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EXPANDERS AND MORITA-COMPATIBLE EXACT
CROSSED-PRODUCTS

An expander or expander family is a sequence of finite graphs
X1, X2, X3, . . . which is efficiently connected. A discrete group G
which“contains” an expander in its Cayley graph is a
counter-example to the Baum-Connes (BC) conjecture with
coefficients. Some care must be taken with the definition of
“contains”. M. Gromov outlined a method for constructing such a
group. G. Arjantseva and T. Delzant completed the construction.
Any group so obtained is known as a Gromov group (or Gromov
monster) and these are the only known examples of a non-exact
groups.



The left side of BC with coefficients “sees” any group as if the
group were exact. This talk will indicate how to make a change in
the right side of BC with coefficients so that the right side also
“sees” any group as if the group were exact. This corrected form
of BC with coefficients uses the unique minimal exact and Morita
compatible intermediate crossed-product. For exact groups (i.e. all
groups except the Gromov groups) there is no change in BC with
coefficients.



In the corrected form of BC with coefficients any Gromov group
acting on the coefficient algebra obtained from an expander is not
a counter-example.

Thus at the present time (May, 2014) there is no known
counter-example to the corrected form of BC with coefficients.

The above is joint work with E. Guentner and R. Willett.
This work is based on — and inspired by — a result of R. Willett
and G. Yu, and is very closely connected to results in the thesis of
M. Finn-Sell.



A discrete group Γ which“contains” an expander in its Cayley
graph is a counter-example to the usual (i.e. uncorrected) BC
conjecture with coefficients.

Some care must be taken with the definition of “contains”.



An expander or expander family is a sequence of finite graphs

X1, X2, X3, . . .

which is efficiently connected.









The isoperimetric constant h(X)

For a finite graph X with vertex set V and |V | vertices

h(X) =: min{|∂F |
|F |

| F ⊂ V and |F | ≤ |V |
2
}

|F | = number of vertices in F . F ⊂ V .
|∂F | = number of edges in X having one vertex in F and one
vetex in V − F .



Definition of expander

An expander is a sequence of finite graphs

X1, X2, X3, . . .

such that

Each Xj is conected.

∃ a positive integer d such that all the Xj are d-regular.

|Xn| → ∞ as n→∞.

∃ a positive real number ε > 0 with
h(Xj) ≥ ε > 0 ∀j = 1, 2, 3, . . ..



G topological group

G is assumed to be :
locally compact, Hausdorff, and second countable.

(second countable = The topology of G has a countable base.)

Examples

Lie groups SL(n,R)

p-adic groups SL(n,Qp)

adelic groups SL(n,A)

discrete groups SL(n,Z)



G topological group

locally compact, Hausdorff, and second countable

example C∗rG, the reduced C∗ algebra of G

Fix a left-invariant Haar measure dg for G

“left-invariant” = whenever f : G→ C is continuous and
compactly supported∫

G
f(γg)dg =

∫
G
f(g)dg ∀γ ∈ G

L2G Hilbert space

L2G =
{
u : G→ C |

∫
G |u(g)|2dg <∞

}
〈u, v〉 =

∫
G u(g)v(g)dg u, v ∈ L2G



L(L2G) = C∗ algebra of all bounded operators T : L2G→ L2G

CcG = {f : G→ C | f is continuous and f has compact support}

CcG is an algebra

(λf)g = λ(fg) λ ∈ C g ∈ G

(f + h)g = fg + hg

Multiplication in CcG is convolution

(f ∗ h)g0 =
∫
G
f(g)h(g−1g0)dg g0 ∈ G



0→ CcG→ L(L2G)

Injection of algebras

f 7→ Tf

Tf (u) = f ∗ u u ∈ L2G

(f ∗ u)g0 =
∫
G f(g)u(g−1g0)dg g0 ∈ G

C∗rG ⊂ L(L2G)

C∗rG = CcG = closure of CcG in the operator norm

C∗rG is a sub C∗ algebra of L(L2G)



Ordinary BC and BC with coefficients are for topological groups G
which are locally compact, Hausdorff, and second countable.

EG denotes the universal example for proper actions of G.

EXAMPLE. If Γ is a (countable) discrete group, then
EΓ can be taken to be the convex hull of Γ within l(Γ ).



Example

Give Γ the measure in which each γ ∈ Γ has mass one.
Consider the Hilbert space l(Γ ).
Γ acts on l(Γ ) via the (left) regular representation of Γ.
Γ embeds into l(Γ ) Γ ↪→ l(Γ )
γ ∈ Γ γ 7→ [γ] where [γ] is the Dirac function at γ.
Within l(Γ ) let Convex-Hull(Γ) be the smallest convex set which
contains Γ. The points of Convex-Hull(Γ) are all the finite sums

t0[γ0] + t1[γ1] + · · ·+ tn[γn]

with tj ∈ [0, 1] j = 0, 1, . . . , n and t0 + t1 + · · ·+ tn = 1

The action of Γ on l(Γ ) preserves Convex-Hull(Γ).
Γ×Convex-Hull(Γ) −→Convex-Hull(Γ)
EΓ can be taken to be Convex-Hull(Γ) with this action of Γ.



KG
j (EG) denotes the Kasparov equivariant K-homology

— with G-compact supports — of EG.

Definition

A closed subset ∆ of EG is G-compact if:

1. The action of G on EG preserves ∆.
and
2. The quotient space ∆/G (with the quotient space topology) is
compact.



Definition

KG
j (EG) = lim−→

∆⊂EG
∆ G-compact

KKj
G(C0(∆),C).

The direct limit is taken over all G-compact subsets ∆ of EG.

KG
j (EG) is the Kasparov equivariant K-homology of EG with

G-compact supports.



Ordinary BC

Conjecture

For any G which is locally compact, Hausdorff and second
countable

KG
j (EG)→ Kj(C∗rG) j = 0, 1

is an isomorphism



Corollaries of BC

Novikov conjecture = homotopy invariance of higher signatures

Stable Gromov Lawson Rosenberg conjecture (Hanke + Schick)

Idempotent conjecture

Kadison Kaplansky conjecture

Mackey analogy (Higson)

Exhaustion of the discrete series via Dirac induction
(Parthasarathy, Atiyah + Schmid, V. Lafforgue)

Homotopy invariance of ρ-invariants
(Keswani, Piazza + Schick)



G topological group
locally compact, Hausdorff, second countable

Examples

Lie groups (π0(G) finite) SL(n,R) OKX

p-adic groups SL(n,Qp)OKX

adelic groups SL(n,A)OKX

discrete groups SL(n,Z)



Let A be a G− C∗ algebra i.e. a C∗ algebra with a given
continuous action of G by automorphisms.

G×A −→ A

BC with coefficients

Conjecture

For any G which is locally compact, Hausdorff, and second
countable and any G− C∗ algebra A

KG
j (EG,A)→ Kj(C∗r (G,A)) j = 0, 1

is an isomorphism.



Definition

KG
j (EG,A) = lim−→

∆⊂EG
∆ G-compact

KKj
G(C0(∆) , A).

The direct limit is taken over all G-compact subsets ∆ of EG.

KG
j (EG,A) is the Kasparov equivariant K-homology of EG with

G-compact supports and with coefficient algebra A.



THEOREM [N. Higson + G. Kasparov] Let Γ be a discrete
(countable) group which is amenable or a-t-menable, and let A
be any Γ− C∗algebra. Then

µ : KΓ
j (EΓ, A)→ KjC

∗
r (Γ, A)

is an isomorphism. j = 0, 1



THEOREM [V. Lafforgue] Let Γ be a discrete (countable) group
which is hyperbolic (in Gromov’s sense), and let A
be any Γ− C∗algebra. Then

µ : KΓ
j (EΓ, A))→ KjC

∗
r (Γ, A)

is an isomorphism. j = 0, 1



SL(3,Z) ??????



Basic property of C∗ algebra K-theory
SIX TERM EXACT SEQUENCE

Let

0 −→ I −→ A −→ B −→ 0

be a short exact sequence of C∗ algebras.

Then there is a six term exact sequence of abelian groups

K0I // K0A // K0B

��
K1B

OO

K1Aoo K1Ioo



DEFINITION. G is exact if whenever

0 −→ I −→ A −→ B −→ 0

is an exact sequence of G− C∗ algebras, then

0 −→ C∗r (G, I) −→ C∗r (G,A) −→ C∗r (G,B) −→ 0

is an exact sequence of C∗ algebras.



LEMMA. Let
0 −→ I −→ A −→ B −→ 0

be an exact sequence of G−C∗ algebras. Assume that G is exact.
Then there is a six term exact sequence of abelian groups

K0C
∗
r (G, I) // K0C

∗
r (G,A) // K0C

∗
r (G,B)

��
K1C

∗
r (G,B)

OO

K1C
∗
r (G,A)oo K1C

∗
r (G, I)oo



The left side of BC with coefficients “sees” any G as if G were
exact.



LEMMA. For any locally compact Hausdorff second countable
topological group G and any exact sequence

0 −→ I −→ A −→ B −→ 0

of G− C∗ algebras,
there is a six term exact sequence of abelian groups

KG
0 (EG, I) // KG

0 (EG,A) // KG
0 (EG,B)

��
KG

1 (EG,B)

OO

KG
1 (EG,A)oo KG

1 (EG, I)oo



QUESTION. Do non-exact groups exist?

ANSWER. If a discrete group Γ “contains” an expander in its
Cayley graph, then Γ is not exact.

“contains” = There exists an expander X and a map

f : X −→ Cayley graph(Γ)

such that f is a uniform embedding in the sense of coarse geometry
of metric spaces.



Definition of expander

An expander is a sequence of finite graphs

X1, X2, X3, . . .

such that

Each Xj is conected.

∃ a positive integer d such that all the Xj d-regular.

|Xn| → ∞ as n→∞.

∃ a positive real number ε > 0 with
h(Xj) ≥ ε > 0 ∀j = 1, 2, 3, . . ..



Precise meaning of “contains”
Let X1, X2, X3, . . . be an expander.
∃ maps (of sets) ϕ1, ϕ2, ϕ3, . . .

ϕj : vertices(Xj) −→ Γ j = 1, 2, 3, . . .

with

There is a constant K such that
d(ϕj(x), ϕj(x′)) ≤ Kd(x, x′) ∀j and ∀x, x′ ∈ Xj .

limit
n→∞

(max{|ϕ−1
n (γ)|/|vertices(Xn)| γ ∈ Γ) = 0.



M.Gromov indicated how a discrete group Γ which “contains” an
expander in its Cayley graph might be constructed. Several
mathematicians (Silberman, Arjantseva, Delzant etc etc) then
worked on the problem of constructing such a Γ.

For a complete proof that such a Γ exists, see the paper of
G. Arjantseva and T. Delzant.



If Γ, “contains” an expander in its Cayley graph, then there exists
an exact sequence

0 −→ I −→ A −→ B −→ 0

of Γ− C∗ algebras,
such that

K0C
∗
r (Γ, I) −→ K0C

∗
r (Γ, A) −→ K0C

∗
r (Γ, B)

is not exact
Since

KΓ
0 (EΓ, I) −→ KΓ

0 (EΓ, A) −→ KΓ
0 (EΓ, B)

is exact, such a Γ is a counter-example to BC with coefficients.



For the construction (given such a Γ) of the relevant exact
sequence

0 −→ I −→ A −→ B −→ 0

of Γ− C∗ algebras,
see the paper of N.Higson and V. Lafforgue and G. Skandalis.
A is (the closure of) the sub-algebra of L∞(Γ) consisting of
functions which are supported in R-neighborhoods of the expander.

Also, see the thesis of M. Finn-Sell.



Theorem (N. Higson and G. Kasparov)

If Γ is a discrete group which is amenable (or a-t-menable), then
BC with coeficients is true for Γ.

Theorem ( V. Lafforgue)

If Γ is a discrete group which is hyperbolic (in Gromov’s sense),
then BC with coefficients is true for Γ.



Possible Happy Ending
A possible happy ending is :
If G is exact, then BC with coefficients is true for G.

PROBLEM. Is BC (i.e.ordinary BC = BC without coefficients)
true for SL(3,Z)?



STOP!!!! HOLD EVERYTHING!!!!
Consider the result of Rufus Willett and Guoliang Yu:

Theorem

Let Γ be the Gromov group and let A be the Γ - C∗ algebra
obtained by mapping an expander to the Cayley graph of Γ. Then

KΓ
j (EΓ, A)→ Kj(C∗max(Γ, A)) j = 0, 1

is an isomorphism.

This theorem indicates that for non-exact groups the right side of
BC with coefficients has to be reformulated.
For exact groups (i.e. all groups except the Gromov groups) no
change should be made in the statement of BC with coefficients.



With G fixed, {G− C∗ algebras} denotes the category whose
objects are all the G− C∗ algebras.

Morphisms in {G− C∗ algebras} are ∗-homomorphisms which are
G-equivariant.

{C∗ algebras} denotes the category of C∗ algebras.
Morphisms in {C∗ algebras} are ∗-homomorphisms.



A crossed-product is a functor , denoted A 7→ C∗τ (G,A)
from {G− C∗ algebras} to {C∗ algebras}

C∗τ : {G− C∗algebras} −→ {C∗algebras}



“intermediate” = “between the max and the reduced
crossed-product”

For an intermediate crossed-product C∗τ there are surjections:

C∗max(G,A) −→ C∗τ (G,A) −→ C∗r (G,A)

Denote by τ(G,A) the kernel of the surjection
C∗max(G,A) −→ C∗τ (G,A)

0 −→ τ(G,A) −→ C∗max(G,A) −→ C∗τ (G,A) −→ 0

is exact.



Denote by ε(G,A) the kernel of C∗max(G,A) −→ C∗r (G,A).

0 −→ ε(G,A) −→ C∗max(G,A) −→ C∗r (G,A) −→ 0

is exact.

An intermediate crossed-product C∗τ is then a function τ which
assigns to each G− C∗ algebra A a norm closed ideal τ(G,A) in
C∗max(G,A) such that :



For each G− C∗ algebra A, τ(G,A) ⊆ ε(G,A).

For each morphism A→ B in {G− C∗ algebras}
the resulting ∗-homomorphism C∗max(G,A)→ C∗max(G,B)
maps τ(G,A) to τ(G,B).

C∗τ (G,A) = C∗max(G,A) / τ(G,A)



An intermediate crossed-product C∗τ is exact if whenever

0 −→ A −→ B −→ C −→ 0

is an exact sequence in {G− C∗ algebras} the resulting sequence
in {C∗ algebras}

0 −→ C∗τ (G,A) −→ C∗τ (G,B) −→ C∗τ (G,C) −→ 0

is exact.



Equivalently :
An intermediate crossed-product C∗τ is exact if whenever

0 −→ A −→ B −→ C −→ 0

is an exact sequence in {G− C∗ algebras} the resulting sequence
in {C∗ algebras}

0 −→ τ(G,A) −→ τ(G,B) −→ τ(G,C) −→ 0

is exact.



Set HG = L2(G)⊕ L2(G)⊕ . . . KG = K(HG)

An intermediate crossed-product C∗τ is Morita compatible if for any
G− C∗ algebra A the natural isomorphism of C∗ algebras

C∗max(G,A⊗KG) = C∗max(G,A)⊗KG

descends to give an isomorphism of C∗ algebras

C∗τ (G,A⊗KG) = C∗τ (G,A)⊗KG



QUESTION. Given G, does there exist a unique minimal
intermediate crossed-product which is exact and Morita
compatible?

PROPOSITION. (E. Kirchberg, P.Baum& E.Guentner& R.Willett)
For any locally compact Hausdorff second countable topological
group G there exists a unique minimal intermediate
crossed-product which is exact and Morita compatible.

Denote the unique minimal intermediate exact and Morita
compatible crossed-product by C∗exact.



Reformulation of BC with coefficients.

CONJECTURE. Let G be a locally compact Hausdorff second
countable topological group, and let A be a G− C∗ algebra, then

KG
j (EG,A) −→ Kj(C∗exact(G,A)) j = 0, 1

is an isomorphism.



Theorem (PB and E. Guentner and R. Willett)

Let Γ be a Gromov group and let A be the Γ - C∗ algebra
obtained by mapping an expander to the Cayley graph of Γ. Then

KΓ
j (EΓ, A)→ Kj(C∗exact(Γ, A)) j = 0, 1

is an isomorphism.



Implications of the corrected conjecture:

Novikov (homotopy invariance of higher signatures) and stable
Gromov-Lawson-Rosenberg are implied by the corrected conjecture.

Kadison-Kaplansky : If Γ is a torsion-free discrete group, then in
C∗rΓ there are no idempotent elements (other than 0 and 1).

Kadison-Kaplansky is not implied by the corrected conjecture.



Implied by validity of the corrected conjecture:

If Γ is a torsion-free discrete group, then in the Banach algebra l1Γ
there are no idempotent elements (other than 0 and 1).

l1Γ ⊂ C∗rΓ

Question. Is it possible for a torsion-free discrete group Γ to have
no idempotent elements (other than 0 and 1) in l1Γ — and to
have idempotent elements (other than 0 and 1) in C∗rΓ?



FΓ :=

∑
γ∈Γ

λγ [γ]
∣∣∣∣ order (γ) <∞
λγ ∈ C


Finite Formal Sums

FΓ is a vector space over C

∑
γ∈Γ

λγ [γ]

+

∑
γ∈Γ

µγ [γ]

 =
∑
γ∈Γ

(λγ + µγ)[γ]

λ

∑
γ∈Γ

λγ [γ]

 =
∑
γ∈Γ

λλγ [γ] λ ∈ C



FΓ is a Γ-module

Γ× FΓ→ FΓ

g ∈ Γ
∑
γ∈Γ

λγ [γ] ∈ FΓ

g

(∑
γ∈Γ

λγ [γ]

)
=
∑
γ∈Γ

λγ [g γ g−1]



Hj(Γ;FΓ) :=

the j-th homology group of Γ with coefficients the Γ-module FΓ

j = 0, 1, 2, . . .

Remark

This is standard homological algebra, and is pure algebra (i.e. Γ is
a discrete group and FΓ is a non-topologized module over Γ).



ch : Ktop
∗ (Γ)→ H∗(Γ;FΓ)

ch : Ktop
j (Γ)→ ⊕

`
Hj+2`(Γ;FΓ)

j = 0,1

Proposition

Ktop
j (Γ)⊗

Z
C→ ⊕

`
Hj+2`(Γ;FΓ)

is an isomorphism of vector spaces over C.



EΓ denotes the universal example for proper actions of Γ.
EΓ can be taken to be the convex hull of Γ within l(Γ ).



Example

Give Γ the measure in which each γ ∈ Γ has mass one.
Consider the Hilbert space l(Γ ).
Γ acts on l(Γ ) via the (left) regular representation of Γ.
Γ embeds into l(Γ ) Γ ↪→ l(Γ )
γ ∈ Γ γ 7→ [γ] where [γ] is the Dirac function at γ.
Within l(Γ ) let Convex-Hull(Γ) be the smallest convex set which
contains Γ. The points of Convex-Hull(Γ) are all the finite sums

t0[γ0] + t1[γ1] + · · ·+ tn[γn]

with tj ∈ [0, 1] j = 0, 1, . . . , n and t0 + t1 + · · ·+ tn = 1

The action of Γ on l(Γ ) preserves Convex-Hull(Γ).
Γ×Convex-Hull(Γ) −→Convex-Hull(Γ)
EΓ can be taken to be Convex-Hull(Γ) with this action of Γ.



X topological space

Γ×X → X continuous action of Γ on X

X̃ := {(γ, x) ∈ Γ×X | γx = x}

X̃ ⊂ Γ×X

Γ× X̃ → X̃

g(γ, x) = (g γ g−1, gx) g ∈ Γ, (γ, x) ∈ X̃

Lemma

Hj(Γ;FΓ) = Hj(ẼΓ/Γ; C)

j = 0, 1, 2, . . .



Ktop
∗ (Γ) := {(M,E)}/ ∼

ch : Ktop
∗ (Γ)→ H∗(Γ;FΓ)

ch(M,E) := ε̃∗(chΓ(E) ∩ tdΓ(M))

chΓ(E) ∩ tdΓ(M) ∈ H∗(M̃/Γ; C)

chΓ(E) ∩ tdΓ(M) is the Atiyah-Singer formula for IndexΓ(DE)



(M,E)
Action of Γ on M is properww�

∃ a continuous Γ-equivariant map ε : M → EΓ

ε̃ : M̃ → ẼΓ

ε̃ : M̃/Γ→ ẼΓ/Γ

ε̃∗ : H∗(M̃/Γ; C)→ H∗(ẼΓ/Γ; C) = H∗(Γ;FΓ)

ch : Ktop
∗ (Γ)→ H∗(Γ;FΓ)

ch(M,E) = ε̃∗(chΓ(E) ∩ tdΓ(M))



chΓ(E) ∩ tdΓ(M) ∈ H∗(M̃/Γ; C)

How is chΓ(E) ∩ tdΓ(M) defined ?

Two methods:

(1) Spectral triple + cyclic cohomology

(2) Classical algebraic topology



ch : Ktop
∗ (Γ)→ H∗(Γ;FΓ)

ch : Ktop
j (Γ)→ ⊕

`
Hj+2`(Γ;FΓ)

j = 0,1

Proposition

Ktop
j (Γ)⊗

Z
C→ ⊕

`
Hj+2`(Γ;FΓ)

is an isomorphism of vector spaces over C.



KΓ
j (EΓ) denotes the Kasparov equivariant K-homology

— with Γ-compact supports — of EΓ.

Definition

A closed subset ∆ of EΓ is Γ-compact if:

1. The action of Γ on EΓ preserves ∆.
and
2. The quotient space ∆/Γ (with the quotient space topology) is
compact.



Definition

KΓ
j (EΓ) = lim−→

∆⊂EΓ
∆ Γ-compact

KKj
Γ(C0(∆),C).

The direct limit is taken over all Γ-compact subsets ∆ of EΓ.

KΓ
j (EΓ) is the Kasparov equivariant K-homology of EΓ with

Γ-compact supports.



τ : Ktop
j (Γ)→ KΓ

j (EΓ)
(M,E) 7→ ε∗[DE ]

where

ε : M −→ EΓ is (as above) a continuous Γ-equivariant map

and

[DE ] ∈ KKj
Γ(C0(M),C) is the element in the Kasparov

equivariant K-homology of M determined by DE .

j = 0, 1



Theorem (P.B. + N. Higson + T. Schick)

τ : Ktop
j (Γ)→ KΓ

j (EΓ)

is an isomorphism j = 0, 1



Gromov’s principle

There is no statement about all finitely presentable discrete groups
which is both non-trivial and true.



Theorem

Ktop
j (Γ) −→∼= KΓ

j (EΓ)

C⊗
Z
Ktop
j (Γ) −→∼= ⊕

`
Hj+2`(Γ;FΓ)

j = 0, 1

Question. Does this theorem violate Gromov’s principle ?



Theorem (PB and R. Willett)

Let Γ be a Gromov group and let A be the Γ - C∗ algebra
obtained by mapping an expander to the Cayley graph of Γ. Then

KΓ
j (EΓ, A)→ Kj(C∗exact(Γ, A)) j = 0, 1

is an isomorphism.
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