
One-one correspondence between cocycles and generating functionals on
quantum groups in presence of symmetry

jointly with U. Franz, A. W. Kula and A. Skalski

All inner products will be left conjugate linear and right linear.

Let Γ be a discrete group.

Definition 0.1. A function f : Γ −→ C is called conditionally positive definite if for all n ∈ IN ,
{g1, g2, ...gn} ⊂ Γ and {α1, α2, ...αn} ⊂ C we have

n∑
i,j=1

αiαjf(g−1i gj) ≥ 0 (whenever
n∑
i=1

αi = 0).

It is called normalized if f(e) = 0, where e is the identity of Γ.

Definition 0.2. Let U : Γ −→ B(H) be a unitary representation of Γ. A map c : Γ −→ H is called
a cocycle with respect to U if

c(gh) = c(g) + Ug(c(h)) (g, h ∈ Γ).

Let CΓ be the group algebra, which is thought of as the coefficient algebra of the compact
quantum group C∗(Γ) (the full group C*-algebra of Γ ). For g ∈ Γ, we will denote the corresponding
element of CΓ by λg. By definition we see that the set {λg : g ∈ Γ} is a linear basis for CΓ. Moreover
(CΓ,∆) is a CQG-algebra, where ∆ is the standard coproduct on the compact quantum group C∗(Γ)
given by ∆(λg) = λg ⊗ λg for all g ∈ Γ. Let ε : CΓ −→ C be the counit so that ε(λg) = 1 for all
g ∈ Γ.

Let us see how f and c look like at the level of group algebra.

(a) How f looks like on CΓ:

Define a functional γ : CΓ −→ C as follows:

γ(λg) := f(g) (and extend linearly).

This is well-defined as {λg : g ∈ Γ} is a basis for CΓ. Take any element x ∈ CΓ and let
x :=

∑m
k=1 αkλgk . We have ε(x) =

∑m
k=1 αk since ε(λg) = 1 for all g ∈ Γ. Moreover we see

that γ(x∗x) =
∑m

i,j=1 αiαjf(g−1i gj), using the fact that (λg)
∗ = λg−1 .

Thus the fact that f is conditionally positive definite implies that γ(x∗x) ≥ 0 whenever
ε(x) = 0. The fact that f is normalized implies that γ(1) = 0.

(b) How c looks like on CΓ:

Define a linear map η : CΓ −→ H as follows:

η(λg) := c(g) (and extend linearly).
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As before η is a well-defined map. Let π be the unique unital ∗-homomorphism π : CΓ −→
B(H) such that π(λg) = Ug. The fact that c is a cocyle translates now to the following:

η(xy) = η(x)ε(y) + π(x)(η(y)) (x, y ∈ CΓ).

The above considerations motivate the following two definitions:

Definition 0.3. Let (A,∆) be a CQG-algebra. A functional γ : A −→ C is called conditionally
positive definite and normalized if

γ(x∗x) ≥ 0 (whenever ε(x) = 0)

and γ(1) = 0.

Definition 0.4. Let (A,∆) be a CQG-algebra and π : A −→ B(H) be a unital *-homomorphism.
A map η : A −→ H is called a cocycle with respect to π if

η(xy) = η(x)ε(y) + π(x)(η(y)) (x, y ∈ A).

These objects are important and they arise in various branches of mathematics, e.g.

(a) A discrete countable group Γ has Haagerup approximation property if there exists a proper
conditionally positive definite function on Γ, whereas it has Kazhdan property (T) (which
is a strong negation of Haagerup approximation property) if for any unitary representation
U : Γ −→ B(H), all cocycles on Γ with respect to U are inner.

(b) Let G be a compact group. Let (µt)t≥0 ⊂ M(G) be a convolution semigroup of probability
measures satisfying : µ0 = δe, the point mass at the identity e and limt→0+ µt(f) = f(e) for
all f ∈ C(G). Define

γ(f) := lim
t→0+

f(e)− µt(f)

t
(whenever it exists).

It can be shown (e.g. using fundamental theorem of coalgebra) that Pol(G) ⊂ Domγ, where
Pol(G) denotes the trigonometric polynomial algebra of G.

Then one can show that γ|
Pol(G)

: Pol(G) −→ C is a conditionally positive definite functional,
with γ(1) = 0.

Let (A,∆) be a CQG-algebra and γ : A −→ C be a conditionally positive definite functional
such that γ(1) = 0. Such a functional will be called a generating functional.

Let a ∈ A and x := a − ε(a)1. Then ε(x) = 0. Thus γ(x∗x) ≥ 0. Thus we have γ(a∗a) −
ε(a∗)γ(a)− γ(a∗)ε(a) ≥ 0 for all a ∈ A. This immediately allows us to define an inner-product on
A:

For a, b ∈ A define 〈a, b〉 := γ(a∗b)− ε(a∗)γ(b)− γ(a∗)ε(b). Let I := {a ∈ A : 〈a, a〉 = 0}. Note
that I 6= φ as 1 ∈ I. Let D := A/I. Thus D becomes a pre-Hilbert space. Let H := D. Let
η : A −→ H denote the quotient map. Let L†(D) denotes the set of adjointable linear maps on D
i.e. if T ∈ L†(D), then there exists a linear map T ∗ : D −→ D such that 〈ξ, T (η)〉 = 〈T ∗(ξ), η〉
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for all ξ, η ∈ D. Define π : A −→ L†(D) by π(a)(η(b)) := η(ab) − η(a)ε(b). Can check that π is
well-defined, π(1) = 1, 〈ξ, π(ab)(η)〉 = 〈π(a)∗(ξ), π(b)(η)〉 for all ξ, η ∈ D. (Lindsay-Skalski): Since
(A,∆) is a CQG-algebra, it is spanned by the matrix coeficients of all finite dimensional unitary
representations. Let u := ((uij)) ∈Mn(A) be a unitary corepresentation of A of dimension n. For
ξ ∈ D we have that

‖π(uij)(ξ)‖2 = 〈ξ, π(u∗ijuij)(ξ)〉 ≤ 〈ξ,
n∑
k=1

π(u∗kjukj)(ξ)〉 = ‖ξ‖2,

since
∑n

k=1 u
∗
kjukj = 1 and π(1) = 1. This shows that π(A) ⊂ B(H). Thus π : A −→ B(H)

becomes a unital *-homomorphism. Obviously by the definition of η we see that η is a cocycle with
respect to π and by the definition of the inner-product we see that

〈η(a), η(b)〉 = γ(a∗b)− ε(a∗)γ(b)− γ(a∗)ε(b) (∀ a, b ∈ A). (1)

Thus given a CQG-algebra (A,∆) and a generating functional γ : A −→ C, we can associate a
unital *-representation π : A −→ B(H), a cocyle η : A −→ H with respect to π such that they are
related by equation (1).

Question: Let (A,∆) be a CQG-algebra, π : A −→ B(H) be a unital *-representation and
η : A −→ H be a cocycle with respect to π. Can you find a generating functional γ : A −→ C such
that it is related to η by equation (1)?

NO! e.g.:
Consider the 2-dimensional torus T2 and the CQG-algebra (Pol(T2),∆), where ∆ is the standard

coproduct on C(T2). We have that

C(T2) = C∗{U, V : UU∗ = U∗U = V V ∗ = V ∗V = 1, UV = V U}.

The set {UmV n : m,n ∈ Z} is a basis for Pol(T2). Take π := ε, the counit of C(T2) and
η : Pol(T2) −→ C be defined by extending the rule η(U) := ru, η(U∗) := −ru, η(V ) := rv,
η(V ∗) := −rv on elements like UmV n, using the identity η(xy) = η(x)ε(y) + ε(x)η(y). Moreover
assume that rurv ∈ C/R.

Now suppose there is a generating functional γ : Pol(T2) −→ C such that η is related to γ via
equation (1). We have γ(UV ) = γ(V U). Now

γ(UV ) = γ(U) + γ(V ) + 〈η(U∗), η(V )〉

and
γ(V U) = γ(V ) + γ(U) = 〈η(V ∗), η(U)〉.

Thus equating both sides we have

〈η(U∗), η(V )〉 = 〈η(V ∗), η(U)〉

or in other words
〈η(U), η(V )〉 = 〈η(V ), η(U)〉

which implies that 〈η(U), η(V )〉 = rurv ∈ R which is a contradiction.
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Proposition 0.5 (Kyed & Vergnioux, 2011). Let (A,∆) be a CQG-algebra, π : A −→ B(H) be a
unital *-representation and η : A −→ H be a cocycle with respect to π. Let furthermore η satisfies

〈η(S(a)∗), η(S(b∗))〉 = 〈η(b), η(a)〉 (a, b ∈ A) (2)

where S is the antipode. Then there exists a generating functional γ : A −→ C satisfying

• γ ◦ S = γ.

• Equation (1) holds.

Conversely given a generating functional γ : A −→ C satisfying γ ◦ S = γ, the cocycle η obtained
from it satisfies condition (2). Moreover the functional γ is given by

γ(a) = −1

2
〈η(S(a(1))

∗), η(a(2))〉 (a ∈ A).

We will generalize this result.

Definition 0.6. Let (A,∆) be a CQG-algebra. A linear map α : A −→ A is called an admissible
bijection if we have

1. α is a homomorphism.

2. α((α(x∗))∗) = x for all x ∈ A.

3. (α⊗ α) ◦∆ = ∆ ◦ α.

4. id + α is a bijection on A.

5. id⊗ id + α⊗ α is a bijection on A⊗A.

Given such an admissible bijection, define Sα := S ◦ α, which we call α-twisted antipode. Note
that for α = id Sα = S and for α = τ i

2
where (τt)t≥0 is the scaling automorphism group of (A,∆),

we have that Sα = R, the unitary antipode of (A,∆).
Note that Sα satisfies the identities:

Sα(a(1))α(a(2)) = ε(a)1 = α(a(1))Sα(a(2)) (a ∈ A).

Compare this with the usual antipode identities:

S(a(1))a(2) = ε(a)1 = a(1)S(a(2)) (a ∈ A).

Theorem 0.7 (BD, Franz, Kula & Skalski). Let (A,∆) be a CQG-algebra, π : A −→ B(H) be a
unital *-representation, η : A −→ H be a cocycle with respect to π and α be an admissible bijection.
Let furthermore η satisfies

〈η(Sα(a)∗), η(Sα(b∗))〉 = 〈η(b), η(a)〉 (a, b ∈ A) (3)

Then there exists a generating functional γ : A −→ C satisfying
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• γ ◦ Sα = γ.

• Equation (1) holds.

Conversely given a generating functional γ : A −→ C satisfying γ ◦ Sα = γ, the cocycle η obtained
from it satisfies condition (3).

Taking α = id gives the theorem of Kyed & Vergnioux. Taking α = τ i
2

gives a new inter-

esting result. It produces a KMS-symmetric generating functional, which complements Kyed &
Vergnioux’s result which produces a GNS-symmetric functional.

A few comments about our theorem:

The formula for γ coming out of our theorem is slightly complicated. It is as follows. Let a ∈ A.
Then by property 4. of admissible bijection, there exists c ∈ A such that (id + α)(c) = a. Then

γ(a) = −〈η(Sα(c(1))
∗), η(α(c(2)))〉.

How we guess such a formula:
Suppose there is such a γ for this η related by equation (1). Then applying γ to the identity

Sα(a(1))α(a(2)) = ε(a)1, using the fact that γ(1) = 0 and equation (1) we arrive exactly at this
formula.

This is part of the work : arXiv: 1410.6944 [math.QA.]
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