ′ is linearly independent

We want to prove AΓ =Span
(⋃

Γ ′∈2I , Γ ′⊇Γ BΓ ′
)

(*)

Also by construction, BΓ ′ ⊆ AΓ , Γ ∈ 2I whenever Γ ⊆ Γ ′, which implies
that half of Property (*) is trivially satisfied:

Span

 ⋃
Γ ′∈2I , Γ ′⊇Γ

BΓ ′

 ⊆ AΓ , for all Γ ∈ 2I .

It also is immediate that

AΓ ⊆ Span

 ⋃
Γ ′∈2I , Γ ′≤Γ

BΓ ′

 . (**)

We will prove the second half of Property (*) by induction on ≤.
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Outline of the Proof. Part III

BI is some linear basis of AI .
BΓ , for Γ > I , is chosen as a maximal subset of AΓ such that

⋃
Γ ′≤Γ BΓ ′ is linearly independent

We want to prove AΓ =Span
(⋃

Γ ′∈2I , Γ ′⊇Γ BΓ ′
)

(*)

Induction base: I is minimal in 2I with respect to ≤. Then by
definition of BI we have

AI = Span(BI ) = Span

 ⋃
Γ ′∈2I , Γ ′⊇I

BΓ ′

 .
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Outline of the Proof. Part IV

BI is some linear basis of AI .
BΓ , for Γ > I , is chosen as a maximal subset of AΓ such that

⋃
Γ ′≤Γ BΓ ′ is linearly independent

We want to prove AΓ =Span
(⋃

Γ ′∈2I , Γ ′⊇Γ BΓ ′
)
, (*)

AΓ ⊆Span
(⋃

Γ ′∈2I , Γ ′≤Γ BΓ ′
)
. (**)

Induction step: Suppose we have proven Eq. (*) for all Γ < Γ0.
For any a ∈ A, denote by {αΓ (a)}Γ ∈2I the unique family of vectors such
that a =

∑
Γ ∈2I αΓ (a) and that αΓ (a) ∈ Span(BΓ ).

By (**) αΓ ′ (a) = 0 whenever a ∈ AΓ and Γ ′ > Γ , i.e.,

a =
∑

Γ ′∈2I , Γ ′≤Γ

αΓ ′ (a), for all a ∈ AΓ . (***)

Let a ∈ AΓ0
. Define v := a−αΓ0

(a). By Eq. (***)

AΓ0
3 v =

∑
Γ ′∈2I , Γ ′<Γ0

αΓ ′ (a) ∈
∑

Γ ′∈2I , Γ ′<Γ0

AΓ ′ .
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Outline of the Proof. Part V

We want to prove AΓ =Span(
⋃

Γ ′∈2I , Γ ′⊇Γ BΓ ′ ), (*)

AΓ⊆Span(
⋃

Γ ′∈2I , Γ ′≤Γ BΓ ′ ), (**)

AΓ03v=
∑

Γ ′∈2I , Γ ′<Γ0
αΓ ′ (a)∈

∑
Γ ′∈2I , Γ ′<Γ0

AΓ ′ , Γ ⊂ Γ ∪ Γ ′ if Γ ′ < Γ , Γ ′ < Γ if Γ ′ ⊃ Γ .

Hence

v ∈ AΓ0
∩

 ∑
Γ ′∈2I , Γ ′<Γ0

AΓ ′

 =
∑

Γ ′∈2I , Γ ′<Γ0

AΓ ′∪Γ0

⊆
∑

Γ ′∈2I , Γ ′⊃Γ0

AΓ ′ ⊆ Span

 ⋃
Γ ′∈2I , Γ ′⊃Γ0

BΓ ′

 .
It follows that

a = αΓ0
(a) + v ∈ Span(BΓ0

) + Span

 ⋃
Γ ′∈2I , Γ ′⊃Γ0

BΓ ′

 = Span

 ⋃
Γ ′∈2I , Γ ′⊇Γ0

BΓ ′

 .
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Splittings of Principal Comodule Algebras

Lemma

Let π : A→ B be a linear surjection, and let {Ai}i∈I be a finite family of
vector subspaces of A such that {Ai}i∈I ∪ {kerπ} generates a distributive
lattice of vector subspaces. Then there exists a linear splitting α : B→ A of
π such that α(π(Ai)) ⊆ Ai for all i ∈ I .
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The Proof of The Lemma

There exists a linear splitting α : B→ A of π such that α(π(Ai )) ⊆ Ai for all i ∈ I .

Auxilliary lemma

Let π : A→ B be a linear map, and let {Ai }i∈I be a finite family of vector subspaces of
A. Assume that kerπ∩ (

∑
i∈I Ai ) =

∑
i∈I (kerπ∩Ai ). Then π (

⋂
i∈I Ai ) =

⋂
i∈I π(Ai ).

Let B :=
⋃

Γ ∈2I BΓ be a linear basis of B defining a partition of B with
respect to the family {Bi}i∈I , where Bi := π(Ai).

Note that the auxilliary lemma implies that Bi ’s generate distributive lattice of ideals because
Ai ’s generate distributive lattice of ideals, and also that BΓ = π(AΓ ).

We define the splitting α : B→ A on basis elements. For all b ∈ B we
define α(b) to be an arbitrary element of π−1(b)∩AΓ , where b ∈ BΓ .
Let b ∈ Bi , i ∈ I . Then b ∈ Span

(⋃
Γ ∈2I | i∈Γ BΓ

)
and hence

α(b) ∈
∑

Γ ∈2I | i∈Γ

∑
b′∈BΓ

(
π−1(b′)∩AΓ

)
⊆

∑
Γ ∈2I | i∈Γ

AΓ ⊆ Ai .
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Colinear Splittings

Lemma

Let A be a principal H-comodule algebra, let π : A→ B be an H-comodule
algebra surjection, and let {Ai}i∈I be a finite family of ideals in A which are
subcomodules, such that {Ai}i∈I ∪ {kerπ} generates a distributive lattice.
Define for all i ∈ I : AcoH

i := Ai ∩AcoH , Bi := π(Ai), BcoH
i := BcoH ∩Bi .

Suppose that there exists a linear map αcoH : BcoH → AcoH such that

π ◦αcoH = idBcoH , αcoH (BcoH
i ) ⊆ AcoH

i , for all i ∈ I.

Let ` :H → A⊗A be a strong connection on A. Then the following formula:

α : B −→ A, b 7−→ αcoH
(
b(0)π(`(b(1))

〈1〉)
)
`(b(1))

〈2〉

defines a right H-colinear map satisfying

π ◦α = idB, α(Bi) ⊆ Ai , for all i ∈ I.
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Example

Recently a new non-commutative real projective space RP 2
T and a

non-commutative sphere S2
RT were introduced, by defining

C(RP 2
T ) and C(S2

RT ) as a particular triple pullbacks of,
respectively, three copies of the Toeplitz algebra T and the tensor
product T ⊗C(Z2).

The algebra C(S2
RT ) has a natural (component-wise) diagonal

coaction of the Hopf algebra C(Z2), and the subspace of
invariants of this coaction is isomporphic with C(RP 2

T ).

Moreover, C(S2
RT ) is a piecewise principal (hence principal)

C(Z2)-comodule algebra.

Because C(Z2) is co-commutative and C(S2
RT ) is defined as a

triple pullback algebra, our main result is applicable here.

Hajac P.M., Rudnik J., Zieliński B.,
Reductions of piecewise trivial principal comodule algebras.
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Squaring the Toeplitz Algebra I

Toeplitz algebra T is the universal C∗-algebra generated by an
isometry s. The symbol map is given by σ : T 3 s 7→ ũ ∈ C(S1), where ũ
is the unitary function generating C(S1). The following maps

δ1 : Z2 × I → S1, δ2I ×Z2→ S1,

are defined as the parametrisation of two appropriate quarters of S1:

k = −1 k = 1

δ1(1,1) = ei
9π
4

δ1(1,−1) = ei
7π
4

δ1(−1,1) = ei
3π
4

δ1(−1,−1) = ei
5π
4

k = 1

k = −1

δ2(1,1) = ei
π
4

δ2(1,−1) = ei
7π
4

δ2(−1,1) = ei
3π
4

δ2(−1,−1) = ei
5π
4
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Squaring the Toeplitz Algebra II

We denote the pullbacks of δ1 and δ2 by

δ∗1 : C(S1) −→ C(Z2)⊗C(I), δ∗2 : C(S1) −→ C(I)⊗C(Z2).

We denote for brevity σi := δ∗i ◦ σ , i = 1,2.

We view S1 and I as Z2-spaces via multiplication by ±1. Then
Z2 × I and I ×Z2 are Z2-spaces with the diagonal action.

Accordingly, C(I), C(S1), C(Z2)⊗C(I) and C(I)⊗C(Z2) are right
C(Z2)-comodule algebras with coactions given by the pullbacks of
respective Z2-actions.

Denote by u the generator C(Z2) given by u(±1) := ±1. Then the
assignment s 7→ s⊗u makes T a C(Z2)-comodule algebra. (This
coaction corresponds to the Z2-action given by αT−1(s) = −s.)
The maps δi , i = 1,2, are Z2-equivariant, so that δ∗i ’s are right
C(Z2)-comodule maps. Also, since the symbol map σ is a right
C(Z2)-comodule map, so are σi ’s.
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The construction of C(S2
RT )

The quantum version of constructing the topological 2-sphere by assembling three

pairs of squares to the boundary of a cube. T ⊗C(Z2) replaces the pair of squares.

T0,−1T1,−1 T1,1 T0,1

T2,−1

T2,1
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The Multi-Pullback Presentation of C(S2
RT ). Part I

The algebra C(S2
RT ) is defined to be the following triple pullback of

three copies of T ⊗C(Z2):

14 B. Zieliński

C(Z2)-comodule algebras with coactions given by the pullbacks of respective Z2-actions. Denote
by u the generator C(Z2) given by u(±1) := ±1. Then the assignment s 7! s ⌦ u makes T a
C(Z2)-comodule algebra. (This coaction corresponds to the Z2-action given by ↵T

�1(s) = �s.)
It is easy to verify that the maps �i, i = 1, 2, are Z2-equivariant, so that their pullbacks �⇤i ’s are
right C(Z2)-comodule maps. Also, since the symbol map � is a right C(Z2)-comodule map, so
are �i’s.

The construction of C(S2
RT ) can be seen as the quantum version of constructing the topolog-

ical 2-sphere by assembling three pairs of squares to the boundary of a cube. In the quantum
version the algebra T ⌦ C(Z2) replaces the pair of squares. Explicitly, the algebra C(S2

RT ) is
defined in [18] to be the following triple pullback of three copies of T ⌦ C(Z2):

T0 ⌦ C(Z2)

�1⌦id
✏✏

T1 ⌦ C(Z2)

�1⌦id
✏✏

C(Z2)⌦ C(I)⌦ C(Z2) C(Z2)⌦ C(I)⌦ C(Z2) ,
�01

oo

T0 ⌦ C(Z2)

�2⌦id
✏✏

T2 ⌦ C(Z2)

�1⌦id
✏✏

C(I)⌦ C(Z2)⌦ C(Z2) C(Z2)⌦ C(I)⌦ C(Z2) ,
�02

oo

T1 ⌦ C(Z2)

�2⌦id
✏✏

T2 ⌦ C(Z2)

�2⌦id
✏✏

C(I)⌦ C(Z2)⌦ C(Z2) C(I)⌦ C(Z2)⌦ C(Z2) .
�12

oo

(25)

where the isomorphisms �ij are defined by the following formulas, for all h, k 2 C(Z2) and
p 2 C(I):

�01(h⌦ p⌦ k) := k ⌦ p⌦ h,

�02(h⌦ p⌦ k) := p⌦ k ⌦ h,

�12(p⌦ h⌦ k) := p⌦ k ⌦ h. (26)

We view the algebras T ⌦ C(Z2), C(I) ⌦ C(Z2) ⌦ C(Z2) and C(Z2) ⌦ C(I) ⌦ C(Z2) as right
C(Z2)-comodules with the diagonal C(Z2)-coaction. The coaction of C(Z2) is defined on C(S2

RT )
componentwise.

6.2 Construction of certain auxilliary elements

Both constructions of strong connections will require the existence of elements �1 2 ��1
1 (u ⌦

1C(I)) ✓ T , �2 2 ��1
2 (1C(I) ⌦ u) ✓ T with certain additional properties. These elements will

play the crucial role in the construction of appropriate splittings required by both methods.
More explicitly, we have the following:

Lemma 5. There exist elements �1, �2 2 T satisfying:

⇢(�1) = �1 ⌦ u, ⇢(�2) = �2 ⌦ u, (27a)

�1(�1) = u⌦ 1C(I), �2(�1) = ıI ⌦ 1C(Z2), (27b)

�2(�2) = 1C(I) ⌦ u, �1(�2) = 1C(Z2) ⌦ ıI , (27c)

(1� �2
2)(1� �2

1) 6= 0. (27d)
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The Multi-Pullback Presentation of C(S2
RT ). Part II

The isomorphisms Φij are defined by the following formulas, for all
h,k ∈ C(Z2) and p ∈ C(I):

Φ01(h⊗ p⊗ k) := k ⊗ p⊗ h,
Φ02(h⊗ p⊗ k) := p⊗ k ⊗ h,
Φ12(p⊗ h⊗ k) := p⊗ k ⊗ h.

We view the algebras T ⊗C(Z2), C(I)⊗C(Z2)⊗C(Z2) and
C(Z2)⊗C(I)⊗C(Z2) as right C(Z2)-comodules with the diagonal
C(Z2)-coaction. The coaction of C(Z2) is defined on C(S2

RT )
componentwise.
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Auxilliary Elements of T

The construction of a strong connection will require the existence of
elements φ1 ∈ σ−1

1 (u ⊗ 1C(I)) ⊆ T , φ2 ∈ σ−1
2 (1C(I) ⊗u) ⊆ T with certain

additional properties. These elements will play the crucial role in the
construction of appropriate splittings.

Lemma

There exist elements φ1,φ2 ∈ T satisfying:

ρ(φ1) = φ1 ⊗u, ρ(φ2) = φ2 ⊗u, (1a)

σ1(φ1) = u ⊗ 1C(I), σ2(φ1) = ıI ⊗ 1C(Z2), (1b)

σ2(φ2) = 1C(I) ⊗u, σ1(φ2) = 1C(Z2) ⊗ ıI , (1c)

(1−φ2
2)(1−φ2

1) , 0. (1d)

where ıI ∈ C(I) is an an identity map ıI (t) = t and ρ : T → T ⊗C(Z2) is a
right coaction.
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A Strong Connection Formula for C(S2
RT ). Part I

The strong connections on the three copies of C(Z2)-comodule algebra
(with diagonal coaction) T ⊗C(Z2) are chosen as

`1(u) = `2(u) = `3(u) = (1T ⊗u)⊗ (1T ⊗u),

`1(1C(Z2)) = `2(1C(Z2)) = `3(1C(Z2)) = (1T ⊗ 1C(Z2))⊗ (1T ⊗ 1C(Z2)).

In order to use our main result we need the appropriate colinear and
unital splittings from the linear subspaces generated by the legs of `i ’s
into C(S2

RT ): the maps αi : Span{1T ⊗u,1T ⊗ 1C(Z2)} → C(S2
RT ),

i = 0,1,2 which can be defined by

α0(1T ⊗u) := (1T ⊗u,φ1 ⊗ 1C(Z2),φ1 ⊗ 1C(Z2)),

α1(1T ⊗u) := (φ1 ⊗ 1C(Z2),1T ⊗u,φ2 ⊗ 1C(Z2)),

α2(1T ⊗u) := (φ2 ⊗ 1C(Z2),φ2 ⊗ 1C(Z2),1T ⊗u).

B. Zieliński (WFIS) Piecewise Principal ... NCG 2014 43 / 44



A Strong Connection Formula for C(S2
RT ). Part II

Let us denote for brevity αi := αi(1T ⊗u). Because u2 = 1 we have

1−α2
1 =

(
(1−φ2

1)⊗1,0, (1−φ2
2)⊗1

)
, 1−α2

1 =
(
(1−φ2

2)⊗1, (1−φ2
2)⊗1,0

)
.

The straightforward application of the formula from the main theorem
yields:

`(u) := α0 ⊗α0(1−α2
1)(1−α2

2) +α1 ⊗α1(1−α2
2) +α2 ⊗α2

= (1⊗u,φ1 ⊗ 1,φ1 ⊗ 1)⊗
(
(1−φ2

1)(1−φ2
2)⊗u,0,0

)
+ (φ1 ⊗ 1,1⊗u,φ2 ⊗ 1)⊗

(
φ1(1−φ2

2)⊗ 1, (1−φ2
2)⊗u,0

)
+ (φ2 ⊗ 1C(Z2),φ2 ⊗ 1C(Z2),1T ⊗u)⊗ (φ2 ⊗ 1C(Z2),

φ2 ⊗ 1C(Z2),1T ⊗u).

Both left and right legs of the above strong connection are linearly
independent (when taken separately).
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