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Canonical action

Definition
Let G be a Lie group acting on a Poisson manifold (M, π). The
action Φ : G ×M → M is said canonical if

Φ∗g{f , h} = {Φ∗g f ,Φ∗gh} ∀f , h ∈ C∞(M)

What is Hamiltonian action?
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Momentum map

A momentum map is a tool associated with a canonical action of a
Lie group on a Poisson manifold, used to construct conserved
quantities for the action.

Supposing that exist a linear map H : g→ C∞(M) such that

ξM = {Hξ, · } = XHξ

the map µ : M → g∗ defined by

Hξ(m) = 〈µ(m), ξ〉

is the momentum map for the canonical action.
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Hamiltonian action

A momentum map µ : M → g∗ is equivariant if the correspondent
H : g→ C∞(M) is a Lie algebra homomorphism.

Theorem
A canonical action is Hamiltonian if and only if there is a Lie
algebra homomorphism ψ : g→ C∞(M) such that Xψ(ξ) = ξM for
all ξ ∈ g. If ψ exists, an equivariant momentum map µ is
determined by H = ψ. Conversely, if µ is equivariant, we can take
ψ = H.
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Symplectic Reduction

Marsden and Weinstein idea: we can reduce the size of the phase
space by taking advantage of the momentum map and the
invariance of the system under the given symmetry group.

Theorem (Marsden-Weinstein Reduction)

Let Φ : G ×M → M be a Hamiltonian action of the Lie group G
on the Poisson manifold (M, π) with momentum map µ : M → g∗.
Let u ∈ g∗ be a regular value of µ and suppose that Gu acts freely
and properly on the manifold µ−1(u). Then there is a Poisson
structure πu on the reduced space M//G := µ−1(u)/Gu.
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Ingredients

What is a Hamiltonian action in this context?

Ingredients:

Poisson Lie groups

Lie bialgebras
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Poisson Lie groups

Definition
A Poisson Lie group (G , π) is a Lie group equipped with a Poisson
structure π which preserves multiplication and inverse.

Example

π = 0 is obviously multiplicative, hence any Lie group G with the
trivial Poisson structure is a Poisson Lie group.
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Lie bialgebra

Definition
A Lie bialgebra is a Lie algebra g with a linear map δ : g→ g ∧ g
such that

tδ : g∗ ⊗ g∗ → g∗ defines a Lie bracket on g∗, and

δ is a 1-cocycle on g relative to the adjoint representation of g
on g⊗ g

adξ(δ(η))− adη(δ(ξ))− δ([ξ, η]) = 0
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Dual Poisson Lie group

Theorem
If (G , πG ) is a Poisson Lie group, then the linearization of πG at e
defines a Lie algebra structure on g∗. Conversely, if G is connected
and simply connected, then every Lie bialgebra (g, δ) defines a
unique multiplicative Poisson structure πG on G .

This implies that G ∗ is also a Poisson Lie group, called dual.
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Poisson action

Definition
The action of (G , πG ) on (M, π) is called Poisson action if the
map Φ : G ×M → M is Poisson, where G ×M is a Poisson
manifold with structure πG ⊕ π.

Generalization of canonical action! If πG = 0, the action is Poisson
if and only if it preserves π.
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Momentum map

Definition (Lu)

A momentum map for the Poisson action Φ : G ×M → M is a
map µ : M → G ∗ such that

ξM = π](µ∗(θξ))

where θξ is the left invariant 1-form on G ∗ defined by the element
ξ ∈ g = (TeG ∗)∗ and µ∗ is the cotangent lift T ∗G ∗ → T ∗M.

A Hamiltonian action is a Poisson action induced by an equivariant
momentum map.
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Infinitesimal momentum map

Let’s focus on the map α : g→ Ω1(M)

Definition
Let M be a Poisson manifold and G a Poisson Lie group. An
infinitesimal momentum map is a morphism of Gerstenhaber
algebras

α : (∧•g, δ, [ , ]) −→ (Ω•(M), dDR , [ , ]π).
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Poisson Reduction

Theorem
Let Φ : G ×M → M be a Hamiltonian action with momentum
map µ : M → G ∗ and u ∈ G ∗ a regular value of µ. The Poisson
reduction of (M,G ) is the quotient

M//G := µ−1(Ou)/G

M//G inherits a Poisson structure from M.

Example

Suppose that πG = 0. Then

C∞(M//G ) ' (C∞(M)/I)G

14 / 38



Hamiltonian actions
Quantization

Towards?

Hamiltonian actions in canonical setting
Hamiltonian actions in Poisson geometry
Poisson Reduction

Poisson Reduction

Theorem
Let Φ : G ×M → M be a Hamiltonian action with momentum
map µ : M → G ∗ and u ∈ G ∗ a regular value of µ. The Poisson
reduction of (M,G ) is the quotient

M//G := µ−1(Ou)/G

M//G inherits a Poisson structure from M.

Example

Suppose that πG = 0. Then

C∞(M//G ) ' (C∞(M)/I)G

14 / 38



Hamiltonian actions
Quantization

Towards?

Approach
Quantum Hamiltonian actions
Quantum reduction
Examples

Deformation quantization approach

Goal: quantize Hamiltonian actions and Poisson reduction.

Steps:

1 Quantize a Poisson action

2 Quantize Momentum map

3 Quantize Poisson reduction
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Quantization of Poisson manifold

Given (M, π) we define

f ? g = f · g +
∞∑
n=1

~nPn(f , g)

where

P1(f , g)− P1(g , f ) = {f , g}
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Quantization of Lie bialgebra

Given (g, δ) we associate the Hopf algebra (U(g),∆), where

∆X = X ⊗ 1 + 1⊗ X

Quantum group (U~(g), ∆~, [·, ·]~)

∆~ = ∆ +
∞∑
n=1

~n∆n
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Quantum action

How can we define a quantum action of U~(g) on A~?

Hopf algebra action

~→ 0 Poisson action

Definition
The quantum action is a linear map

Φ~ : U~(g)→ End A~ : ξ 7→ Φ~(ξ)(f )

such that

1 Hopf algebra action

2 Algebra homomorphism
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Quantum Hamiltonian action

1 Quantum momentum map which, as in the classical case,
factorizes the quantum action

2 ~→ 0 classical momentum map

Non commutative forms
The non-commutative analogue of the de Rham complex is
(Ω(A~), d) with the universal derivation

d : A~ → Ω(A~)
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Quantum momentum map

The map
adb 7−→ a[b, · ]∗

induces a non commutative product on Ω(A~) and natural
morphism of differential graded algebras

Ω1(A~) −→ C 1(A~,A~)

This induces a first definition of the momentum map.
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Quantum momentum map

Definition
A quantum momentum map is defined to be a linear map

µ~ : U~(g)→ Ω1(A~) : ξ 7→
∑
i

aiξdbi
ξ.

Such µ~ defines an action of U~(g) on A~ via the map

Ω1(A~)→ C 1(A~,A~).
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Extension

Definition
A quantum momentum map is defined to be a linear map

µ~ : T (U~(g)[1])→ Ω•(A~) : ξ1 ⊗ · · · ⊗ ξn 7→ a1db1 ⊗ · · · ⊗ andbn

such that

Φ~(ξ1 ⊗ · · · ⊗ ξn)(f1, . . . , fn) =
1

~n
a1[b1, f1] . . . an[bn, fn]
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Quantum Reduction

Definition
Le I~ be the left ideal of A~ generated by µ~. The action of U~(g)
descends to an action on A~/I~ and we define the reduced algebra
by

Ared
~ = (A~/I~)U~(g)
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Hopf algebra action condition

Assume that ξ acts by

Φ~(ξ) =
1

~
a[b, · ]

for some a, b ∈ C∞~ (M). Note that a 6= 0 as soon as ξ is not killed
by the cocycle δ.

Hopf algebra action =⇒ Φ~(η) = 1
~a[a−1, ·]

∆~(ξ) = ξ ⊗ 1− ~ η ⊗ ξ + 1⊗ ξ
∆~(η) = η ⊗ 1− ~ η ⊗ η + 1⊗ η
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Algebra homomorphism condition

We calculate the bracket of generators to get the deformed algebra
structure of g:

[Φ~(ξ),Φ~(η)] f =
1

~2
(a[b, a[a−1, f ]]− a[a−1, a[b, f ]])

= a[b, a][a−1, f ] + a2[[b, a−1], f ].

Imposing that Φ~ is a Lie algebra homomorphism we obtain
different algebra structures that we discuss case by case.
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Two dimensions: [a, b] = 0

Consider the Lie bialgebra g = R2 with generators ξ, η and a
deformation quantization C∞~ (M) of a Poisson manifold M.

Algebra homomorphism =⇒ U~(R2) generated by [ξ, η] = 0

deformation quantization of

Abelian Lie bialgebra g = R2 with cobracket

δ(ξ) = −1

2
η ∧ ξ

δ(η) = 0
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Two dimensions: [a, b] = 0

Classical action

Φ(ξ) = a0{b0, ·}
Φ(η) = a0{a−10 , ·}.

Quantum reduction

(C∞~ (M)/I~)U~(R
2) = {a = λ, b = µ}U~(R2)

Quantization of the Poisson reduced algebra

(C∞(M)/I)R
2

= {a0 = λ, b0 = µ}R2
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Three dimensions: su(2)

Consider a, b, c ∈ C∞~ (M) satisfying

aba−1 = e2~b

aca−1 = e−2~c

[b, c] =
~2

e−~ − e~
a−2 − (1− e2~)cb

and the generators ξ, η, ζ acting respectively by

Φ~(ξ)f =
1

~
a[b, f ]

Φ~(η)f =
1

~
[c , f ]a

Φ~(ζ)f = afa−1.
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Three dimensions: su(2)

1 Lie algebra homomorphism

ζξζ−1 = e2~ξ

ζηζ−1 = e−2~η

[ξ, η] =
ζ−1 − ζ
e−~ − e~

2 Hopf algebra action

∆~(ζ) = ζ ⊗ ζ
∆~(ξ) = ξ ⊗ 1 + ζ ⊗ ξ
∆~(η) = 1⊗ η + η ⊗ ζ−1.
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Three dimensions: su(2)

Let

Λ = a−2 − e~
(1− e2~)2

~2
cb

The ideal I~ generated by Λ in A~ is U~(su(2))-invariant, and

(C∞~ (M)/I~)U~(su(2))

is the deformation quantization of the Poisson reduction

M//SU(2)

corresponding to the symplectic leaf a−20 − 4b0c0 = 0 in
SU(2)∗ = SB(2,C).
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Idea

Given a Poisson manifold (M, π) we can associate Σ(M) ⇒ M.

Question: given a Poisson action of (G , πG ) on (M, π), can we
associate an action of (G , πG ) on Σ(M)?

Theorem
Given a Poisson action G ×M → M there exists a lifted Poisson
action of G on Σ(M) which is Hamiltonian with momentum map
J : Σ(M)→ G ∗.
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Groupoid

Groupoid Γ over M is defined by

Γ ⇒ M

Composition map m : Γ2 → Γ where

Γ2 = {(g , h) ∈ Γ× Γ|s(g) = t(h)}

Unit map u : M → Γ : x 7→ 1x

Inverse map i : Γ→ Γ : g 7→ g−1
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Lie groupoid

Definition
A Lie groupoid is a groupoid (Γ ⇒ M,m, i , u) where

Γ and M are manifolds

s, t, m, i and u are smooth maps

s and t are submersions
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Symplectic groupoid

Definition
A Poisson groupoid is a Lie groupoid Γ ⇒ M with a multiplicative
structure π on Γ.

When π is non degenerate, Ω = π−1 is a symplectic form. Thus,
(Γ ⇒ M,Ω) symplectic groupoid.
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Poisson action on symplectic groupoid

A momentum map for the action of a Poisson Lie group (G , πG )
on symplectic groupoid Γ ⇒ M is a map J : Γ→ G ∗ such that

ξM = π](J∗(θξ))

Theorem
If G × Γ→ Γ is Hamiltonian action with momentum map
J : Γ→ G ∗ such that J(M) = e then the following are equivalent:

1 J : Γ→ G ∗ is a groupoid morphism

2 twisted multiplicativity
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Quantization of J

Hamiltonian action G × Γ→ Γ with momentum map J : Γ→ G ∗

1 Quantize symplectic groupoid given by quantum groupoid

C∞~ (M) ⇒ C∞~ (Γ)

2 Quantize action g→ End C∞(Γ)

3 Quantize groupoid homomorphism α : g→ Ω1(Γ)
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Lifted momentum map

Hamiltonian action G ×M → M with momentum map

µ : M → G ∗

If (M, π) is integrable, we associate Σ(M) ⇒ M and we get a lifted
Hamiltonian action G × Σ(M)→ Σ(M) with momentum map

J : Σ(M)→ M : J(x) = µ(t(x))µ(s(x))−1
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Thanks!

Now we have our“towards” :)
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