Deformation quantization of Hamiltonian actions in Poisson geometry

Chiara Esposito

Universitat Autonoma de Barcelona

February 18, 2013

1/38

Outline

Hamiltonian actions

Hamiltonian actions in canonical setting Hamiltonian actions in Poisson geometry Poisson Reduction

Quantization

Approach Quantum Hamiltonian actions Quantum reduction Examples

Towards?

Symplectic groupoids and Hamiltonian actions Quantization

Hamiltonian actions in canonical setting Hamiltonian actions in Poisson geometry Poisson Reduction

イロト 不得 とくき とくき とうき

3/38

Canonical action

Definition

Let G be a Lie group acting on a Poisson manifold (M, π) . The action $\Phi : G \times M \to M$ is said canonical if

$$\Phi_g^*\{f,h\} = \{\Phi_g^*f, \Phi_g^*h\} \qquad \forall f,h \in C^\infty(M)$$

What is Hamiltonian action?

Hamiltonian actions Quantization Towards? Hamiltonian actions in Canonical setting Hamiltonian actions in Poisson geometry Poisson Reduction

Momentum map

A momentum map is a tool associated with a canonical action of a Lie group on a Poisson manifold, used to construct conserved quantities for the action.

Momentum map

A momentum map is a tool associated with a canonical action of a Lie group on a Poisson manifold, used to construct conserved quantities for the action.

Supposing that exist a linear map $H : \mathfrak{g} \to C^{\infty}(M)$ such that

$$\xi_M = \{H_\xi, \cdot\} = X_{H_\xi}$$

the map $\mu: M o \mathfrak{g}^*$ defined by

Momentum map

A momentum map is a tool associated with a canonical action of a Lie group on a Poisson manifold, used to construct conserved quantities for the action.

Supposing that exist a linear map $H : \mathfrak{g} \to C^{\infty}(M)$ such that

$$\xi_M = \{H_\xi, \cdot\} = X_{H_\xi}$$

the map $\mu: M o \mathfrak{g}^*$ defined by

$$H_{\xi}(m) = \langle \mu(m), \xi \rangle$$

is the momentum map for the canonical action.

Hamiltonian action

A momentum map $\mu : M \to \mathfrak{g}^*$ is equivariant if the correspondent $H : \mathfrak{g} \to C^{\infty}(M)$ is a Lie algebra homomorphism.

Theorem

A canonical action is Hamiltonian if and only if there is a Lie algebra homomorphism $\psi : \mathfrak{g} \to C^{\infty}(M)$ such that $X_{\psi(\xi)} = \xi_M$ for all $\xi \in \mathfrak{g}$. If ψ exists, an equivariant momentum map μ is determined by $H = \psi$. Conversely, if μ is equivariant, we can take $\psi = H$.

Hamiltonian actions in canonical setting Hamiltonian actions in Poisson geometry Poisson Reduction

Symplectic Reduction

Marsden and Weinstein idea: we can reduce the size of the phase space by taking advantage of the momentum map and the invariance of the system under the given symmetry group.

Symplectic Reduction

Marsden and Weinstein idea: we can reduce the size of the phase space by taking advantage of the momentum map and the invariance of the system under the given symmetry group.

Theorem (Marsden-Weinstein Reduction)

Let $\Phi : G \times M \to M$ be a Hamiltonian action of the Lie group Gon the Poisson manifold (M, π) with momentum map $\mu : M \to \mathfrak{g}^*$. Let $u \in \mathfrak{g}^*$ be a regular value of μ and suppose that G_u acts freely and properly on the manifold $\mu^{-1}(u)$. Then there is a Poisson structure π_u on the reduced space $M//G := \mu^{-1}(u)/G_u$.

Hamiltonian actions in canonical setting Hamiltonian actions in Poisson geometry Poisson Reduction

イロン イロン イヨン イヨン 三日

7/38

Ingredients

What is a Hamiltonian action in this context?

Ingredients:

- Poisson Lie groups
- Lie bialgebras

Hamiltonian actions in canonical setting Hamiltonian actions in Poisson geometry Poisson Reduction

Poisson Lie groups

Definition

A Poisson Lie group (G, π) is a Lie group equipped with a Poisson structure π which preserves multiplication and inverse.

Example

 $\pi = 0$ is obviously multiplicative, hence any Lie group G with the trivial Poisson structure is a Poisson Lie group.

Hamiltonian actions in canonical setting Hamiltonian actions in Poisson geometry Poisson Reduction

Lie bialgebra

Definition

A Lie bialgebra is a Lie algebra $\mathfrak g$ with a linear map $\delta:\mathfrak g\to\mathfrak g\wedge\mathfrak g$ such that

- ${}^t\delta:\mathfrak{g}^*\otimes\mathfrak{g}^*\to\mathfrak{g}^*$ defines a Lie bracket on \mathfrak{g}^* , and
- δ is a 1-cocycle on $\mathfrak g$ relative to the adjoint representation of $\mathfrak g$ on $\mathfrak g\otimes \mathfrak g$

$$\mathsf{ad}_{\xi}(\delta(\eta)) - \mathsf{ad}_{\eta}(\delta(\xi)) - \delta([\xi,\eta]) = 0$$

Hamiltonian actions in canonical setting Hamiltonian actions in Poisson geometry Poisson Reduction

Dual Poisson Lie group

Theorem

If (G, π_G) is a Poisson Lie group, then the linearization of π_G at e defines a Lie algebra structure on \mathfrak{g}^* . Conversely, if G is connected and simply connected, then every Lie bialgebra (\mathfrak{g}, δ) defines a unique multiplicative Poisson structure π_G on G.

This implies that G^* is also a Poisson Lie group, called dual.

Hamiltonian actions in canonical setting Hamiltonian actions in Poisson geometry Poisson Reduction

Poisson action

Definition

The action of (G, π_G) on (M, π) is called Poisson action if the map $\Phi : G \times M \to M$ is Poisson, where $G \times M$ is a Poisson manifold with structure $\pi_G \oplus \pi$.

Generalization of canonical action! If $\pi_G = 0$, the action is Poisson if and only if it preserves π .

 Hamiltonian actions Quantization Towards?
 Hamiltonian actions in canonical setting Hamiltonian actions in Poisson geometry Poisson Reduction

Momentum map

Definition (Lu)

A momentum map for the Poisson action $\Phi:G\times M\to M$ is a map $\mu:M\to G^*$ such that

$$\xi_{\mathcal{M}} = \pi^{\sharp}(\boldsymbol{\mu}^{*}(\theta_{\xi}))$$

where θ_{ξ} is the left invariant 1-form on G^* defined by the element $\xi \in \mathfrak{g} = (T_e G^*)^*$ and μ^* is the cotangent lift $T^*G^* \to T^*M$.

 Hamiltonian actions Quantization Towards?
 Hamiltonian actions in canonical setting Hamiltonian actions in Poisson geometry Poisson Reduction

Momentum map

Definition (Lu)

A momentum map for the Poisson action $\Phi:G\times M\to M$ is a map $\mu:M\to G^*$ such that

$$\xi_{\mathcal{M}} = \pi^{\sharp}(\boldsymbol{\mu}^{*}(\theta_{\xi}))$$

where θ_{ξ} is the left invariant 1-form on G^* defined by the element $\xi \in \mathfrak{g} = (T_e G^*)^*$ and μ^* is the cotangent lift $T^*G^* \to T^*M$.

A Hamiltonian action is a Poisson action induced by an equivariant momentum map.

Infinitesimal momentum map

Let's focus on the map $\alpha : \mathfrak{g} \to \Omega^1(M)$

Definition

Let M be a Poisson manifold and G a Poisson Lie group. An infinitesimal momentum map is a morphism of Gerstenhaber algebras

$$\alpha: (\wedge^{\bullet}\mathfrak{g}, \delta, [\,,\,]) \longrightarrow (\Omega^{\bullet}(M), d_{DR}, [\,,\,]_{\pi}).$$

Poisson Reduction

Theorem

Let $\Phi: G \times M \to M$ be a Hamiltonian action with momentum map $\mu: M \to G^*$ and $u \in G^*$ a regular value of μ . The Poisson reduction of (M, G) is the quotient

$$M//G := \mu^{-1}(\mathcal{O}_u)/G$$

M//G inherits a Poisson structure from M.

Poisson Reduction

Theorem

Let $\Phi: G \times M \to M$ be a Hamiltonian action with momentum map $\mu: M \to G^*$ and $u \in G^*$ a regular value of μ . The Poisson reduction of (M, G) is the quotient

$$M//G := \mu^{-1}(\mathcal{O}_u)/G$$

M//G inherits a Poisson structure from M.

Example

Suppose that $\pi_G = 0$. Then

$$C^{\infty}(M//G) \simeq (C^{\infty}(M)/\mathcal{I})^{G}$$

Approach Quantum Hamiltonian actions Quantum reduction Examples

イロト 不得 とくき とくき とうき

15/38

Deformation quantization approach

Goal: quantize Hamiltonian actions and Poisson reduction.

Steps:

- Quantize a Poisson action
- Quantize Momentum map
- Quantize Poisson reduction

Approach Quantum Hamiltonian actions Quantum reduction Examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

16/38

Quantization of Poisson manifold

Given (M, π) we define

$$f \star g = f \cdot g + \sum_{n=1}^{\infty} \hbar^n P_n(f,g)$$

where

$$P_1(f,g) - P_1(g,f) = \{f,g\}$$

Approach Quantum Hamiltonian actions Quantum reduction Examples

17/38

Quantization of Lie bialgebra

Given (\mathfrak{g}, δ) we associate the Hopf algebra $(\mathcal{U}(\mathfrak{g}), \Delta)$, where

 $\Delta X = X \otimes 1 + 1 \otimes X$

Quantum group $(\mathcal{U}_{\hbar}(\mathfrak{g}), \Delta_{\hbar}, [\cdot, \cdot]_{\hbar})$

$$\Delta_{\hbar} = \Delta + \sum_{n=1}^{\infty} \hbar^n \Delta_n$$

niltonian actions Quantization Towards? Approach Quantum Hamiltonian actions Quantum reduction Examples

Quantum action

How can we define a quantum action of $\mathcal{U}_{\hbar}(\mathfrak{g})$ on \mathcal{A}_{\hbar} ?

- Hopf algebra action
- $\hbar \rightarrow 0$ Poisson action

amiltonian actions Quantization Towards? Quantum Hamiltonian actions Quantum reduction Examples

Quantum action

How can we define a quantum action of $\mathcal{U}_{\hbar}(\mathfrak{g})$ on \mathcal{A}_{\hbar} ?

- Hopf algebra action
- $\hbar \rightarrow 0$ Poisson action

Definition

The quantum action is a linear map

$$\Phi_{\hbar}: \mathcal{U}_{\hbar}(\mathfrak{g}) \to \mathit{End} \ \mathcal{A}_{\hbar}: \xi \mapsto \Phi_{\hbar}(\xi)(f)$$

such that

- Hopf algebra action
- 2 Algebra homomorphism

Quantum Hamiltonian action

- Quantum momentum map which, as in the classical case, factorizes the quantum action
- 2) $\hbar \rightarrow 0$ classical momentum map

Non commutative forms

The non-commutative analogue of the de Rham complex is $(\Omega(\mathcal{A}_{\hbar}), d)$ with the universal derivation

$$d:\mathcal{A}_{\hbar}
ightarrow\Omega(\mathcal{A}_{\hbar})$$

Approach Quantum Hamiltonian actions Quantum reduction Examples

20/38

Quantum momentum map

The map

$$adb \longmapsto a[b,\cdot]_*$$

induces a non commutative product on $\Omega(\mathcal{A}_{\hbar})$ and natural morphism of differential graded algebras

$$\Omega^1(\mathcal{A}_{\hbar}) \longrightarrow C^1(\mathcal{A}_{\hbar}, \mathcal{A}_{\hbar})$$

This induces a first definition of the momentum map.

Approach Quantum Hamiltonian actions Quantum reduction Examples

21/38

Quantum momentum map

Definition

A quantum momentum map is defined to be a linear map

$$oldsymbol{\mu}_{\hbar}:\mathcal{U}_{\hbar}(\mathfrak{g})
ightarrow \Omega^{1}(\mathcal{A}_{\hbar}): \xi\mapsto \sum_{i}a^{i}_{\xi}db^{i}_{\xi}.$$

Such μ_{\hbar} defines an action of $\mathcal{U}_{\hbar}(\mathfrak{g})$ on \mathcal{A}_{\hbar} via the map

$$\Omega^1(\mathcal{A}_\hbar) o C^1(\mathcal{A}_\hbar, \mathcal{A}_\hbar).$$

Approach Quantum Hamiltonian actions Quantum reduction Examples

Extension

Definition

A quantum momentum map is defined to be a linear map

 $\mu_{\hbar}: \mathcal{T}(\mathcal{U}_{\hbar}(\mathfrak{g})[1]) \to \Omega^{\bullet}(\mathcal{A}_{\hbar}): \xi_1 \otimes \cdots \otimes \xi_n \mapsto a_1 db_1 \otimes \cdots \otimes a_n db_n$ such that

$$\Phi_{\hbar}(\xi_1 \otimes \cdots \otimes \xi_n)(f_1, \ldots, f_n) = \frac{1}{\hbar^n} a_1[b_1, f_1] \ldots a_n[b_n, f_n]$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 22/38

Approach Quantum Hamiltonian actions Quantum reduction Examples

イロト 不同下 イヨト イヨト

- 32

23 / 38

Quantum Reduction

Definition

Le \mathcal{I}_{\hbar} be the left ideal of \mathcal{A}_{\hbar} generated by $\boldsymbol{\mu}_{\hbar}$. The action of $\mathcal{U}_{\hbar}(\mathfrak{g})$ descends to an action on $\mathcal{A}_{\hbar}/\mathcal{I}_{\hbar}$ and we define the reduced algebra by

$$\mathcal{A}^{\mathit{red}}_{\hbar} = (\mathcal{A}_{\hbar}/\mathcal{I}_{\hbar})^{\mathcal{U}_{\hbar}(\mathfrak{g})}$$

amiltonian actions Quantization Towards? Examples

Hopf algebra action condition

Assume that ξ acts by

$$\Phi_{\hbar}(\xi) = rac{1}{\hbar}a[b,\cdot]$$

for some $a, b \in C^{\infty}_{\hbar}(M)$. Note that $a \neq 0$ as soon as ξ is not killed by the cocycle δ .

Hopf algebra action $\implies \Phi_{\hbar}(\eta) = \frac{1}{\hbar}a[a^{-1}, \cdot]$

$$\Delta_{\hbar}(\xi) = \xi \otimes 1 - \hbar \eta \otimes \xi + 1 \otimes \xi$$

 $\Delta_{\hbar}(\eta) = \eta \otimes 1 - \hbar \eta \otimes \eta + 1 \otimes \eta$

・ロ ・ < 部 ・ < 言 > < 言 > 言 の へ で 24 / 38 Hamiltonian actions Quantization Towards? Approach Quantum Hamiltonian actions Quantum reduction Examples

Algebra homomorphism condition

We calculate the bracket of generators to get the deformed algebra structure of \mathfrak{g} :

$$\begin{split} \left[\Phi_{\hbar}(\xi), \Phi_{\hbar}(\eta) \right] f &= \frac{1}{\hbar^2} (a[b, a[a^{-1}, f]] - a[a^{-1}, a[b, f]]) \\ &= a[b, a][a^{-1}, f] + a^2[[b, a^{-1}], f]. \end{split}$$

イロト 不得下 イヨト イヨト 二日

25 / 38

Imposing that Φ_{\hbar} is a Lie algebra homomorphism we obtain different algebra structures that we discuss case by case.

Approach Quantization Towards? Approach Quantum Hamiltonian action: Quantum reduction Examples

Two dimensions: [a, b] = 0

Consider the Lie bialgebra $\mathfrak{g} = \mathbb{R}^2$ with generators ξ, η and a deformation quantization $C^{\infty}_{h}(M)$ of a Poisson manifold M.

Algebra homomorphism $\Longrightarrow \mathcal{U}_{\hbar}(\mathbb{R}^2)$ generated by $[\xi,\eta]=0$

deformation quantization of

Abelian Lie bialgebra $\mathfrak{g}=\mathbb{R}^2$ with cobracket

$$\delta(\xi) = -\frac{1}{2}\eta \wedge \xi$$

 $\delta(\eta) = 0$

 tonian actions Quantization Towards? Approach Quantum Hamiltonian acti Quantum reduction Examples

Two dimensions: [a, b] = 0

Classical action

$$\Phi(\xi) = a_0\{b_0, \cdot\} \\ \Phi(\eta) = a_0\{a_0^{-1}, \cdot\}.$$

Quantum reduction

$$(C^{\infty}_{\hbar}(M)/\mathcal{I}_{\hbar})^{\mathcal{U}_{\hbar}(\mathbb{R}^{2})} = \{a = \lambda, b = \mu\}^{\mathcal{U}_{\hbar}(\mathbb{R}^{2})}$$

Quantization of the Poisson reduced algebra

$$(C^{\infty}(\mathcal{M})/\mathcal{I})^{\mathbb{R}^2} = \{a_0 = \lambda, b_0 = \mu\}^{\mathbb{R}^2}$$

 Hamiltonian actions Quantization Towards? Approach Quantum Hamiltonian actions Quantum reduction Examples

Three dimensions: $\mathfrak{su}(2)$

Consider $a, b, c \in C^\infty_\hbar(M)$ satisfying

$$egin{aligned} aba^{-1} &= e^{2\hbar}b\ aca^{-1} &= e^{-2\hbar}c\ [b,c] &= rac{\hbar^2}{e^{-\hbar}-e^{\hbar}}a^{-2}-(1-e^{2\hbar})cb \end{aligned}$$

and the generators ξ,η,ζ acting respectively by

$$\Phi_{\hbar}(\xi)f = rac{1}{\hbar}a[b,f]$$

 $\Phi_{\hbar}(\eta)f = rac{1}{\hbar}[c,f]a$
 $\Phi_{\hbar}(\zeta)f = afa^{-1}.$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Hamiltonian actions Quantization Towards? Approach Quantum Hamiltonian actions Quantum reduction Examples

Three dimensions: $\mathfrak{su}(2)$

Lie algebra homomorphism

$$\begin{split} \zeta \xi \zeta^{-1} &= e^{2\hbar} \xi \\ \zeta \eta \zeta^{-1} &= e^{-2\hbar} \eta \\ [\xi, \eta] &= \frac{\zeta^{-1} - \zeta}{e^{-\hbar} - e^{\hbar}} \end{split}$$

Output A light and a light a light

$$egin{aligned} \Delta_\hbar(\zeta) &= \zeta\otimes\zeta\ \Delta_\hbar(\xi) &= \xi\otimes 1+\zeta\otimes\xi\ \Delta_\hbar(\eta) &= 1\otimes\eta+\eta\otimes\zeta^{-1}. \end{aligned}$$

amiltonian actions Quantization Towards? Particular Approach Quantum Hamiltonian actions Quantum reduction Examples

Three dimensions: $\mathfrak{su}(2)$

Let

$$\Lambda = a^{-2} - e^{\hbar} \frac{(1 - e^{2\hbar})^2}{\hbar^2} cb$$

The ideal \mathcal{I}_{\hbar} generated by Λ in \mathcal{A}_{\hbar} is $\mathcal{U}_{\hbar}(\mathfrak{su}(2))$ -invariant, and $(C_{\hbar}^{\infty}(\mathcal{M})/\mathcal{I}_{\hbar})^{\mathcal{U}_{\hbar}(\mathfrak{su}(2))}$

is the deformation quantization of the Poisson reduction

M//SU(2)

corresponding to the symplectic leaf $a_0^{-2} - 4b_0c_0 = 0$ in $SU(2)^* = SB(2, \mathbb{C})$.

Idea

Given a Poisson manifold (M, π) we can associate $\Sigma(M) \rightrightarrows M$.

Question: given a Poisson action of (G, π_G) on (M, π) , can we associate an action of (G, π_G) on $\Sigma(M)$?

Theorem

Given a Poisson action $G \times M \to M$ there exists a lifted Poisson action of G on $\Sigma(M)$ which is Hamiltonian with momentum map $J : \Sigma(M) \to G^*$.

Symplectic groupoids and Hamiltonian actions Quantization

Groupoid

Groupoid Γ over M is defined by

 $\Gamma
ightarrow M$

Symplectic groupoids and Hamiltonian actions Quantization

32 / 38

Groupoid

Groupoid Γ over M is defined by

 $\Gamma \rightrightarrows M$

Composition map $m: \Gamma_2 \to \Gamma$ where

$$\Gamma_2 = \{(g, h) \in \Gamma imes \Gamma | s(g) = t(h)\}$$

Unit map $u: M \to \Gamma: x \mapsto 1_x$ Inverse map $i: \Gamma \to \Gamma: g \mapsto g^{-1}$

Symplectic groupoids and Hamiltonian actions Quantization

Lie groupoid

Definition

A Lie groupoid is a groupoid ($\Gamma \Rightarrow M, m, i, u$) where

- Γ and *M* are manifolds
- *s*, *t*, *m*, *i* and *u* are smooth maps
- s and t are submersions

Symplectic groupoids and Hamiltonian actions Quantization

Symplectic groupoid

Definition

A Poisson groupoid is a Lie groupoid $\Gamma \rightrightarrows M$ with a multiplicative structure π on Γ .

When π is non degenerate, $\Omega = \pi^{-1}$ is a symplectic form. Thus, $(\Gamma \Rightarrow M, \Omega)$ symplectic groupoid.

Poisson action on symplectic groupoid

A momentum map for the action of a Poisson Lie group (G, π_G) on symplectic groupoid $\Gamma \rightrightarrows M$ is a map $J : \Gamma \rightarrow G^*$ such that

$$\xi_{M}=\pi^{\sharp}(J^{*}(heta_{\xi}))$$

Theorem

If $G \times \Gamma \to \Gamma$ is Hamiltonian action with momentum map

 $J: \Gamma \to G^*$ such that J(M) = e then the following are equivalent:

- $\ \, \bullet \ \, J:\Gamma\to G^* \ \, is \ \, a \ \, groupoid \ \, morphism$
- 2 twisted multiplicativity

Quantization of J

Hamiltonian action $G \times \Gamma \to \Gamma$ with momentum map $J : \Gamma \to G^*$

Quantize symplectic groupoid given by quantum groupoid

$$C^{\infty}_{\hbar}(M) \rightrightarrows C^{\infty}_{\hbar}(\Gamma)$$

- **2** Quantize action $\mathfrak{g} \to \operatorname{End} C^{\infty}(\Gamma)$
- **③** Quantize groupoid homomorphism $\alpha : \mathfrak{g} \to \Omega^1(\Gamma)$

・ロン ・四 と ・ 回 と ・ 回 と

37 / 38

Lifted momentum map

Hamiltonian action $G \times M \rightarrow M$ with momentum map

$$\mu: M
ightarrow G^*$$

If (M, π) is integrable, we associate $\Sigma(M) \rightrightarrows M$ and we get a lifted Hamiltonian action $G \times \Sigma(M) \rightarrow \Sigma(M)$ with momentum map

$$J: \Sigma(M) \rightarrow M: J(x) = \mu(t(x))\mu(s(x))^{-1}$$

Symplectic groupoids and Hamiltonian actions Quantization

Thanks!

Now we have our "towards" :)