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MoTIvATION

Principal comodule algebras can be thought of as objects representing
principal bundles in non-commutative geometry. A crucial component
of a principal comodule algebra is a strong connection map.

@ Sometimes it suffices to prove that strong connection exists,

o Computing the associated bundle projectors or Chern-Galois
characters requires an explicit formula for a strong connection.

@ It is known how to construct a strong connection map on a
multi-pullback comodule algebra from strong connections on
multi-pullback components (in particular we know that it exists):

@ Hajac PM,, Krdhmer U., Matthes R., Zielifiski B., Piecewise principal
comodule algebras, J. Noncomm. Geom. 5 (2011), 591-614.

o Hajac PM., Wagner E., The Pullbacks of Principal Coactions
Documenta Math. 19 (2014) 1025-1060.

@ Unfortunately, the known explicit general formula is unwieldy.
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THE GOAL AND THE PLAN

@ Here we derive a much easier to use formula for strong connection
on a mulitipullback comodule algebra, but applicable only in the
case when a Hopf algebra is co-commutative.

@ As certain linear splittings of projections in multi-pullback
comodule algebras play a crucial role in the construction, we also
present some derivations of the explicit formulas for such a
splittings.

e Finally, we utilize our results to derive a strong connection
formula for a recently constructed quantum sphere viewed as a
quantum Z,-principal bundle.
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PrincipAL COMODULE ALGEBRAS
AND STRONG CONNECTIONS

Let H be a Hopf algebra with bijective antipode, and let P be a right
H-comodule algebra.

P 1s A PRINCIPAL COMODULE ALGEBRA IFF

there exists a linear map €: H — P®P, {£(h) =: {(h)" @ £(h)@
satisfying the following conditions:

((1g)=1p®1p
e Ve = e(h),
C(h) S @ b)) P @ hipy = €()V @ £(h)P) gy @ E(h) P 1),
S(h(1)) ® )V @ E(h2) P = €()V 1) @ () ) @ €(h)2).

Such a map, if it exists, is called a strong connection on P. Strong
connections are usually non-unique.
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Piecewise PrincipaL COMODULE ALGEBRAS

DEerINITION

A family of surjective algebra homomorphisms {rt; : P — Pi}icq1,. N} is
called a covering iff
Q@ Nicpy,.. Ny kerm; = {0},
© The famlly of ideals (kerm;);¢(1,. Ny generates a distributive lattice
with + and N as meet and join respectively.

DEerINITION

An H-comodule algebra P is called piecewise principal iff there exists
a finite family {rt; : P — P;};¢; of surjective H-comodule algebra
morphisms such that:

: POH PCOH form a covering.

@ The restrictions ;| ..

© The P’s are principal H-comodule algebras.

A piecewise principal comodule algebra is principal
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A STrRONG CONNECTION FORMULA

THEOREM

Let H be a cocomutatwe Hopf algebra. Let {rt; : P — P, }16{ ny bea

.....

denote a family ofstrong connections on P;’s. Let V,, i€ {O } be an H
sub-comodule of P; such that {;(H) C V;® V; and let a; : V; — P be a
unital, colinear splitting of 1t;, i.e., t; o a; = idy.
For brevity, denote for i € {0,...,n}, he H

0i(h) := e(h) - a; (€ (h)")a; (6 (h)®),

Ti(h) := 0;(h(1))0i11(h2)) - Ou(h(n-it1)),  Tusr(h):=€e(h).

Then the linear map € : H — P ® P defined for all h € H by the formula

Za D)@ (€ (h1)P) T ()

is a strong connection on P.
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OUuTLINE OF THE PROOEF. PART |

91‘(h)3=€(h)—ai(€i(h)<l>)a‘(5‘(h)m); T;(h):=0;(h(1))0i1 (h2))On(huziv1))s  Tupr(h):=e(h),
(h)=X_1=o @;(€;(h1)))®a; (€ (h(1))?) Ty (h2)

o First we prove that a;(¢;(h)")a;(£;(h)*)’s are coaction invariant,
using the bi-colinearity of ¢;’s, colinearity of ;’s and the
co-commutativity of H.

@ Hence T;(h)’s are coaction invariant as well.

@ The bi-colinearity of ¢ easily follows. In case of right
H-colinearity it is necessary to use co-commutativity of H again.

@ The unitality of ¢ follows from the unitality of ¢;’s and «;’s
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OuTLINE OF THE PrROOE. PARrT 11
Prove tHAT £(h) D ()2 = e(h)

0;(h):=e(h)—a;(€; (W) ) a; (€ () ), Ti(h):=0;(h1))0;s1 (h2))+0u(Bpuivn))s  Tyea(h):=e(h),

C(h)=Y 1 a;(€i(h1))1)®a; (€ (1)) T (hiz)

Note now that for all i €{0,...,n},and he H
Ti(h) = 0;(h(1)) Tis1(h(2)

) 1
= e(h1)) Tis1 (h() = @i (€ () )i (€ () P) Tt (hp)
= Tip1 () — a;(Gi(h) V) i<e,-<h<1)><2>> Tii1(h(y)-

By applying this formula to Ty(h) and keeping to expand with it the
leftmost summand of the resulting expansion we obtain easily:

Za D) (€i(1)2) T ().
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OuTLINE OF THE PrROOE. PArT 111
Prove tHAT £(h)D¢(h)? = e(h) cp.

0;(h):=e(h)—a; (€;(N) M) a; (€;(R) ), Ti(h):=0;(h1))0;s1 (h2))+0u(Bpuivr))s  Tyea(h):=e(h),
O(h)=Y 1 a;(li(h1))®a;(€i(h1) ) Tisi (hiz))s
To(h)=e(h)-Y 1o ;i (€;(h)) )i (€:(h)) ) iy (hi))-

On the other hand, as a; is the splitting of 7; it follows that:

70;(60;(h) = e(h) = 10;( i (€ () D) Jrei xi (€ (1))
= e(h) = ;(h)V¢;(h) = 0.
Hence
7ti(T;j(h) =0, foralli>j, i€{0,...,n}, he H.

In particular, 7t;(Ty(h)) = 0 for all i € {0,...,n} and h € H. It follows that
Ty(h) = 0 for all h € H because (;_, ker7t; = {0}, as {r; : P — Pi}ic(0,..,n)
is a covering by the rezults of [HKMZ11].
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OuTLINE OF THE PrOOE. PArRT IV
Prove tHAT £(h)D¢(h)? = e(h) cp.

0;(h):=e(h)—a; (€; (W) V) a; (€; () ), Ti(h):=0;(h1))0s1 (h2))+0u(Bpuivn))s  Ter(h):=e(h),
L(h)=Y o a; (G (hy)D)®a; (G () P) T (hi)s
To(h)=e(h)=Y i ai(€i(ha) )i (€ (h(1))2) i (h2))=0.

Combining Ty(h) = 0 with the formula for {(h) we obtain that for all
he H

(D) <2>—Za DD)ati € ()P T () = €(h).
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FURTHER DEVELOPMENT

@ Our expression for a strong connection requires the unital and
colinear splittings of projections 7t; to be given.

@ The lemma below guarantees the existence of such a splitting, but
the construction assumes ¢ is already known.

@ In many cases, the appropriate splittings will be easily guessable.

@ However we will examine methods of constructing the splittings
in cases when the piecewise principal extension is given as a
multimullback comodule algebra, without using €.

Lemma [HKMZ11]

Let 7t : P — Q be a surjection of right H-comodule algebras. If P is
principal, then:
@ The induced map 7®°H : peoH — QH g surjective.

@ There exists a unital H-colinear splitting of 7.

The splitting is given by a(q) := aCOH(q(O)T((Z(q(l))<1>))Z(q(1))<2>), where
coH

a°H is any unital splitting of 7
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MULTI-PULLBACKS OF ALGEBRAS

Let ] be a finite set. and let the following be the family of algebra
homomorphisms referred to as as “gluing maps”:

{ﬁi&—ﬁAﬁZAMma#j ()

DEerINITION

A family (*) of surjective algebra homomorphisms is called
distributive iff their kernels generate distributive lattices of ideals.

v
DEerINITION

The multi-pullback algebra A™ of a family (*) of algebra
homomorphisms is defined as

AT = {(ai)ie] € ]_IAi

i€]

mi(a;) = ml(a)), Vijj €], i ¢j}.

v

B. ZieLiNskr (WFIS) PIECEWISE PRINCIPAL ... NCG 2014 12/ 44



CocycLeE CONDITION

Let (n; : Aj = Ajj)i jej,i»j be a family of surjective algebra
homomorphlsms For any distinct i, j, k we put

A;k = A;/(ker n] +ker ;) and take [- ]] (A — Al ik to be the canonical
surjections. Next, we introduce the family of maps

. A i i i i i i
T Ajk — Aij/nj(ker ), [ai]jk — nj(ai) + n]-(ker )
They are isomorphisms when TZ;. ’s are surjective homomorphisms.

DEeFrINITION

We say that a family (T(; : Aj = Ajj)i jej, i»j of surjective algebra
homomorphisms satisfies the cocycle condition if and only if, for all
distinct i,j,k €],

Qo n;(ker n};) = n{(ker ni),

: : 7R N R LY | i : ik _ i plk
Q isomorphisms ¢ := (1) o1y : Ay _’Ajk satisfy (j)j =¢p o; .
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CocycLE CONDITION CONT.

ONE CAN PROVE

that the cocycle condition together with distributivity guarantees that
all projections on components of a multipullback are surjective

(in fact all projections on submultipullbacks are surjective, but we will
not make use of that fact).

AN OBSERVATION

| A\

Observe that, for all distinct 7, j,k € ] and any a; € A;, aj € Aj,

[ailix = o) (i) & 7 ([a;1h) = ] ([ai]iy)

o mj(a;) -1} (aj) € i (ker 7).
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CoNSTRUCTION OF COLINEAR SPLITTINGS

Suppose that a distributive family (TZ;: : Aj = Ajjijey, izj Satisfies the
cocycle condition and that there exists two families a]’., /5]% 1A > A,

i,j €], j=1iof linear (colinear) splittings of n;-’s such that all ﬁ]l:’s are
unital and for all distinct 7, j, k € ] we have

a;(n;(kern;{)) C kert}. (**)
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CoNSTRUCTION OF COLINEAR SPLITTINGS CONT.

Letie],|J[|=n+1andlet x :{0,...,n} — ] be a bijection s.t. ¥y = i, where
xj:=Kk(j). Then

a;: A —> AT, a(a)ie,
where a;:=aand a,,  :=a;  forany 0<m<n,isa unital and linear
(colinear) splitting of t; : A™ — A;.
The collections {aﬁmﬂ Yo<k<m € Ax,,,» for 0 <m < n are defined by:

0 K K
aKm+1 o= IgK(')rH—1 (T(K?HH (aKO))I

k+1 o k _ Km+1 Kin+1 k _ Kk+1
aKWH—] Ry aKk+l nKkJrl (aK,,H_l) nKerl (aKkJrl)

for 0 <k <m.

B. ZieLikskr (WFIS)
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OUuTLINE OF THE PROOEF. PART |

i g A A, moal=miofl=idy., al(rl(kermi)) C kerri
a],ﬁ] Ajj > Aj, T oa; n]o[i] 1dA1]’ a](rc](kernk))_kernk

aj:Aj— A", ar(aj)je, where ay :=a, ay,  c=ag o, forall0<m<n,

K l Ko
aKerl . ﬁ o T[KW,H (“1{0 ), 0<m<n,

k+1 k Km+l( Km+1( k )

Kmi1 = P T Frper \Treger P O<k<m<n.

Kk+1
~ Time (aKkH ))’

@ Because all the maps involved in the definition of «; are unital
and linear (colinear if need be) it follows that also «; is (co)-linear.

@ Unitality of @; follows easily from the unitality of ;s

@ Now it remains to show that a;(a) € A™ for all a € A;. The inductive
proof is a constructive version of the proof of Proposition 9 in

o Calow, D., Matthes, R. (2000). ,,Covering and gluing of algebras and
differential algebras”. Journal of Geometry and Physics, 32(4), 364-396.

We will show that for any 0 < m < n we have
e () = 7 (ay,), forall j,l€(0,...,m}, j=1. (%)

For m = 0 this condition is emptily satisfied.
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OuTLINE OF THE PrROOE. PARrT 11

i.4.. , i i_ s
ﬁj 1Ajj — A, njoﬁj _1dAi].,

aj: A > AT, ar (a]')je/, where a :=a, ag,.  =ap , forall0<m<n,
K
Km+1 ﬁ m+1 T[KWHI (axo ), 0<m<n.
lag) =i ay,), forall j,le{0,...,m) j=I ok
T(Kl(akj)_nkj(akl’ orallj,l €\U,...,my, j#1. ( )J

@ Suppose we have proven (***) for some m. In order to demonstrate
it for m + 1, we prove by induction that forany 0 <k <m<mn,

0 (a) = o @k, ), forall0<j<k. (%)

If k = 0 then substituting the definition of u,gmﬂ yields

K 0 K K K K
ﬂxf{'” (ax,,m ) = FKS'” ( Kf)"” (T(KSM (aKO))): T‘KSM (aKO)'
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OuTLINE OF THE PrROOE. PArT 111

For any distinct i, j, k: A;‘k = Aj/(ker ni 1 kerr(;'(), [- j‘k tAj—> A;‘k — canonical surjections
ij, Al ik _ gl o pIk
b 1Ay o A;k' (P; =¢p od;

For distinct i,j,k € ] and all a; € A;, aj € A}, [ai];:k = (p;(]([aj]:k) = n;(ai) —ch(uj) € n;(kerni).

nZ{(aKj) =g (ay), forall jl € 0,...,m), j#1, (0%,
K .
"Kinu (aK]) n’,f]’"*l (aﬁm+1 ), forall0<j<k. (F00%)

Suppose now that we have proven Condition (****) for some 0 < k < m.
Pick any 0 < j < k. Then by (inductively assumed) Condition (***)

K; K
j _ KRk Kk+1
[ Jrnns = Py ([8,,, K5, )- Then it follows that
[ak ]Km+l _ Kms1Kj [ ]
K1 1K Kke1 ™ 1T Kks1 K K1 Kk+1

Kmi1Kj KKt [ K1
¢Kk+l Km+l aKk+1 KjiKmt1
— Kimn+1Kk+1 Kk+1
- 7K [aKkH ] KiKms1 ) *
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OuTLINE OF THE PrOOE. PArRT IV

For any distinct i, j, k: A;‘k :=A;/(ker T[i- + ker T(;‘(), [ i tAj—> A;’k — canonical surjections
i ik
of il oAl ¢ =gl og]

For distinct i,j,k € ] and all a; € A;, aj € A}, [“i]}k = ¢>k ([“J]ik) o nj—(ai) —nf:(a]-) € n;(kern;{).

m+1 j KjiKms1

. k Km _ Kin+1 Kk K. . .
The equality [ay  Ji7i,., = ¢ ([ A, i, )1s equivalent to

T(K,T:ll (ak ) T(;zkﬂ (aKk+1 ) c T(K;(Tll (ker T( m+1 )

K+l m+1

Because the above relation “is an element of” holds for an arbitrary
0 <j <k itimplies immediately that

Km+1 k Kk+1 Km+1 Km+1
T(Kk-H (aKm+1) T(Km+1 aKk+1 ﬂ T(Kk 1 kerT( )
0<j<k

B. ZieLikskr (WFIS)
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OUuTLINE OF THE PROOE. PART V

a‘» 1Ai— Ay, oc;»(n'-(kern;()) Ckerm,

Km+1 k Kk+1 Km+1
g1 (@ )T (A1 )€Mosj <k T["k+1 (Csarm i )

Then

Km+1 K+l k Ki+1 K+l Kim+1 Km+1
aKkH (T(Kkﬂ (aK ) - T(Km-H (aKk-H )) € aKkH ﬂ T(Kk+1 kerT( )

m+1
0<j<k
K K K
€ ﬂ ! ('rz,q’:”l1 (ker 7ty ’"“))
0<j<k
- ﬂ ker nK’”“
0<j<k
that is
K1 K1 k k+1 Km+1
aKk‘H (T(Kk‘*'l (aKm+1) - T(Km-ﬂ aKk+1 ﬂ kerT( ’
0<j<k
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OuTLINE OF THE PrROOE. PART VI

Kj . .
RK{ (aKj) = nZ}(uKl ), forallj,le{0,...,m}, j=I, (%)
Ki 5
RK;“ (aKj) = n’,ﬁ;"“ (a,k{m+1 ), forall0<j<k. ()

a}:Aij—>A,~, n{oa?:idAij, a}(n;(kern;{))gkern;{

] ]
a;j:Aj > A", ars (aj)jej, where ay:=a, ay, = aﬁmﬂ, forall0<m<n,
k+1 ._ k _ o Km+l ( Km+1( k _ Kkl )
ieme1 = Memr1 ~ Fiprl Kk+1 (aKm+1 ) Tk ma1 (aKkH) , 0<k<m<n,

Km+1( Km+1( k _ Kkl ) Km+1
g (Toegrn ) = Ticprr (i )) € ker [

0<j<k

Then forall0 <1<k

T(E;nﬂ (ak+l ) — T(E;’H—l ((Zk ) _ T(Elm“ (a;i;::l (T(;:Z:l (ﬂk ) _ T(:;fcn:ll (aKk+1 )))

Km+1 Km+1 Km+1
Km+1 ( -k
- T(Kl (aKerl )
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OuTLINE OF THE PrOOE. PArT VII

K;

T (ax;) = ng.(a,(,), forall j,1 €{0,...,m}, j =1,
.

(***)
K k .
T (ax;) = nK]*."“ (ay,.,) forall0<j<k. ()
a; :Aij — Aj, ni.oa’: =

da (i i c i
joa; 1dAl], a](n](kernk))_kernk

aj:Aj > A", ar(aj)jeg, where ay :=a, ay,  =ag o, forall0<m<n,
k+1 k

— _ Km+l( Km+1 ( k Kkl ) <
K1 *= Peme1 ~ Fxgrr \Trpe (akmﬂ) Tim+1 (uKkH) ;. 0<k<m<n.

m+1

Moreover, using the fact that a,""! is a splitting of 7t;"!

! we obtain
g ) = ) = o (e (! @) = e (@, )
= e (e, ) = (i ek, )~ et (ag,))
= nzfnill (aKku ),
which ends the proof.
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A COMMENT ON THE APPLICABILTY OF THE RESULT

@ At this point, the skeptical reader might be excused for doubting
the applicability of the above theorem.

@ Unital and linear splittings ﬂ; ’s of 71; s exist because of the

surjectivity of n;-’s, and the colinear ones can be constructed using
strong connections on A;’s.

@ But it is not clear how to find the linear splittings a; satisfying
a;(n;(ker TZ;.()) C ker nli(, nor that they exist at all.
e Fortunately, the results from the subsequent slides assure the

existence of splittings a;: and provide the method of their
(semi)-explicit construction.
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PARrTITIONS OF SETS

Let A be asetand let A;, i €] be a fixed finite family of subsets of A.
For any I' € 2/ we denote for brevity:

Ar = ﬂAl
iel
Obviously A, N Ar, = Ar,ur,- Also Ap = A by convention.

It is easy to see that A;’s generate a partition {Br}rcy of A (i.e., all Br’s
are disjoint and A = (Jpcy Br) such that

Ar = U By, forallT e?2/.
I’e2) | TCr”

The partition can be described explicitly, for all T € 2/ by

Br = {xe€A|Vie].xeA; oieTl}
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ParTITIONS OF VECTOR SPACES

Let A be a vector space and let A;, i € ] be a fixed finite family of vector
subspaces of A. We define
A[' = ﬂAl

iel’

@ We want to define a linear counterpart of the associated partition.

e Similarly to plain sets, vector sub-spaces can be ordered by the set
inclusion, and the resulting ordered set is a lattice with
e Vi NV, serving as infimum
e and subspace sum (V; + V,) playing the role of supremum.

@ The problem is that this lattice is not, in general, distributive.

@ It turns out that the assumption that the subspaces A;, i €]
generate a distributive lattice is pivotal for proving the desired
result.
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Ex1sTENCE OF THE PARTITION

LemMma

Let A be a vector space and let A;, i € I be a finite family of vector
subspaces of A generating a distributive lattice. A has a linear basis

B = Ureyt Br, where Br C Ay, T € 21, such that subsets By are all disjoint
and satisfy the following property:

Ar=Span| | ] Bp (*)
I’e2!, T'oT

forall T € 21,
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OUuTLINE OF THE PROOEF. PART |

Fix a linear order < on 2! subject to the condition
2L, = IL,<D,, foralll},T,e2l.

It is immediate that the minimal element in this order is I and
maximal is (). Note the following property of <:

[>T = Tul’osrl, foralll, T2l

The sets By, ' € 2! can be generated inductively (with respect to <):
©Q 5; is some linear basis of Aj.

© B, for I' > I, is chosen as a maximal subset of Ar such that
Ur<r Br is linearly independent.

It is immediate by construction of Br’s that B := [ Jpc,: Br is a linear
basis of A and that all Bp’s are disjoint.

B. ZieLiNskr (WFIS) PIECEWISE PRINCIPAL ... NCG 2014
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OuTLINE OF THE PrROOE. PARrT 11

By is some linear basis of Aj.
Br, for T > I, is chosen as a maximal subset of Ar such that | Jp/<r By is linearly independent

We want to prove Ar:Span(Ur,ez] /T Brr) (*)

Also by construction, By C Ar, T € 2! whenever I' C T, which implies
that half of Property (*) is trivially satisfied:

Span U Br|cAp, forallT e2!.
I’e2!l, T2

It also is immediate that

Ar C Span U B |. (**)
I’e2!, I'<T

We will prove the second half of Property (*) by induction on <.

B. ZieLikskr (WFIS)
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OuTLINE OF THE PrROOE. PArT 111

By is some linear basis of Aj.
Br, for I > 1, is chosen as a maximal subset of Ar such that [ Jp/<r By is linearly independent

We want to prove Ar:Span(Ur,ezl I’ BI") (*)

Induction base: I is minimal in 2! with respect to <. Then by
definition of B; we have

Aj =Span(B;) = Span U Br
r’e2l, 1721

B. ZieLikskr (WFIS)
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OuTLINE OF THE PrOOE. PArRT IV

By is some linear basis of Aj.
Br, for I > I, is chosen as a maximal subset of Ar such that | Jp/<r By is linearly independent

We want to prove Ar:Span(Ur,EZI I/sr Brs ), (*)

Arespan(Upret, o Brv) ()

Induction step: Suppose we have proven Eq. (*) for all T < Ij,.

For any a € A, denote by {ar(a)}reyr the unique family of vectors such
that a =) roorar(a) and that ar(a) € Span(Br).

By (**) ar/(a) = 0 whenever a€ Ar and I > T, i.e.,

a= Z ar/(a), forallaeAr. (%)
I’e2!, 1<l
Let a € Ar,. Define v := a - ar, (a). By Eq. (***)

Ap, dv= Z ar/(a) € Z Ap.

I’e2l, I'<T, I’e2!, T'<T,
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OUuTLINE OF THE PROOE. PART V

We want to prove Ar:Span(Ur;EQIV I/ar Bl-f), (*)

ArgSpan(Ur;ezly I’<T Brf), (H')

A 3v=Y pesl, prery @ (@€ et ey A, TCTUTHI7<T, T/<Tif[VoT.

Hence

veArN Z Ap | = Z Arur,

I’e2!, I'<T,, I’e2!, I'<T,
c Z Ap, C Span U Br |.
I’e2!, T'2I I’e2!, T'oI,

It follows that

a = ar,(a) +v € Span(Br,) + Span U Br/ | = Span U Br .
I'e2l, T'2T, I’e2l, /2T,
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SPLITTINGS OF PRINCIPAL COMODULE ALGEBRAS

Let 7t : A — B be a linear surjection, and let {A;};c; be a finite family of
vector subspaces of A such that {A;};c; U {ker 1t} generates a distributive

lattice of vector subspaces. Then there exists a linear splitting a : B— A of
7t such that a(mt(A;)) CA; foralliel.

B. ZieLikskr (WFIS)
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TaE PrOOF OF THE LEMMA

There exists a linear splitting a : B — A of 7 such that a(m(4;)) C A; foralli eI. J

AUXILLIARY LEMMA

Let v : A — B be a linear map, and let {A;};cs be a finite family of vector subspaces of
A. Assume that kert N (Y ;1 Aj) = Y jep(kerm N A;). Then 1t ((;er Ai) = Nier 7(A7).

Let B := {Ureyr Br be a linear basis of B defining a partition of B with
respect to the family {B;};c;, where B; := 1t(4;).

Note that the auxilliary lemma implies that B;’s generate distributive lattice of ideals because
Aj’s generate distributive lattice of ideals, and also that Br = 1t(Ar). J

We define the splitting a : B — A on basis elements. For all b € B we
define a(b) to be an arbitrary element of 77=1(b) N Ay, where b € Br.
LetbeBj,icl. Thenbe Span(Urey |iel Br) and hence

Z Z YNAr)C Z Ap C A,

re2! |iel b’eBr re2l |iel

B. ZieLikskr (WFIS) PIECEWISE PRINCIPAL ... NCG 2014 34/ 44



COLINEAR SPLITTINGS

LemMMA

Let A be a principal H-comodule algebra, let 7w : A — B be an H-comodule
algebra surjection, and let {A;};c; be a finite family of ideals in A which are
subcomodules, such that {A;};c; U {ker 1t} generates a distributive lattice.
Define for all i € I: A°H := A;n A®H, B; := nt(A;), B¢ := B°H 0 B;.
Suppose that there exists a linear map a“°™ : BH — AH sych that

moa®t =idgen, a®H(BH)C ASH, foralliel.
Let £ : H — A®A be a strong connection on A. Then the following formula:
a:B— A, b aCOH(b(o)ﬂ(5(5(1))<1>))€(b(1))<2>

defines a right H-colinear map satisfying

noa =idg, a(B;)CA;, foralliel.
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ExamMPLE

@ Recently a new non-commutative real projective space IRPT2 and a
non-commutative sphere S]%U were introduced, by defining
C(IRPTZ) and C(SI%T) as a particular triple pullbacks of,
respectively, three copies of the Toeplitz algebra 7 and the tensor
product 7 ® C(Z,).

@ The algebra C (SI%T) has a natural (component-wise) diagonal
coaction of the Hopf algebra C(Z,), and the subspace of
invariants of this coaction is isomporphic with C(IRPTZ).

@ Moreover, C(SI%{T) is a piecewise principal (hence principal)
C(Z;)-comodule algebra.

@ Because C(Z,) is co-commutative and C(SHZU) is defined as a
triple pullback algebra, our main result is applicable here.

Hajac PM., Rudnik J., Zieliniski B.,
Reductions of piecewise trivial principal comodule algebras.
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SQUARING THE TOEPLITZ ALGEBRA |

Toeplitz algebra 7 is the universal C*-algebra generated by an
isometry s. The symbol map is given by 0: 7 35+ € C(S!), where i
is the unitary function generating C(S!). The following maps

81:Z,xI— S, 8,IxZ,—S!,

are defined as the parametrisation of two appropriate quarters of S':

- 310

. ;31 ;91 . i3 k=1 . Hus
01(-1,1)=¢ 4 01(1,1)=¢"4 02(-1,1)=¢ 4 02(1,1)=¢ 4
k=-1 k=1
;5 ) in B 5 i7n
01(-1,-1)=¢ 4 01(1,-1)=¢ 4 0r(-1,-1)=¢ 4 k=-1 02(1,-1)=¢"4

B. ZieLikskr (WFIS)
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SQUARING THE TOEPLITZ ALGEBRA [I

We denote the pullbacks of 6; and 6, by
5): C(SY) — C(Z,)®C(I), &85: C(ST) — C(I)® C(Z,).

We denote for brevity o; :=0;00,i=1,2.
o We view S! and I as Z,-spaces via multiplication by +1. Then
Z, %I and I x Z, are Z,-spaces with the diagonal action.
e Accordingly, C(I), C(S'), C(Z,)® C(I) and C(I)® C(Z,) are right
C(Z;)-comodule algebras with coactions given by the pullbacks of
respective Z,-actions.

@ Denote by u the generator C(Z,) given by u(+1):= +1. Then the
assignment s — s ® u makes 7 a C(Z;)-comodule algebra. (This
coaction corresponds to the Z,-action given by a”,(s) = —s.)

@ The maps 9;,i = 1,2, are Z,-equivariant, so that 0;’s are right
C(Z,)-comodule maps. Also, since the symbol map o is a right
C(Z,)-comodule map, so are o;’s.
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2
THE coNsTRUCTION OF C(Sg)

The quantum version of constructing the topological 2-sphere by assembling three
pairs of squares to the boundary of a cube. 7 ® C(Z,) replaces the pair of squares.

B

T,

| 5 ||| =

b

w |
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THE MuLti-PuLLBACK PRESENTATION OF C(Sg ;). PART I

The algebra C(SHZU) is defined to be the following triple pullback of
three copies of 7 ® C(Z,):

To® C(Z2) Ti ® C(Zs)
al®idi lm@id

C(Z2) @ C(I) ® C(Zr) <5— C(Z2) ® C(I) @ C(Z2),

To® C(Z2) T2 ® C(Zs)
o‘z®idi ltn@id

C(I) & C(Z2) ® CZs) <5— C(Z2) ® C(I) ® C(Z2),

Ti ® C(Z2) T2 ® C(Z2)
U2®idi lag@id

C(I) ® C(Zs) ® C(Zs) 5 C(I) ® C(Zy) @ C(Zs2) .
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THE MuLti-PuLLBACK PRESENTATION OF C(Sg,). PART II

The isomorphisms ®;; are defined by the following formulas, for all
h,k e C(Z,)and p € C(I):

@01(h®p®k) Z=k®p®h,
Dpa(h®@p®k):=pRk®Hh,
D(pRhRk):=pRk®h.

We view the algebras 7 ® C(Z;), C(I)® C(Z,) ® C(Z,) and
C(Z,)®C(I)® C(Z,;) as right C(Z,)-comodules with the diagonal

C(Z,)-coaction. The coaction of C(Z,) is defined on C(SI%U—)
componentwise.

B. ZieLikskr (WFIS)
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AuxiLLIARY ELEMENTS OF 7

The construction of a strong connection will require the existence of

elements ¢; € o7 (u® len) €7, €0, (1C(I) ®u) C T with certain

additional properties. These elements will play the crucial role in the
construction of appropriate splittings.

LEMMA

There exist elements ¢y, P, € T satisfying:

p(p1)=P1®u, p(P2)=Pa®u, (

o1(p1)=u®lcqy, 02(P1)=1u®1lc(z,), (
ox(p2) =1ey®u, o1(P2)=1cz,)®1u, (1c

(1-¢3)(1-¢7)=0. (

where 17 € C(I) is an an identity map 1;(t)=tand p: T - T ®C(Z,) isa
right coaction.

B. ZieLikskr (WFIS) PIECEWISE PRINCIPAL ... NCG 2014 42/ 44



A StroONG CoNNEcTION FOrRMULA FOR C (Sﬂzv). ParT I

The strong connections on the three copies of C(Z,)-comodule algebra
(with diagonal coaction) 7 ® C(Z,) are chosen as

O(u) = () =L3(u) = (17 @u) @ (17 ®u),
6 (1cz,y) = (1cz,) = 6(1cz,)) = (17 ®1c(z,) ® (17 ® 1¢(7,))-
In order to use our main result we need the appropriate colinear and
unital splittings from the linear subspaces generated by the legs of ¢;’s

into C(Sﬂz2 ): the maps a; : Span{ly ®u, 17 ® 1¢(z,)} — C(S2 ),
i =0,1,2 which can be defined by

ag(lr@u):=(17®u,¢1®1c(z,), P1®1c(z,)
a(lr®@u):=(Pp1®1cz,), lr ®u, p2®1c(z,)),
ar(lr@u):=(P2®1cz,), P2®1c(z,) 17 ®u).
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A StroONG CoNNEcTION FOrRMULA FOR C (Sﬂzv). Parrt I1

Let us denote for brevity a; := a;(17 ® u). Because u” = 1 we have

1-af = ((1-¢})®1,0,(1-¢3)®1), 1-af =((1-¢3)®1,(1-¢3)®1,0).
The straightforward application of the formula from the main theorem
yields:

O(u):=ay®ap(l —alz)(l —a%) +a;®aq(l —a%) +a,®a;

=(18u,¢181,¢;01)®((1-¢7)(1-¢$3)®u,0,0)
+(p191L,181,¢,01)8(p1(1-¢3)®1,(1-p3)®u,0)
+(P2®1¢c(z,), P2®1c(z,), 17 ®U)®(P2®1¢c(z,)
$2®1c(z,), 17 ®u).

Both left and right legs of the above strong connection are linearly
independent (when taken separately).
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